六年级分数应用题课件
六年级秋季班-第8讲:分数应用题

分数应用题是分数运算的应用,是六年级数学上学期第二章第二节内容,主要包含分数运算的应用中的几种常见的类型,重、难点是第三种类型一个数比另一个数多(或少)几分之几的应用.另外,利用分数运算解决工程问题也是一种常考的题型.通过这节课的学习一方面将前面学过的内容进行一个复习巩固,另一方面提升学生的分数计算能力,并且通过解决实际问题,激发学生对数学学习的兴趣.1、求一个数的几分之几是多少应用题的数量关系是:单位“1”的量×几分之几=几分之几的具体量.例:求a的pq是多少?解法:paq.分数应用题内容分析知识结构模块一:求一个数的几分之几知识精讲【例1】325小时的47是______小时.【难度】★【答案】【解析】【例2】某校六年级,共有学生516人,其中男同学人数占全年级的2043,则该学校六年级有女生多少人?【难度】★★【答案】【解析】【例3】港口新到一批黄沙,共3000千克,第一天运走34吨,第二天运走剩下的25,第三天需全部运完,则第三天需要运多少千克?【难度】★★【答案】【解析】【例4】小方去文具店买文具,橡皮每块1.6元,每支水笔的价格是每块橡皮的34,每盒修正带的价格是每支水笔的126,那么小方要买一块橡皮、三支水笔和2盒修正带,总共要花多少钱?【难度】★★【答案】【解析】例题解析1、 已知一个数的几分之几是多少,求这个数.应用题的数量关系是:几分之几的具体量÷几分之几=单位“1”的量.例:一个数的p q是a ,这个数是多少? 解法:p a q.【例5】 若12米是a 米的25,则a =______. 【难度】★【答案】【解析】【例6】 一个数的35比1.2的倒数多2.8,则这个数是______. 【难度】★【答案】【解析】【例7】 一桶油第一次用去15,第二次比第一次多用去40千克,还剩下23千克,原来这桶油有多少千克?【难度】★★【答案】【解析】例题解析知识精讲 模块二:已知一个数的几分之几,求这个数【例8】昂立智立方女教师的人数是全体教师的1320,比男教师多144人,那么昂立智立方共有教师多少人?【难度】★★【答案】【解析】【例9】有一堆煤,第一天运走全部的25,第二天运走剩下的34,这时还剩下12吨,则全堆煤共有______吨.【难度】★★【答案】【解析】【例10】兄弟两人各有棋子若干枚,其中弟弟的棋子数是哥哥的45,若弟弟给哥哥4枚棋子,那么弟弟的棋子数就是哥哥的23,求兄弟两人原来各有多少枚棋子?【难度】★★【答案】【解析】【例11】两种糖放在一起,其中软糖占920,在放入16块硬糖后,软糖占两种糖总数的14,求软糖有多少块?【难度】★★【答案】【解析】【例12】甲、乙、丙三人一起买了8块蛋糕平分着吃,甲拿出了5块蛋糕的钱,乙付了3块蛋糕的钱,丙没有带钱,等吃完后一算,丙应该拿出40元钱,问,甲应收回多少钱?【难度】★★★【答案】【解析】1、求一个数比另一个数多几分之几. 例:求a 比b 多几分之几?解法:()a b a b b b--÷= 2、求一个数比另一个数少几分之几.例:求a 比b 少几分之几?解法:()b a b a b b--÷=【例13】 甲数是20,乙数是50,甲数比乙数少______,乙数比甲数多______.(填几分之几)【难度】★【答案】【解析】【例14】 比5吨少15是______吨,______吨的15是60吨. 【难度】★【答案】【解析】【例15】 桃树有60棵,桃树比梨树少14,那么梨树有______棵. 【难度】★【答案】【解析】知识精讲 模块三:一个数比另一个数多(或少)几分之几 例题解析【例16】5公斤增加它的12后,再减少12公斤,结果是()A.334公斤B.134公斤C.5公斤D.7公斤【难度】★★【答案】【解析】【例17】班级中男生有24人,女生有21人,以下说法正确的是()○1男生人数比女生人数多87;○2女生人数比男生人数少18;○3男生人数是全班人数的815;○4女生人数比全班人数少715.A.○1○2○3○4B.○2○3C.○3○4D.○2○3○4【难度】★★【答案】【解析】【例18】一堆黄沙已经运走了49,那么运走的黄沙是剩下的_____;剩下的比运走的多______.