液体硅胶注塑最新技术

合集下载

液态硅胶成型工艺流程

液态硅胶成型工艺流程

液态硅胶成型工艺流程嘿,朋友们!今天咱来唠唠液态硅胶成型工艺流程,这可真是个有趣又实用的玩意儿呢!你想想啊,液态硅胶就像是那神奇的魔法材料,能变成各种各样我们想要的东西。

那它是怎么被“变”出来的呢?首先啊,得有个好的模具。

这模具就好比是孙悟空的金箍棒,没有它可不行!模具得精心设计和制作,要严丝合缝,不能有一点儿马虎。

不然液态硅胶进去了,出来的东西不就走样啦?那可就闹笑话喽!然后呢,把液态硅胶小心翼翼地倒进模具里。

这时候液态硅胶就像是听话的小孩子,乖乖地在模具里待着。

可别小瞧了这倒的过程,得掌握好速度和量,多了少了都不行。

这就跟咱做饭放盐似的,放多了咸,放少了没味呀!接着呀,就是让液态硅胶在模具里好好待着,进行固化。

这固化的过程就像是冬天里等雪慢慢结成冰,得有耐心。

在这个过程中,液态硅胶会逐渐变得坚硬起来,从那软软的液体变成有型有样的成品。

等固化好了,就可以把成品从模具里取出来啦!哇哦,就像是从妈妈肚子里生出个小宝宝一样,满心期待呀!这时候看到那完美的成品,心里的成就感简直爆棚!你说这液态硅胶成型工艺流程是不是很神奇?就像变魔术一样,能把普通的液态硅胶变成各种实用又好看的东西。

