低频磁场屏蔽效能计算公式
EMC理论基础知识——电磁屏蔽理论

EMC理论基础知识——电磁屏蔽理论1、屏蔽效能的感念屏蔽是利用屏蔽体来阻挡或减小电磁能传输的一种技术,是抑制电磁干扰的重要手段之一。
屏蔽有两个目的,一是限值内部辐射的电磁能量泄漏出该内部区域,二是防止外来的辐射干扰进入某一区域。
电磁场通过金属材料隔离时,电磁场的强度将明显降低,这种现象就是金属材料的屏蔽作用。
我们可以用同一位置无屏蔽体时电磁场的强度与加屏蔽体之后电磁场的强度之比来表征金属材料的屏蔽作用,定义屏蔽效能(Shielding EffecTIveness,简称SE):2、屏蔽体上孔缝的影响实际上,屏蔽体上面不可避免地存在各种缝隙、开孔以及进出电缆等各种缺陷,这些缺陷将对屏蔽体的屏蔽效能有急剧的劣化作用。
上节中分析的理想屏蔽体在30MHz 以上的屏蔽效能已经足够高,远远超过工程实际的需要。
真正决定实际屏蔽体的屏蔽效能的因素是各种电气不连续缺陷,包括:缝隙、开孔、电缆穿透等。
屏蔽体上面的缝隙十分常见,特别是目前机柜、插箱均是采用拼装方式,其缝隙十分多,如果处理不妥,缝隙将急剧劣化屏蔽体的屏蔽效能。
3、孔缝屏蔽的总体设计思想根据小孔耦合理论,决定孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸。
两者皆大,则泄漏最为严重;面积小而最大线度尺寸大则电磁泄漏仍然较大。
如图所示为一典型机柜示意图,上面的孔缝主要分为四类:(1)机箱(机柜)接缝该类缝虽然面积不大,但其最大线度尺寸即缝长却非常大,由于维修、开启等限制,致使该类缝成为电子设备中屏蔽难度最大的一类孔缝,采用导电衬垫等特殊屏蔽材料可以有效地抑制电磁泄漏。
该类孔缝屏蔽设计的关键在于:合理地选择导电衬垫材料并进行适当的变形控制。
(2)通风孔该类孔面积和最大线度尺寸较大,通风孔设计的关键在于通风部件的选择与装配结构的设计。
在满足通风性能的条件下,应尽可能选用屏效较高的屏蔽通风部件。
(3)观察孔与显示孔该类型孔面积和最大线度尺寸较大,其设计的关键在于屏蔽透光材料的选择与装配结构的设计。
电磁屏蔽室的屏蔽计算及屏蔽方案选择

1 引 言
因此 ,金属网的屏蔽效能为:
S E : 3 9 . 4 0 d B
在进行某 工程设计时 ,建设单位提 出个 别实验室的 电磁场强度需 小 于1 5 a r g 。针对 此要 求,需对此实验室进 行屏蔽计算及 屏蔽方案的选择 。
同时,经计算得知,当频率f 越高时,屏蔽效能越高 。 Z电磁屏蔽基本知识 4 . 2镀锌薄钢 板规格 选择及 屏蔽效能计 算 电磁波 是电磁 能量传播的主要方式 ,高频电路工作时 ,会 向外辐射 根据 《 电磁屏蔽 室工程 技术规范 》G B / T 5 0 7 1 9 — 2 O l l 中单层 金属板 的 电磁波 ,对 邻近的其它设备产生 干扰。 电磁屏蔽 的作用是 切断 电磁波 的 屏 蔽效 能计算规定 ,经过计 算,0 . 5 m m 厚的镀锌 薄钢板符 合该实 验室屏 传播途径 ,用电磁屏蔽的方法来解 决电磁干扰 问题 的最大 好处是不会影 蔽要 求。 响 电路 的正常工作 ,因此不需要对 电路做任何修改 。 计算公式如下: S E 单 = A 单+ R 单 + B 单 同一个 屏蔽体对于不 同性质 的电磁波 ,其屏蔽性能不 同屏蔽体 的有
( 1 ) S E M = A + + B ^ + K 】 + K 2 + K 3
效性用屏蔽效能 ( S E ) 来度 量 。屏蔽效能的定义如下:
, 、
式中: Biblioteka 娆 刚 s / E 。 j