(填几分之几)【难度】★★【答案】【解析】【例19】甲行驶的路程比乙行驶的路程多25,乙行驶的路程比甲行驶的路程少______.(填几分之几)【难度】★★【答案】【解析】【例20】若314千克比b千克少13,则b =______.【难度】★★【答案】【解析】【例21】菜场运来一批蔬菜,第一天卖出100千克,比第二天多14,第三天比第一天少15,三天一共卖出多少千克蔬菜?.【难度】★★【答案】【解析】【例22】一本小说哥哥已经看了240页,比妹妹多看了14,而弟弟比哥哥少看了14,问妹妹比弟弟多看几页?弟弟比妹妹少看了几分之几?【难度】★★★【答案】【解析】【例23】数学某次竞赛考试,参加的男生比女生多13,结果共录取91人,其中女生比男生少38,在未被录取的学生中,男生是女生人数的34,求开始参加考试的总人数是多少人?【难度】★★★【答案】【解析】【例24】2立方分米的水结成冰后体积比原来增加了14立方分米,则2立方分米的冰变成水后体积比原来减少了______.(填几分之几)【难度】★★★【答案】【解析】1、 工程问题中的基本概念工作总量:一般将工作总量抽象成单位“1”;工作效率:单位时间内完成的工作量.2、 工程问题中的基本公式工作总量 = 工作效率×工作时间;工作效率 = 工作总量÷工作时间;工作时间 = 工作总量÷工作效率.【例25】 加工同样多的零件,王师傅用了1314小时,李师傅用了1516小时,李师傅的工作效率是王师傅的工作效率的______.(填几分之几)【难度】★【答案】【解析】【例26】 一项工程,甲单独做需要28天时间完成,乙单独做需要21天时间完成,如果甲、乙合作需要多少时间完成?【难度】★【答案】【解析】【例27】 加工一批零件,甲独做需3天完成,乙独做需4天完成,两人同时加工,完成任务时,甲比乙多做24个,问这批零件共有多少个?.【难度】★★【答案】【解析】模块四:工程问题 知识精讲 例题解析【例28】一件工程,甲、乙两队合作20天完成,乙、丙两队合作60天完成,丙、丁两队合作30天完成,甲、丁合作______天完成..【难度】★★★【答案】【解析】【例29】加工一批零件,甲、乙合作24天可以完成,现在由甲先做16天,然后乙再做12天,还剩下这批零件的25没有完成.已知甲每天比乙多加工3个零件,则这批零件共有多少个?【难度】★★★【答案】【解析】【例30】有两个同样的仓库,搬运完其中一个仓库的货物,甲需要6小时,乙需要7小时,丙需要14小时.甲、乙同时开始各搬运一个仓库的货物,开始时,丙先帮甲搬运,后来又去帮乙搬运,最后两个仓库的货物同时搬完,则丙帮甲搬了几小时?帮乙搬了几小时?【难度】★★★【答案】【解析】【习题1】一项工程,甲单独做需要21天时间,甲、乙合作需要12天时间,如果乙单独做,需要____时间完成.【难度】★【答案】【解析】【习题2】______比20米多14,24千克比______少15.【难度】★【答案】【解析】【习题3】某班男生人数是女生人数的25,则女生人数比男生人数多______.(填几分之几)【难度】★★【答案】【解析】【习题4】一台电视机原价1200元,先降价16,再降价15出售,那么这台电视机现价是______元.【难度】★★【答案】【解析】随堂检测【习题5】一个数增加它的14后还是14,这个数是()A.13B.1 C.15D.14【难度】★★【答案】【解析】【习题6】甲袋桔子16千克,乙袋桔子20千克,从乙袋取出一部分放入甲袋,使甲袋增加()后,两袋一样重.A.12B.14C.16D.18【难度】★★【答案】【解析】【习题7】某小区现在的平均房价为每平方米27000元,现在比原来上涨了18,问:(1)原来房价平均每平方米多少元?(2)买房需要缴纳总房价的3200的契税,一套100平方米的房子按原来售价买应付多少元?【难度】★★【答案】【解析】【习题8】一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲单独完成,需要多少天?