咱生活中的好多东西可都是通过这个流程做出来的呢!比如说那些软软的手机壳,摸着可舒服啦,就是液态硅胶成型的呀!还有一些小玩具、小饰品啥的,都是这么来的。

这液态硅胶成型工艺流程,就像是一位默默奉献的工匠,不声不响地为我们创造出那么多好东西。

咱得好好珍惜这些成果呀,也得感谢那些在背后默默付出的工作人员。

总之呢,液态硅胶成型工艺流程可真是个了不起的东西!它让我们的生活变得更加丰富多彩,更加有趣。

下次你再看到那些液态硅胶做的东西,可别忘了想想它们是怎么被做出来的哟!原创不易,请尊重原创,谢谢!。

硅胶注塑工艺技术

硅胶注塑工艺技术

硅胶注塑工艺技术硅胶注塑工艺技术是一种将液态硅橡胶经注射机注入模具中并在高温下固化成型的工艺技术。

硅胶注塑工艺技术在塑胶制品生产中有着广泛的应用,尤其是在汽车、电子、医疗器械等领域。

硅胶注塑工艺技术的优势主要体现在以下几个方面:首先,硅胶注塑具有优良的耐高低温性能。

硅胶注塑制品能够在极高或者极低的温度环境下保持其性能稳定,不会因为温度的变化而发生质量变化。

这一特性使得硅胶注塑制品在汽车零部件、电子元器件等领域得到广泛应用。

其次,硅胶注塑具有优异的机械性能和电气性能。

硅胶注塑制品的拉伸强度和硬度都很高,同时硅胶注塑制品具有优异的绝缘性能,可以在电器领域中使用。

另外,硅胶注塑具有良好的化学稳定性。

硅胶注塑制品在酸碱、油脂等化学物质的侵蚀下,能够保持其原有的性能,不会发生质量变化。

这使得硅胶注塑工艺技术在医疗器械、食品包装等领域得到广泛应用。

在硅胶注塑工艺技术的生产过程中,需要先将硅胶橡胶与固化剂、增塑剂等添加剂混合,形成液态的硅胶混合料。

然后将混合料通过注射机注入模具中,待混合料在高温下固化成型。

整个过程需要控制注射机的工作温度、注射量、注射速度等参数,以保证产品的质量。

硅胶注塑工艺技术相比传统的注塑工艺技术有着更高的制品质量和更高的自动化程度。

硅胶注塑产品的表面质量平整光滑,不会出现气泡、破损等缺陷;同时,硅胶注塑工艺技术还可以实现自动化生产,大大提高了生产效率和产品的一致性。

总的来说,硅胶注塑工艺技术作为一种具有优异性能和广泛应用的工艺技术,对于提高塑胶制品的质量和生产效率起到了重要作用。

随着科技的进步和工艺的不断发展,硅胶注塑工艺技术在未来将有更广阔的应用前景。

液态硅胶注射成型机原理

液态硅胶注射成型机原理

液态硅胶注射成型机原理液态硅胶注射成型机是一种常用于制造硅胶制品的设备。

它的工作原理是将液态硅胶注入模具中,经过固化后得到所需的硅胶制品。

本文将从硅胶注射成型机的结构、工作原理和应用领域等方面进行介绍。

我们来了解一下液态硅胶注射成型机的结构。

一般来说,它由注射系统、固化系统、控制系统和模具系统组成。

注射系统包括供料装置、注射装置和压力调节装置,用于将液态硅胶注入模具中。

固化系统则通过加热或加压等方式促进硅胶的固化。

控制系统用于控制整个注射成型过程的参数,如注射温度、注射时间等。

模具系统则是根据所需制品的形状和尺寸进行设计和制造的。