式 中: , E l = 没有屏蔽 时的场 强 E 2 = 有屏蔽 时的场 强 项 如果屏 蔽效能计算中使用 的是磁场 强度 ,则称 为磁场屏蔽效能 ,如 根据规范中各项参数的计算方法可得: Al 苴 = 6 5 , 7 2 d B; 果屏蔽效能计 算中使用的是 电场 强度 ,则称 为 电场屏蔽效 能。屏蔽效能 的单位是分 贝( d B ) 。 R - = 7 4 . 0 2 d B. . 电磁屏 蔽室利用金属板体 ( 金属 网) 制成六 面体 ,由于金属板 ( 罔) 对 B 苴 忽略不计 。 入射 电磁波 的吸收损耗、界面反射损耗 与板 内反射损耗 ,使 其电磁波的 因此 ,镀锌 薄钢板的屏蔽效能为:d B 。 能量大大的减弱,而使屏蔽室产生屏蔽作用 。 4 . 3铜 网式 电磁屏蔽 室屏蔽 效能计算 3 . 电磁屏蔽效能选择 电磁屏蔽室屏 蔽效能按下式计算:S E - = 1 3 9 . 7 4 本工 程该 电磁屏 蔽实验 室附近 生产 设备主 要为 一些机械 加工 类设 备,其产生 的电磁 场相对较小 。为满 足上述设备运行 ,在 电磁屏蔽实验 室周边配置 了l O k V 变 配 电间和排放机房 等辅助设施 。查相 关资料 ,该类 厂房变配 电间的变压器为主要 电磁源 ,因此主要针对变配 电间产生的 电 式中: 1 j。礼 , B l。娩 l 0 。 ・ - . 磁场 进行屏蔽设计。 : 根据 国家 电网网站提供的1 9 9 9 年上海市辐射环境 监理 所对位于大楼 s E ~ 屏蔽金属网的屏蔽效能 ( d B ) ; 内的l O k V 配 电站的工频磁场实测值 ,1 0 k V 配 电站对周边造成 的最大工频 s E 一屏蔽金属板的屏蔽效能 ( d B ) ; s E n ~信 号滤波器 、通风截 止波 导、缝 隙、门等的屏蔽效能 ( d B ) 嘲; 磁感应 强度 为 l 1 . 6 9 u T ( 1 T = 1 0 0 0 0 G ) 。考 虑周边 其他 杂散磁场 的影响,取 1 . 5 的系 数作为未进 行 电磁 屏蔽前 的电磁场强度 进行计算 。该实验 室针 铜 网式电磁 屏蔽室主要是 以金属 网的屏 蔽效能为主 ,其他可 忽略不 对变 配 电间的屏蔽效能应为: 。 计 ,因此 ,该实验室采用铜 网式 电磁屏蔽 的屏蔽效 能经计 算可得 :
实验指导书1-屏蔽部件的屏蔽效能测试实验指导书

屏蔽部件的屏蔽效能测试实验指导书一、实验目的理解屏蔽的分类,加强对屏蔽效能概念理解,掌握屏蔽效能测试原理及方法。
二、实验原理屏蔽效能是同一地点无屏蔽存在时的电磁场强度与加屏蔽体后的电磁场强度之比。
(一)屏蔽效能计算方法后前P PSE lg 10=()12SE A A dB =-其中:SE 为屏蔽效能,P 前和A 1为自由空间校准接收功率值,P 后和A 2为屏蔽后接收到的接收功率值。
测量原理图如图1所示。
图1屏蔽效能测试原理图 (二)屏效测试使用天线测试频段 频率范围 标准测试天线 低频段100Hz~30MHz环形天线三、实验仪器1.电磁屏蔽室(含屏效测试窗口)2信号源SP1642B,信号源MG3694A;3.测试天线组:KSTM-1013环形天线,KSTM-2213对称振子天线,KSTH-0508微波喇叭天线(各一对);4. 安捷伦N9020A微波频谱分析仪;5.测试电缆1#、2#、3#及附件;6.被试屏蔽材料样件。
四、实验内容及步骤实验内容:(一)磁场屏效测试(1)测试频点:250 kHz 、1MHz、30MHz(4)加屏蔽体后的测试。
(二)电场屏效测试(1)测试频点:300MHz、1GHz 。
(3)自由空间测试。
(4)加屏蔽体后的测试。
(三)平面波屏效测试(1)测试频点:4GHz、6GHz 。
(4)加屏蔽体后的测试。
测试具体步骤(以磁场频效测试为例):1.按原理图连接测试系统,经检查系统连接正常后,将信号发生器的电源插头插入220V电源,按下“电源”开关,将信号源预热30分钟;2.自由空间测试,将信号源输出频率依次调为实验内容中的测试频点,输出功率为+20dBm;在每个频率点下,在频谱仪中读出接收到的相应频率点处的功率电平幅度dBm值记为A1;3.加屏蔽体后的测试,保持信号源输出功率不变,通过频谱仪读出有屏蔽时接收到的相应频率点处的功率电平dBm值记为A2;注:应保证受试屏蔽样件与屏蔽室测试窗口安装法兰的电连续,尤其注意安装螺栓的均匀紧固,减小安装孔缝对测试结果的影响。