【难度】★★★【答案】【解析】【习题9】A、B、C、D四个车间要加工完成1800个零件,A车间完成的量是其他三个车间完成总量的14,B车间完成的量是其他三个车间完成总量的15,C车间完成的量是其他三个车间完成总量的37,则D车间加工完成的零件数是______个.【难度】★★★【答案】【解析】【习题10】蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需要3小时,单开丙管需要5小时,要排光一池水,单开乙管需要4小时,单开丁管需要6小时.现在池内有16池水,如果按甲、乙、丙、丁、甲、乙…的顺序,轮流各开一小时,多少时间后水开始溢出水池?【难度】★★★【答案】【解析】【作业1】周末,小方乘45路公交车回家,当车开到游乐园站时,他发现车上人数的16下车后,这时又上来了车上人数的16,那么现在车上的人数()A.增加了B.减少了C.同样多D.无法确定【难度】★【答案】【解析】【作业2】男生比女生多二分之一,女生比男生少()A.二分之一B.三分之一C.三分之一D.五分之一【难度】★★【答案】【解析】【作业3】a千克的23比b千克的34多14,则a千克是b千克的______.【难度】★★【答案】【解析】【作业4】如果红花朵数的2倍等于黄花朵数,那么黄花朵数的______是红花的朵数;红花朵数增加______与黄花朵数同样多.(填几分之几)【难度】★★【答案】【解析】课后作业【作业5】一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问:甲一人独做需要多少天完成?【难度】★★【答案】【解析】【作业6】水结成冰后,体积增大它的十一分之一.问:冰化成水后,体积减少它的几分之几?【难度】★★【答案】【解析】【作业7】甲、乙两人共同加工一批零件,8小时可以完成任务.如果由甲单独加工,需要12小时完成.现在甲、乙两人共同生产了225小时后,甲被调去做其他工作,由乙继续生产了420个零件才完成任务.问:乙一共加工零件多少个?【难度】★★【答案】【解析】【作业8】两件物品均以200元的价格出售,其中一件盈利15,另一件亏损15,问最终商家是赚了钱还是亏了?赚或亏的金额是多少?【难度】★★★【答案】【解析】【作业9】瓶内装满一瓶水,第一次倒出全部水的12,然后再灌入同样多的酒精,第二次倒出全部溶液的13,又用酒精灌满,第三次倒出全部溶液的14,再用酒精灌满,依次类推,一直到第九次倒出全部溶液的110,再用酒精灌满,那么这时的酒精占全部溶液的______.【难度】★★★【答案】【解析】【作业10】一件商品在试销阶段原定每件的零售价为300元,每件商品的利润是零售价的1 5,预计每月的销售量为100件,而实际在第一个月的销售中零售价下降了120,而销售量却提高了310,问:(1)预计每月的销售总利润为多少元?(2)第一个月的实际销售总利润为多少元?(3)第一个月的实际销售总利润比预计每月的总利润是增加还是减少了,若增加,增加了几分之几;若减少,减少了几分之几?【难度】★★★【答案】【解析】。
六年级数学上册典型例题系列之第一单元分数乘法应用题(解析版)

答:略。
3. 厦华希望小学四年级有25名学生,五年级有学生35人,五年级人数比四年级少几分之几?
解析:(35-25)÷25=
答:略。
4. 信誉楼七月份卖出120台冰箱,八月份卖出100台冰箱,八月份比七月份少卖几分之几?
解析:(120-100)÷120=
答:略。
【典型例题3】如果甲数是乙数的 ,那么甲数比乙数少几分之几?乙数比甲数多几分之几?
答:200× =12(万元)
答:略。
2.一套西服原价250元,现价比原价多 。现价比原价多多少元?
答:250× =50(元)
答:略。
3.六年级音乐小组有30人。舞蹈小组的人数比音乐小组多 ,舞蹈小组比音乐小组多多少人?
解析:30× =10(人)
答:略。
【考点四】已知单位“1”,求比一个数多几分之几,是多少?
【对应练习】
1.小华看一本132页的书,第一天看了全书的 ,第二天看了第一天的 ,小华第二天看了多少页?
解析:132× × =11(页)
答:略。
2.学校四月份用电1600千瓦时,五月份用电量是四月份的 ,六月份用电量是五月份的 ,六月份用电多少千瓦时?