接下来,我们来了解液态硅胶注射成型机的工作原理。

首先,将液态硅胶注入供料装置中,并通过注射装置将硅胶注入模具中。

注射装置通常由注射缸和注射嘴组成,其中注射缸负责将硅胶从供料装置中抽取出来,注射嘴则负责将硅胶注入模具中。

在注射过程中,可以通过压力调节装置控制注射压力,以确保硅胶能够均匀地填充模具。

注射完成后,模具中的硅胶会经过固化系统的加热或加压处理,使其固化成所需的形状。

最后,打开模具,取出固化后的硅胶制品。

液态硅胶注射成型机具有许多优点,因此在许多领域得到了广泛应用。

首先,由于硅胶具有良好的耐高温、耐低温和耐化学性能,因此液态硅胶注射成型机制造的硅胶制品可以应用于汽车、电子、医疗器械等高要求的领域。

其次,液态硅胶注射成型机具有较高的生产效率和一致的制品质量,可以满足大批量生产的需求。

此外,液态硅胶注射成型机还具有较低的能耗和较小的废品率,有助于企业降低生产成本和提高经济效益。

总结一下,液态硅胶注射成型机是一种用于制造硅胶制品的设备,通过将液态硅胶注入模具中并经过固化得到所需制品。

它具有结构简单、工作可靠、生产效率高等特点,在汽车、电子、医疗器械等领域得到了广泛应用。

随着技术的不断进步,液态硅胶注射成型机将会在更多领域展现其巨大潜力。

LSR(注射成型)最新技术详解-精

LSR(注射成型)最新技术详解-精

注射成型LSR的最新进展在这一制品中,,用作滤图1热塑性塑料/LSR包覆成型的一个应用是水龙头滤网包覆成型的一个应用是水龙头滤网。

在这一制品中网的LSR被包覆成型到尼龙66上得益于材料、设备和工艺的改进与革新,液态硅橡胶(LSR)逐渐摆脱了小众需求的现状,扩大了应用领域。

其中,大型、微型和发泡制品,以及多色或多材料的组合是LSR应用的新领域。

液态硅橡胶(LSR)对于注塑加工商的商业机会的拓宽,要归功于更新的成型工艺,如发泡、多色或者多硬度注射,以及热塑性塑料/热固性塑料包覆技术的涌现。

材料、设备和模具的改进增加了产品的多功能性,提高了产品质量,降低了注塑加工商准入的门槛。

今天的LSR注塑加工商拥有更多的原材料选择、更大的模具选择余地以及更好的工艺技术,不但可以成型小至数千分之一g的制品,而且也能够加工32kg以上的巨大产品。

材料、模具和加工设备供应商表示,在过去的几年里,对LSR感兴趣的人逐渐增加。

“一些塑料公司对此感兴趣,一些新公司也希望开拓他们的业务,同时医疗领域的加工商也更多地加入进来。

”Roembke Mfg.&Design模具公司副总裁Greg Roembke说。

“我们发现,汽车工业已开始应用LSR。

也许传统的硅橡胶在汽车工业中的应用已达到了极致,下一步需要从LSR获得更多的东西。

”他补充说。

图2LSR的双注射包覆成型通常在一个成型单元内完成,而LSR和热塑性塑料则分别在不同的注射机上成型LSR注塑加工商表示,他们已经从高温硅橡胶(HCR)、EPDM、乳胶、天然橡胶、TPE、PVC甚至陶瓷的应用领域中抢占了一些市场。