低频磁屏蔽涂层材料的研究介绍

ec h t o u P 】 I ga n g e n t , h t e oa c t i g 而c n ne k s s nd a t h e h r a d e 川 gt n C e oo h f o g y . 1 l l r o u g h e r h t e e s a r c h , tf i i n so d u t t h a t mo a n g e F h t e 一 1 5 . N b . V 一 B , 凡一 1 5 . N b . M 小 Ba nd F e 一 5 1 ・ Ba mo p r h o u s m a t 州a l 气F - e S i 一 b一 N V 一 Ba j m o P r ou h sm a t e i r a l l . s a b e t e r ie h s l d n i g e 任 改 t l n l o w . 斤 e q u e n c y劝 犯 e h t nt a h e o h t r妇 e 邢 0 , W h i 比a mo u n t s o3 t 0 d B . B e s i d e s , a n e r 4 5 0 ℃朗 d 5 6 0 ℃a ne a l i g, n a e b t e r ie h s l d i n g e ec f iv t e n e s s i s i y e l d d e W h e n h t e ne a a l e dF e 一 b s a dm e er t a i ii a s c o n u n i n u t e di o t t n e c h o t a n i g s U t f n i g , h t e mo a t o n u f 引 泊 i f n g m a t 晰a l , o s l en v t即 d e c h t o u P l i ga n g e i n , ec h t oa t n i g ic h t ne k s s n a d e h t 加 司印 访 g o t c no h l o g y h ve a g r e a t i n l f 二c e s o n h t e l o 二肚q nc e u y s h i e l d i n g e l f 免 c t l v s s n e . 从 飞 c n e b h t es tr a d l o o f F e 一 b s a dg e U t f 加 g nd a e ox p y e r s ni i s4 : 1 , e m h t a ne g t l c ie h s l d i n g
屏蔽效能

EMC实验报告学号:******** 班级:04101101姓名:***EMC 屏蔽效能的测试报告一、实验原理:1. GB12190-1990 高性能屏蔽室屏蔽效能的测量方法:指测试过程中,除了与特定设施有关的频率之外,为考核屏蔽室屏蔽效能而选取的典型测试频率范围,分以下三个频段(见表1)。
表11)在20-300MHz 频段内由于天线尺寸和屏蔽室的谐振效应,使测量结果常常会因测试方法的微小变动产生极不正常的变化,所以在该频段内未推荐测试方法。
如确有必要侧试,本标准的小环法或频段II 测试方法可供参考。
2)侮个频段仅测一个频率点,用以粗略估计屏蔽室的屏蔽效能。
屏蔽效能的表示:在频段I ,屏蔽效能由右式表示:SE=20log12E E→→,在频段II ,屏蔽效能由右式表示:SE=20log12HH →→,在频段III ,屏蔽效能根据指示器方式的用右式表示:SE=10log 12P P 。
2. 测量的一般要求一般要求a.在正式侧量之前可对屏蔽室进行初测,找出性能差的门、接缝和安装不良的电源滤波器及通风孔,以便正式测量之前子以修补。