解析:1600× × =1120(千瓦时)
答:略。
六年级数学上册典型例题系列之
第一单元分数乘法应用题(解析版)
【考点一】寻找单位“1”和写数量关系式。
【方法点拨】
1.在分率句中分率的前面或“占”、“是”、“比”的后面
2.写数量关系式:
(1)“的” 相当于 “×” ;“占”、“是”、“比”相当于“ ÷ ”
(2)分率前是“的”:单位“1”的量×分率=分率对应量
解析:(1600-1200)÷1200=
小学六年级分数乘除法应用题综合讲义(对比训练)

小学六年级分数乘除法应用题综合讲义(对比训练)一、基本知识点: ⇩分析题目已知总量,求总量的几分之几用乘法, 关系式:分量=总量×对应分率;已知分量和分量所对应的分率,求总量,用除法, 关系式:总量=分量÷对应分率总量(整体)——单位“1”的量 分量(部分)——分率对应的量⇩解题步骤:1.先确定知道谁,求谁,用乘法还是除法;2.找已知分量对应分率;3.列式计算;4.答题二、六大常见类型例题1.乘除对比型;2.连乘连除型;3.正确对应型;4.变化的单位“1”;5.“同名”的单位“1”;6.特殊对应.例1、乘除对比类型(1)某校有男生240人,女生是男生45,女生有多少人? 分析:①先确定知道谁,求谁:知道单位“1”是 男生 即总量是男生,求女生(即分量),用乘法。
②确定分量对应的分率:女生对应的分率是45; ③列式计算: 240×45=192(人) ④答:女生有192人。
(2)某校有男生240人,是女生45,女生有多少人? 分析:①先确定知道谁,求谁:女生是总量 男生是分量,知道分量求总量用除法。
②确定分量对应的分率:男生对应的分率是45; ③列式计算: 240÷45=300(人) ④答:女生有300人。
(3)某校有男生240人,女生比男生多51,女生有多少人?分析:①先确定知道谁,求谁:知道单位“1”是 男生 即总量是男生,求女生(即分量),用乘法。
②确定已知分量对应的分率:女生对应的分率是1+51;③列式计算: 240×(1+51)=288(人) ④答:女生有288人。
(4)某校有男生240人,比女生多51,女生有多少人? 分析:①先确定知道谁,求谁:女生是总量 男生是分量,知道分量求总量用除法。
②确定已知分量对应的分率:男生对应的分率是1+51;③列式计算:240÷(1+51)=300(人)④答:女生有300人。
练一练:(1)某校有男生240人,女生比男生少51,女生有多少人?(2)某校有男生240人,比女生少51,女生有多少人?例2、连乘连除型(1)连乘型:鸡场养有小鸡2240只,中鸡是小鸡的85,大鸡是中鸡的76,大鸡有多少只? 分析:已知总量,求分量,用乘法先求中鸡:小鸡是总量 2240×85再求大鸡:中鸡是总量:2240×85×76综合列式:2240×85×76=1200(只)答题:略(2)连除型:鸡场养有大鸡1200只,是中鸡的76,中鸡是小鸡的85,小鸡有多少只? 分析:已知分量,求总量,用除法先求中鸡:大鸡是分量 1200÷76 再求小鸡:中鸡是分量:1200÷76÷85综合列式:1200÷76÷85=2240(只) 答题:略例3、正确对应类型(1)修一条500米的公路,已经修了52,还剩下多少米? 分析:①已知总量,求分量,用乘法 ②所求分量对应分率:1-52 列式:500×(1-52)=300(米) 答:略(2)修一条公路,已经修了52,还剩下300米,这条公路多少米? 分析:①已知分量,求总量,用除法 ②已知分量对应分率:1-52 列式:300÷(1-52)=500(米) 答:略(3)修一条公路,已经修了52,剩下的比修的多300米,这条公路多少米? 分析:①已知分量,求总量,用除法 ②已知分量对应分率:1-52-52 列式:300÷(1-52-52)=1500(米) 答:略练一练:(1)甲乙两地之间的公路长216千米。
六年级数学专题讲义:分数应用题

— 1 —六年级数学专题加以:分数应用题巧解分数应用题(一)巧点睛一 方法和技巧(1)求一个数的几分之几是多少(用乘法解); (2)求一个数是另一个数的几分之几(用除法解)(3)已知一个数的几分之几是多少,求这个数(用除法或列方程解)。