Momentive Performance Materials(前GE Silicones)的弹性体和RTV总经理Bill French说,由于LSR惰性、耐热且耐化学品,因此可用于生产奶嘴和奶头、医用装置阀门或密封条、医疗植入体、医用手套和汽车密封条等。

另外,在电子连接器、O型圈、衬垫、膜、引擎内零部件和燃料系统零部件方面,LSR 也将获得更大的市场份额。

液体硅橡胶LSR注射成型工艺的设计

液体硅橡胶LSR注射成型工艺的设计

液体硅橡胶L S R注射成型工艺的设计seek; pursue; go/search/hanker after; crave; court; woo; go/run after液体硅橡胶LSR注射成型工艺的设计在过去的三到五年里,热固性液体硅橡胶LSR的注塑技术得到了快速的发展.LSR的注塑设计与刚性工程热塑料有着重要的差别,这主要是因为这两种橡胶的物理性质,如低粘度,流变学性质快速固化,剪切变稀性质,以及较高的热膨胀系数等区别较大.由于LSR的粘度较低,因此它在注射成型过程中,即使在注射压力较低的情况下,填充流速也可以较快,但是为了避免空气滞留,对模具通风的要求更加严格.总的来说,现代LSR的快速硫化的循环时间更短某些情况下循环时间不到20秒,为了充分利用这一特性,加工机械、注射成型机以及部件转移系统等必须相互配合,作为一个高度集成的整体运作.冷流道成型现代冷流道体系充分利用了LSR剪切变稀的性质,真正达到了无浪费,无毛边成型.在过去的三到五年里,冷流道模塑在制造业中的优势地位急速上升,并导致橡胶产品的产量增加、废品减少、劳动成本降低等良好的势头.LSR不会在模具中收缩,这一点和热塑性塑料类似.但是由于膨胀系数较高,加热时会发生膨胀,冷却时却仅有微小的收缩.因此,部件通常不能在模具中保持准确的侧边距,只有在表面积较大的空腔中才可以保持.与热流道模塑相似,在冷流道加工中,热固LSR应保持较低温度和可流动性,以确保没有物料的损失.这种加工方法最适用于在清洁的室内环境中生产大小、结构相似的大体积部件.理想模型是在人为因素影响最小的设备中昼夜不停的运转,并逐步增大运转周期日或周.目前所用的冷流道设备有两种基本类型,即闭合系统和开放系统,它们各有优缺点.注射循环中,闭合系统在每一个管道中都采用“开动销”或“针形阀”来控制LSR橡胶的流量.而开口系统则根据注射压力的大小,利用“收缩嘴”和阀门来控制物料的流量.与开口系统相比较,闭合系统最典型的特点是在较低的注射压力下进行注塑.设备中可调控的“节流口”可以对不平衡的分流道以及物料的不同剪切变稀性能进行微调.缺点是对某些给定大小的部件和模具,设备需作额外的调整.开放系统利用通过喷嘴或者阀门的高剪切速率,在注射压力降低时,进行截流.一般情况下,开放系统的空腔填充时间要比闭合系统稍微短一些.开放系统由于分流道和喷嘴较小,空腔密度较高.分流道则要求自然平衡,并与物料本身的流变性能严格匹配.因为开放系统的流道尺寸较小,所以通常不用可调“节流口”,只需普通阀门就可以很好的控制流量,并获得最佳的压力点.分模线设计液体硅橡胶注射成型模具时,首先要考虑分模线的位置,因为分模线内部需设置一些通道,利用这些通道完成通风任务,通风孔必须设置在注射物料最后到达的模具末端.预先考虑以上因素,有助于避免空气的夹带和焊接线边缝强度的损失.由于LSR的粘度低,所以必须确保分模型线的精确度,避免出现毛边.虽然如此,最终产品上的分模线清晰可见.部件的几何形状和分模线的位置还会影响脱膜过程.在部件设计中,轻微的根切有助于确保被塑部件与模具空腔之间坚固的结合在一起.收缩虽然液体硅橡胶在注射成型过程中没有收缩,但是由于硅橡胶具有较高的热膨胀系数,因而在脱膜、冷却后通常会有2%-3%的收缩.确切的收缩数据主要取决于物料配方,但是从加工的观点来看,设计者如果在构思的时候,预先对影响收缩的一些因素有所考虑的话,最后的收缩情况会有所变化,这些因素主要包括加工的温度,物料脱膜的温度,空腔压力等.另外要考虑的是注入口的位置,因为通常物料在流动方向上的收缩要比其垂直方向的收缩来得明显些.另外,部件的尺寸也是一个影响因素,一般来说,部件越厚,收缩越小如果在实际应用中要求二次硫化,则还要考虑额外增加0.5%-0.7%的收缩.通风当模具空腔关闭时,空气滞留在内,随着LSR的注射,空气首先被挤压,接着逐渐被填料赶出空腔,由于LSR的粘度较低,空腔很快被填充.在快速填料过程中,如果空气不能完全被赶出空腔,将会夹带在硫化后的物料中通常表现为沿部件周边一圈白边或是内部光滑的小气泡.典型的通气管道宽1-3mm,深0.004-0.005mm,现已成功应用于生产中.