对于新建的屏蔽室,尤其有必要进行初测;b.在测试之前,应把金属设备或带金属的设备搬走,如桌子、椅子、柜子和不用的仪器等;c.屏蔽室的电源滤波器及室内电源线只给检测仪器及照明供电;d.在测试中,所有的射频电缆、电源和其他平时要求进人屏蔽室的设施均应按正常位置放置;e.电磁环境应满足GB 3907的要求,检测仪器本身应满足抗干扰要求,f.为了不致发生生理危害,应采取专门的预防措施,这对频段Ⅲ的测量尤为重要;9.测量中,对各种导线、电缆的进出口、门、观察口及板与板之间的接缝应特别注意;h.有些测试方法要求在不同的位置、不同的极化条件下对某一结构要素作多次测量,i.测试报告应记录可接近的屏蔽壁数目、受试屏蔽壁的数目,以及局部测试区的数目和位置。
3.测试用天线本标准对不同频段的测试天线规定如下:a.频段I:环形天线,b.频段I:偶极子天线,c.频段III:微波喇叭及其等效天线。
屏蔽常数的计算方法

屏蔽常数是指在电学、电磁学和信号处理等领域中,表示物体对电磁波的吸收、反射和透射的能力的一个量。
屏蔽常数的计算方法通常包括以下几种方法:
相对导体吸收率法:这种方法通过测量物体相对于空气的导体吸收率(SAR)来计算屏蔽常数。
公式为:
屏蔽常数= SAR / (2πfμ0μr)
其中,SAR是物体相对于空气的导体吸收率,f是电磁波的频率,μ0是真空中的磁导率。
傅里叶变换法:这种方法通过对电磁场在物体内部进行傅里叶变换,然后通过对变换后的电磁场进行分析来计算屏蔽常数。
时域有限差分法:这种方法通过对电磁场在物体周围进行时域有限差分来计算屏蔽常数。
屏蔽常数的计算方法还有其他的方法,但以上是常用的几种方法。
屏蔽常数的计算方法的选择取决于测量的电磁场的频率和物体的特性,应根据具体情况进行选择。
电子设备屏蔽与屏蔽效果

电子设备屏蔽与屏蔽效果用导电或导磁材料制成的用以抑制电场、磁场及电磁场干扰的盒、壳、板和栅、管等措施称为屏蔽。
屏蔽有两个目的,一是限制内部辐射的电磁能量泄露出该内部区域,二是防止外来的辐射干扰进入某一区域。
根据其抑制功能不同,屏蔽可分为:电屏蔽即静电场或交变电场的屏蔽,用于防止和抑制寄生的电容耦合,隔离静电或交变电场的干扰。
磁屏蔽即对恒磁场或交变磁扬的屏蔽,用于防止磁感应,抑制寄生电感耦合,隔离磁场的干扰。
电磁屏蔽即电磁场的屏蔽,用于防止和抑制高频交变电磁场(f≥150kHz)的干扰,即隔离电磁耦合和辐射电磁场的干扰。
屏蔽体的屏蔽效果用屏蔽效能SE(Shielding effectiveness)来表示,屏蔽效能的定义为,在同一干扰作用下,无屏蔽体时测得的场强和有屏蔽体时测得的场强之比。
即:1010H H E E SE == (5.1)如以对数表示则为:)lg(20)lg(201010H H E E S B d == (5.2) 式中 SE —屏蔽效能;B d S —以分贝为计量单位的屏蔽效能,(dB );E 0—无屏蔽体时测得某点的电场强度;E 1—有屏蔽体时测得同一点的电场强度;H 0—无屏蔽体时测得某点的磁场强度;H 1—有屏蔽体时测得同一点的磁场强度。
屏蔽效能越高,实施的难度越大。
民用设备的机箱一般仅需要40dB 左右的屏蔽效能,而军用设备的机箱一般需要60dB 以上的屏蔽效能。
5.2.1电场屏蔽1. 电场屏蔽的原理电场的屏蔽原理可用电磁场的理论分析。
在干扰源和敏感单元之间设置良好接地的金属屏障,就可抑制干扰源电场对敏感设备的影响。
从场的观点看,电屏蔽的实质是干扰源发出的电力线被终止于屏蔽体,从而切断了干扰源与敏感单元之间电力线的交连;从电路的观点分析,屏蔽体起着减小干扰源和敏感单元之间分布电容的作用。
2.电屏蔽的设计要点要减少电场所引起的干扰,可采取以下措施:⑴屏蔽体必须良好接地。
一般要求屏蔽体与地的连接电阻小于2mΩ,在严格的场合下要求连接电阻小于0.5 mΩ。
如何评估一个屏蔽体的屏蔽效能?