排除空腔滞留空气的最佳方法,是在每一个注射成型循环中,采用抽真空的办法将空腔中滞留空气赶走.就是说,在设计分模线时确保模具密闭,真空泵通过模具开关下面的夹具将所有空腔抽真空.一旦真空度达到预想标准要求,立刻关闭模具,开始注射.还有一种成功应用的方法是,利用调节夹具力度达到赶走空气的目的.制造者在夹具力较低时LSR 填充至空腔的90%-95%,之后再将夹具力度调高,同时避免积压液体硅橡胶溢出,产生毛边.注入口一个合适的加工设计,既希望阀门的痕迹小而坚固,又希望阀门的位置不易察觉,这是非常困难的.但是如果将阀门设置在非临界区域或内表面上,就可以避免很多麻烦,例如前面提到的,利用冷流道系统进行LSR材料的注射成型就可以省去注入口痕迹的消除,从而避免了劳动集约型的生产过程和大量物料的浪费.很多情况下,无注入口设计也将缩短循环时间.如果采用冷流道系统,在热空腔与冷流道之间设置有效的隔离温度是十分重要的.如果分流道太热,物料在注射前就开始固化,而如果冷却太快的话,它会从模具阀门区域吸收过多热量,防碍固化的完成.闭合系统的阀门或是开动销,一般设计为0.5-0.8mm之间,以保证销和它周围流动的物料的活动空间.而开口系统中,喷嘴和阀门通常要小一些0.2-0.5mm,这样可以较好的控制流量.对于低粘度的LSR来讲,若是通过传统注入口注入物料,例如潜伏式阀门或是锥形阀门,那么喂料直径要略小些.注入口直径通常在0.2-0.5mm之间.脱模除非是较特殊的配方,一般固化LSR容易粘在金属表面上,这给脱模带来了一定的困难.虽然如此,目前LSR橡胶的热撕裂强度还是能够满足脱模要求的,在脱模后基本没有损失.应用最为普遍的脱模技术设备,包括分馏柱塔板,推顶销和空气推顶.其他应用较多的方法包括滚筒扫除机,排除塔,和机器人操作.使用推顶系统时,必须使推顶系统保持在相近的公差范围内.如果推顶销和套管之间清除过度,或是元件磨损时间过长,都会引起部件毛边的出现.反锥形或蘑菇形推顶器的接触压比较大,可增进系统的密闭性,因而功效很强.模具材料一般情况下,护圈板都是采用非合金加工钢no.1.1730,DINcodeC45W来制造的.由于模板要暴露在170℃-210℃的高温下,所以应该采用预回火的钢材no.1.2312,DINcode40CrMnMoS86制造,以提高抗冲压性能.具有空腔的模板最好采用耐温性好的弹性热钢为材料.针对像抗油品级这类高填充LSR材料,推荐使用更强硬的材料,例如镀铬钢和粉末金属都在这一应用上有了较大的发展钢.在为研磨性物料制作模具时,要注意使用特别的插件或者其他可替换加工工具,这样元件磨损后可以单独替换,而不必更换整个模具.模具空腔表面的优劣对部件的品质有重要的影响,简单讲,铸好的部件会将模具空腔的原貌准确的复制下来.抛光钢对于透明部件显得十分重要.表面经过处理的钛/镍钢具有很高的抗磨损能力,而PTFE/镍更加容易脱膜.LSR材料在某种程度上具有研磨特性,因而最好不要选择铝质材料.在经济条件允许的情况下,选用最好的金属材料,以便得到更好的相容性,同时便于由粗产品加工为最终产品.温度控制LSR成型工艺中,典型的加热方式是电加热,通常采用电热丝加热器、加热管或者加热盘.LSR的一次型固化过程中,模具内温度的均匀分配是非常重要的.在大型模具中,最经济的加热方法是“油温控制法”.用绝缘板包裹模具,也有助于减少热损失.如果表面温度下降过快,会使物料的固化速度降低,不断抑制部件的释放,影响部件的品质.加热器与分模线之间保留一段距离,可以大大避免模板的弯曲与变形,但是会使铸好的部件出现毛边.如果模具是为冷流道系统设计的,那么在冷热界面上必须有适合的隔离,这是必不可少的.像3.7165TiAl6V4这样的钛合金,相比其他钢材料来说,其热导性能差,因此是冷热隔离的良好材料.对于整体模具加热体系,应该在模具与模板之间放置绝缘层,把热损失降低到最小.模拟设计LSR分流道系统中,LSR将均匀填充所有的模具空腔,在这样的一个体系中,LSR分流道规划的平衡显得十分重要.采用电脑物流动力学模拟软件来设计分流道阀门和通风口,可以帮助模具的改进,避免反复试错法的高消耗.其实验结果可以用填充研究来论证,但是,正确的模拟要求工程师对所注塑的LSR配方的机械反应性能了如指掌.利用有限元分析法进行部件设计的实验,可忽略高应力区.小结予以恰当的设计和规划,LSR材料的注射成型是一项经济收益好,操作相对简洁的生产工艺.充分理解注射成型与流程设计的原则,制造者即可在避免出现问题的同时,进行高效生产,相信LSR出色的空腔填充性能和快速硫化特性,必将带来高品质、高产出的工业效应.来源:机电之家·机电行业电子商务平台。

液态硅胶包胶成型技术

液态硅胶包胶成型技术

液态硅胶包胶成型技术
液态硅胶包胶成型技术是一种制造高精度产品的先进技术,其基本原理是使用液态硅胶材料将需要被包覆的产品浸入其中,经过成型、固化和切割等工序,最终得到外形精美、耐用性高的产品。

液态硅胶包胶成型技术具有以下优点:
1. 可以制作复杂形状、高精度、粘合度强的产品。

2. 硅胶材料的柔韧性和耐热性都很好,产品不易变形和老化,可以长时间使用。

3. 液态硅胶自身的高透明度和绝缘性能,使得产品具有良好的外观效果和电隔离性能。

4. 液态硅胶包胶成型技术的生产过程无污染,且流程简单,成本较低,具有很强的竞争力。

在实际应用中,液态硅胶包胶成型技术广泛应用于电子、手机、医疗器械、汽车、玩具、家居等领域。

液态硅胶包胶成型技术的发展不仅推动了制造业的发展,还为人们提供了更好的产品品质和使用体验。

液态硅胶的原理和塑胶注塑的原理

液态硅胶的原理和塑胶注塑的原理

液态硅胶的原理和塑胶注塑的原理一、液态硅胶的原理液态硅胶,也被称为室温硫化硅橡胶,是一种高活性的有机硅化合物。

它在常温下是液态材料的特性,可以用于多种领域,如医疗、电子、汽车等。

液态硅胶在生产上主要经过混炼、成型、固化三个步骤。

首先,液态硅胶通过混炼机进行混炼,将液态硅胶与其他添加剂如补强填料、硫化剂等进行混炼,制成具有一定弹性和形状的硅胶制品。

这一步中,液态硅胶会变成具有一定流动性的半流体,方便涂抹和渗透。

其次,将混炼好的硅胶通过模具或挤塑机塑成一定形状,这是液态硅胶由液态转化为固态的关键步骤。

在高温环境下,液态硅胶会固化成具有一定弹性和形状的硅胶制品。

这一过程主要是通过交联反应来实现的,即不同的分子间相互链接形成网状结构,从而使液态硅胶变成固态。

最后,液态硅胶制品还需要进行后固化,这一过程需要较长时间,需要慢慢冷却以实现充分硫化。

在此过程中,液态硅胶会逐渐变成固态,并形成具有稳定结构和性能的硅胶制品。

二、塑胶注塑的原理塑胶注塑是一种塑料加工工艺,主要用于生产各种工业制品,尤其是家电产品和汽车配件。

塑胶注塑通过注塑机加热塑料原料,然后将熔融状态的原料注入模具中,冷却成型后得到制品。

首先,塑胶注塑需要选择适合的材料。

根据不同的制品要求,选择不同性能的塑料原料,如耐高温、耐腐蚀、耐冲击等。

在注塑机中放入选好的原料后,注塑机会通过加热和熔融将原料变成流体状态,准备注入模具中。

然后,注塑机将熔融状态的原料通过喷嘴注入模具中。

在模具中,塑料原料会冷却固化,形成具有一定形状和性能的制品。

这个过程主要是依靠模具的设计和制造来保证制品的质量和稳定性。

最后,通过模具的打开和取出制品,完成整个塑胶注塑过程。

同时,注塑机还需要进行后处理工作,如清洗模具和机器等,以保证下一次注塑过程的顺利进行。

综上所述,液态硅胶的原理是通过交联反应形成具有弹性、韧性和耐候性的固体制品,而塑胶注塑的原理则是通过注塑机将熔融状态的塑料原料注入模具中,经过冷却固化后形成具有一定形状和性能的制品。

加成型液体硅胶的技术规格书

加成型液体硅胶的技术规格书

加成型液体硅胶的技术规格书
液体硅胶是一种新型的高分子材料,在工业、医疗及食品等领域都有广泛应用。

加成型液体硅胶更是一种创新型液体硅胶,它拥有更高的硬度,更优异的机械性能,同时也具有较好的耐热、耐候和耐化学腐蚀性能。

下面是加成型液体硅胶的技术规格书。

一、材料名称
加成型液体硅胶
二、材料组成
加成型液体硅胶的主要成分为环氧硅烷、羟基硅烷、甲基丙烯酸酯、氧化锌等。

三、外观及颜色
加成型液体硅胶呈无色透明液体状,经过固化后呈弹性固体状。

四、技术要求
1、固化时间:在常温条件下,约24小时固化;
2、硬度:硬度范围为20-80 Shore A,可根据客户要求调整;
3、耐热性:可耐受高达200℃的温度;
4、耐候性:具有良好的耐候性,可以在-60℃至+200℃的环境下使用;
5、耐化学腐蚀性:具有良好的抗酸、抗碱、抗溶剂等性能;
6、机械性能:具有较高的拉伸强度、断裂伸长率、撕裂强度等机械性能。

五、适用范围
加成型液体硅胶广泛应用于模具、模型、模型制作、原型制作、制作
夹具等领域。

同时也可用于制作电子组件、电线电缆、LED灯等产品。

它还可以作为耐热、耐候、耐化学腐蚀的涂层材料、封装材料和灌封
材料等。

总之,加成型液体硅胶作为一种新型的高分子材料,具备较好的硬度
和机械性能,同时又具有耐热、耐候和耐化学腐蚀性能。

它在工业、
医疗及食品等领域都有广泛的应用前景,同时也为更多的行业提供了
更好的材料选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

在过去的三到五年里,热固性液体硅橡胶(LSR)的注塑技术得到了快速的发展。

LSR的注塑设计与刚性工程热塑料有着重要的差别,这主要是因为这两种橡胶的物理性质,如低粘度,流变学性质(快速固化),剪切变稀性质,以及较高的热膨胀系数等区别较大。

由于LSR的粘度较低,因此它在注射成型过程中,即使在注射压力较低的情况下,填充流速也可以较快,但是为了避免空气滞留,对模具通风的要求更加严格。

总的来说,现代LSR 的快速硫化的循环时间更短(某些情况下循环时间不到20秒),为了充分利用这一特性,加工机械、注射成型机以及部件转移系统等必须相互配合,作为一个高度集成的整体运作。