如何评估一个屏蔽体的屏蔽效能?屏蔽效能表现了屏蔽体对电磁波的衰减程度。
由于屏蔽体通常能将电磁波的强度衰减到原来的百分之一至万分之一, 因此通常用分贝(dB)来表述。
一般的屏蔽体的屏蔽效能可达40 dB, 军用设备的屏蔽体的屏蔽效能可达60 dB, TEMPEST设备的屏蔽体的屏蔽效能可达80 dB以上。
一、屏蔽效能的计算:屏蔽有两个目的: 一是限制屏蔽体内部的电磁骚扰越出某一区域; 二是防止外来的电磁干扰(骚扰)进入屏蔽体内的某一区域。
屏蔽体一般有实芯型、非实芯型(例如, 金属网)和金属编织带等几种类型, 后者主要用作电缆的屏蔽。
各种屏蔽体的屏蔽效果均用该屏蔽体的屏蔽效能来表示。
屏蔽效能表现了屏蔽体对电磁波的衰减程度。
由于屏蔽体通常能将电磁波的强度衰减到原来的百分之一至万分之一, 因此通常用分贝(dB)来表述。
一般的屏蔽体的屏蔽效能可达40 dB, 军用设备的屏蔽体的屏蔽效能可达60 dB, TEMPEST设备的屏蔽体的屏蔽效能可达80 dB以上。
对于屏蔽作用的评价可以用屏蔽效能来表示:屏蔽效能SE越大,表示屏蔽效果越好。
另外, 还可以用传输系数(或透射系数)TE表示屏蔽效果, TE是指存在屏蔽体时某处的电场强度ES与不存在屏蔽体时同一处的电场强度E0之比; 或者是指存在屏蔽体时某处的磁场强度HS与不存在屏蔽体时同一处的磁场强度H0之比, 即:传输系数(或透射系数)与屏蔽效能互为倒数关系, 即二、完整屏蔽体的屏蔽效能:完整屏蔽体是指一个完全封闭的屏蔽结构,电磁场只有穿过屏蔽体壁才能出入该封闭结构。
1.电磁波的反射损耗电磁波传播到不同介质分界面发生反射与透射电磁波穿过屏蔽体时的反射与透射:2.电磁波的吸收损耗电磁波到达屏蔽体的穿出面时从上式可以看出, 在频率f 较高时, 吸收损耗是相当大的,表2-1 给出几种常用金属材料在吸收损耗分别为A=8.68 dB、20 dB、40 dB时所需的屏蔽平板厚度t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
低频磁场屏蔽效能计算公式
引言。
在现代社会中,我们经常会接触到各种电子设备,例如手机、电脑、电视等等。
这些电子设备产生的电磁辐射对人体健康可能会造成一定的影响。
因此,研究电磁辐射的屏蔽效能就显得尤为重要。
本文将介绍低频磁场屏蔽效能的计算公式,帮助人们更好地评估和控制电磁辐射对人体的影响。
低频磁场屏蔽效能计算公式。
低频磁场屏蔽效能是指材料对低频磁场的屏蔽能力。
在实际应用中,我们通常
使用屏蔽效能来评估材料的屏蔽性能。
低频磁场屏蔽效能的计算公式如下:SE = 20log(μ/μ')。
其中,SE表示屏蔽效能,μ表示未屏蔽时的磁导率,μ'表示屏蔽后的磁导率。
磁导率是材料对磁场的响应能力,是衡量材料屏蔽性能的重要参数。
通过这个公式,我们可以计算出材料的屏蔽效能,进而评估材料对低频磁场的屏蔽能力。
应用举例。
为了更好地理解低频磁场屏蔽效能的计算公式,我们可以通过一个具体的应用
举例来说明。
假设我们有一种材料,其未屏蔽时的磁导率为1.5,屏蔽后的磁导率
为0.5。
根据上面的公式,我们可以计算出这种材料的屏蔽效能为20log(1.5/0.5) ≈9.54dB。
这意味着这种材料对低频磁场的屏蔽效能约为9.54dB,屏蔽能力较强。
影响因素。
低频磁场屏蔽效能受到多种因素的影响,主要包括材料的磁导率、材料的厚度、磁场的频率等。
首先,磁导率是衡量材料对磁场响应能力的重要参数,磁导率越大,材料的屏蔽效能越高。
其次,材料的厚度也会影响屏蔽效能,一般来说,材料的厚
度越大,屏蔽效能越高。
最后,磁场的频率也会对屏蔽效能产生影响,不同频率下材料的屏蔽效能可能会有所不同。
实际应用。
低频磁场屏蔽效能的计算公式在实际应用中具有重要意义。
首先,通过计算屏蔽效能,我们可以评估材料对低频磁场的屏蔽能力,选择合适的材料来保护人体免受电磁辐射的影响。
其次,我们可以通过计算屏蔽效能来优化材料的设计,提高材料的屏蔽性能。
最后,通过计算屏蔽效能,我们可以对不同材料的屏蔽性能进行比较,选择最适合的材料来满足特定的应用需求。
结论。
低频磁场屏蔽效能的计算公式是评估材料对低频磁场屏蔽能力的重要工具。
通过这个公式,我们可以计算出材料的屏蔽效能,进而评估和优化材料的屏蔽性能。
在实际应用中,我们可以通过计算屏蔽效能来选择合适的材料,保护人体免受电磁辐射的影响。
希望本文能够帮助人们更好地理解低频磁场屏蔽效能的计算公式,进而更好地应用于实际生活和工作中。