冷流道成型现代冷流道体系充分利用了LSR剪切变稀的性质,真正达到了无浪费,无毛边成型。

在过去的三到五年里,冷流道模塑在制造业中的优势地位急速上升,并导致橡胶产品的产量增加、废品减少、劳动成本降低等良好的势头。

LSR不会在模具中收缩,这一点和热塑性塑料类似。

但是由于膨胀系数较高,加热时会发生膨胀,冷却时却仅有微小的收缩。

因此,部件通常不能在模具中保持准确的侧边距,只有在表面积较大的空腔中才可以保持。

与热流道模塑相似,在冷流道加工中,热固LSR应保持较低温度和可流动性,以确保没有物料的损失。

这种加工方法最适用于在清洁的室内环境中生产大小、结构相似的大体积部件。

理想模型是在人为因素影响最小的设备中昼夜不停的运转,并逐步增大运转周期(日或周)。

目前所用的冷流道设备有两种基本类型,即闭合系统和开放系统,它们各有优缺点。

注射循环中,闭合系统在每一个管道中都采用“开动销”或“针形阀”来控制LSR橡胶的流量。

而开口系统则根据注射压力的大小,利用“收缩嘴”和阀门来控制物料的流量。

与开口系统相比较,闭合系统最典型的特点是在较低的注射压力下进行注塑。

设备中可调控的“节流口”可以对不平衡的分流道以及物料的不同剪切变稀性能进行微调。

缺点是对某些给定大小的部件和模具,设备需作额外的调整。

开放系统利用通过喷嘴或者阀门的高剪切速率,在注射压力降低时,进行截流。

一般情况下,开放系统的空腔填充时间要比闭合系统稍微短一些。

开放系统由于分流道和喷嘴较小,空腔密度较高。

分流道则要求自然平衡,并与物料本身的流变性能严格匹配。

因为开放系统的流道尺寸较小,所以通常不用可调“节流口”,只需普通阀门就可以很好的控制流量,并获得最佳的压力点。

分模线设计液体硅橡胶注射成型模具时,首先要考虑分模线的位置,因为分模线内部需设置一些通道,利用这些通道完成通风任务,通风孔必须设置在注射物料最后到达的模具末端。

预先考虑以上因素,有助于避免空气的夹带和焊接线边缝强度的损失。

由于LSR的粘度低,所以必须确保分模型线的精确度,避免出现毛边。

虽然如此,最终产品上的分模线清晰可见。

部件的几何形状和分模线的位置还会影响脱膜过程。

在部件设计中,轻微的根切有助于确保被塑部件与模具空腔之间坚固的结合在一起。

收缩虽然液体硅橡胶在注射成型过程中没有收缩,但是由于硅橡胶具有较高的热膨胀系数,因而在脱膜、冷却后通常会有2%-3%的收缩。

确切的收缩数据主要取决于物料配方,但是从加工的观点来看,设计者如果在构思的时候,预先对影响收缩的一些因素有所考虑的话,最后的收缩情况会有所变化,这些因素主要包括加工的温度,物料脱膜的温度,空腔压力等。

另外要考虑的是注入口的位置,因为通常物料在流动方向上的收缩要比其垂直方向的收缩来得明显些。

另外,部件的尺寸也是一个影响因素,一般来说,部件越厚,收缩越小如果在实际应用中要求二次硫化,则还要考虑额外增加0.5%-0.7%的收缩。

通风当模具空腔关闭时,空气滞留在内,随着LSR的注射,空气首先被挤压,接着逐渐被填料赶出空腔,由于LSR的粘度较低,空腔很快被填充。

在快速填料过程中,如果空气不能完全被赶出空腔,将会夹带在硫化后的物料中(通常表现为沿部件周边一圈白边或是内部光滑的小气泡)。

典型的通气管道宽1-3mm,深0.004-0.005mm,现已成功应用于生产中。

排除空腔滞留空气的最佳方法,是在每一个注射成型循环中,采用抽真空的办法将空腔中滞留空气赶走。

就是说,在设计分模线时确保模具密闭,真空泵通过模具开关下面的夹具将所有空腔抽真空。

一旦真空度达到预想标准要求,立刻关闭模具,开始注
射。

还有一种成功应用的方法是,利用调节夹具力度达到赶走空气的目的。

制造者在夹具力较低时LSR填充至空腔的90%-95%,之后再将夹具力度调高,同时避免积压液体硅橡胶溢出,产生毛边。

注入口一个合适的加工设计,既希望阀门的痕迹小而坚固,又希望阀门的位置不易察觉,这是非常困难的。

但是如果将阀门设置在非临界区域或内表面上,就可以避免很多麻烦,例如前面提到的,利用冷流道系统进行LSR材料的注射成型就可以省去注入口痕迹的消除,从而避免了劳动集约型的生产过程和大量物料的浪费。

很多情况下,无注入口设计也将缩短循环时间。

如果采用冷流道系统,在热空腔与冷流道之间设置有效的隔离温度是十分重要的。

如果分流道太热,物料在注射前就开始固化,而如果冷却太快的话,它会从模具阀门区域吸收过多热量,防碍固化的完成。

闭合系统的阀门或是开动销,一般设计为0.5-0.8mm之间,以保证销和它周围流动的物料的活动空间。

而开口系统中,喷嘴和阀门通常要小一些(0.2-0.5mm),这样可以较好的控制流量。

对于低粘度的LSR来讲,若是通过传统注入口注入物料,例如潜伏式阀门或是锥形阀门,那么喂料直径要略小些。

(注入口直径通常在0.2-0.5mm之间。

)脱模除非是较特殊的配方,一般固化LSR容易粘在金属表面上,这给脱模带来了一定的困难。

虽然如此,目前LSR橡胶的热撕裂强度还是能够满足脱模要求的,在脱模后基本没有损失。

应用最为普遍的脱模技术设备,包括分馏柱塔板,推顶销和空气推顶。

其他应用较多的方法包括滚筒扫除机,排除塔,和机器人操作。

使用推顶系统时,必须使推顶系统保持在相近的公差范围内。

如果推顶销和套管之间清除过度,或是元件磨损时间过长,都会引起部件毛边的出现。

反锥形或蘑菇形推顶器的接触压比较大,可增进系统的密闭性,因而功效很强。

模具材料一般情况下,护圈板都是采用非合金加工钢(no. 1.1730, DIN code C45W)来制造的。

由于模板要暴露在170℃-210℃的高温下,所以应该采用预回火的钢材(no. 1.2312, DIN code 40 CrMnMoS 8 6)制造,以提高抗冲压性能。

具有空腔的模板最好采用耐温性好的弹性热钢为材料。

针对像抗油品级这类高填充LSR材料,推荐使用更强硬的材料,例如镀铬钢和粉末金属都在这一应用上有了较大的发展(钢no.1.2379, DIN code X 155 CrVMo 12 I)。

在为研磨性物料制作模具时,要注意使用特别的插件或者其他可替换加工工具,这样元件磨损后可以单独替换,而不必更换整个模具。

模具空腔表面的优劣对部件的品质有重要的影响,简单讲,铸好的部件会将模具空腔的原貌准确的复制下来。

抛光钢对于透明部件显得十分重要。

表面经过处理的钛/镍钢具有很高的抗磨损能力,而PTFE/镍更加容易脱膜。

LSR材料在某种程度上具有研磨特性,因而最好不要选择铝质材料。

在经济条件允许的情况下,选用最好的金属材料,以便得到更好的相容性,同时便于由粗产品加工为最终产品。

温度控制LSR成型工艺中,典型的加热方式是电加热,通常采用电热丝加热器、加热管或者加热盘。

LSR的一次型固化过程中,模具内温度的均匀分配是非常重要的。

在大型模具中,最经济的加热方法是“油温控制法”。

用绝缘板包裹模具,也有助于减少热损失。

如果表面温度下降过快,会使物料的固化速度降低,不断抑制部件的释放,影响部件的品质。

加热器与分模线之间保留一段距离,可以大大避免模板的弯曲与变形,但是会使铸好的部件出现毛边。

如果模具是为冷流道系统设计的,那么在冷热界面上必须有适合的隔离,这是必不可少的。

像3.7165(Ti Al 6V4)这样的钛合金,相比其他钢材料来说,其热导性能差,因此是冷热隔离的良好材料。

对于整体模具加热体系,应该在模具与模板之间放置绝缘层,把热损失降低到最小。

模拟设计LSR分流道系统中,LSR将均匀填充所有的模具空腔,在这样的一个体系中,LSR分流道规划的平衡显得十分重要。

采用电脑物流动力学模拟软件来设计分流道阀门和通风口,可以帮助模具的改进,避免反复试错法的高消耗。

其实验结果可以用填充研究来论证,但是,正确的模拟要求工程师对所注塑的LSR配方的机械反应性能了如指掌。

利用有限元分析法进行部件设计的实验,可忽略高应力区。

小结予以恰当的设计和规划,LSR材料的注射成型是一项经济收益好,操作相对简洁的生产工艺。

充分理解注射成型与流程设计的原则,
制造者即可在避免出现问题的同时,进行高效生产,相信LSR出色的空腔填充性能和快速硫化特性,必将带来高品质、高产出的工业效应。

相关文档
最新文档