一、从不同的角度找对应分率例1リ甲数比乙数多31,同:乙数比甲数少几分之几?二、巧用最小公倍数解题【例2】张阳拿了50元钱买回四本书(书定价的最小单位是角),回家一算,《数学奥林匹克解题辞典恰好占用去钱的一半,其余一半里有103用去买(现代汉语小词典),用去买(学生英汉词典》。
他最后剩下了多少钱?买第四本书花了多少钱?— 2 —做一做2:某小学一至六年级共有780名学生。
在参加数学兴趣小组学习的学生中,恰有178是六年级的学生,有要239是五年级的学生。
那么,该校没有参加数学兴趣小组的学生有多少人?【例3】某粮库上午运走全部存粮的31又2000袋,下午又运进粮食6000袋,现在粮库中的存粮比原来少61。
若原来粮库的存粮共有n 袋,那么n 等于多少?做一做3:一个书店原有若干书,第一天运来原有书的51多500本,第二天运走原有书的31,这时还有书1800本,问原有书多少本?— 3 —【例4】某班女生人数是男生人数的54,后又转来1名女生,结果女生人数是男生人数的65。
求现在全班学生的人数。
做一做4:五(一)班原计划抽51的人参加大扫除,临时又有2人主动参加,使实际参加大扫除的人是余下人数的31。
原计划要抽出多少人参加大扫除?【例5】小莉和小刚分別有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少73;如果小刚给小莉24个,则小刚的玻璃比小莉少85。
则小莉和小刚原来共有玻璃球多少个?做一做5:六年级一班召开班会。
一个男生上台向老师报告说:“台下男生人数是女生的54”男生下台后,一位女生上台说:“台下男生人数只有女生的87,求六年级一班共有多少人?— 4 —例6:某车间三个小组共做一批零件,第一小组做了总数的72,第二小组做了1600个零件,第三小组做的零件是前两个小组总和的一半。
北师大版六年级数学上册《第二单元分数混合运算(一)第1课时》课堂教学课件PPT小学公开课

(1)
合唱组 美术组 科技组
120人
(2)
=48 (人) 答:科技ห้องสมุดไป่ตู้有48人。
( 1 ) 在解答分数连乘应用题时,要找准单位 “1”,理清题里的数量关系。 根据问题,找 出那个关键数量,以此来确定先算什么,再算 什么。
( 2 ) 在计算分数连乘的时候,要先约分,再 把约分的结果相乘,以提高我们计算的速度和 正确率。
航模小组的人数是摄影小组的 。
气象小组 摄影小组
航模小组
12人 航模小组有多少人?
12× = 4 (人) 4× = 3 (人)
航模小组有多少人?
12人
气象小组
摄影小组
航模小组
12×( × )
表示航模小组 人数是气象小 组的几分之几。
实验小学合唱组有120人,美术组的人数是合唱组 的 ,科技组的人数是美术组的 。 ( 1 ) 画图表示科技组与美术组、 合唱组之间的人数 关系。 ( 2 ) 算一算科技组有多少人。
气象小组
摄影小组
把气象小组的人数看作整体 “1”,平均分成3份, 摄影小组人数相当于其中的1份。
航模小组的人数是摄影小组的 表示什么?可以怎 样用线段图来表示这样的数量关系?
摄影小组
航模小组
把摄影小组的人数看作整体 “1”,平均分成4份, 航模小组人数相当于其中的3份。
气象小组有12人。 摄影小组的人数是气象小组的 3 1。
1 看图列式计算。
=5 ( 吨)
2 根据题意列方程解答。 解:设孙老师的年龄是x岁。 答:孙老师今年24岁。
谢谢观看
Thank You!
根据图中的信息,你能提出哪些数学问题? 摄影小组有多少人?航模小组有多少人?
六年级数学总复习----分数百分数应用题

2021/5/6
9
第二类 1 、果园里有梨树50棵,桃树是梨树的 3 ,
1)、桃树有多少棵?
50× 3
5
5
2)、桃树和梨树一共多少棵? 50+
50×
3 5
3)、梨树比桃树多多少棵?
50-
50×
3 5
2
、果园里有桃树30棵,梨树比桃树多
2 3
,
1)、梨树有多少棵?
30×(1+
2 3
)
2)、桃树和梨树一共多少棵?30×(1+
2021/5/6
23
小麦的出粉率=
面粉的重量 小麦的重量
×100%
产品的合格率=
合格产品数 产品总数
×100%
职工的出勤率=实应际出出勤勤人人数数×100%
2021/5/6
24
一个乡去年原计划造林12公顷,实际造林14 公顷。实际造林比原计划多百分之几?
﹋﹋多的﹋公﹋顷数﹋占计﹋划﹋的百﹋分之几
2021/5/6
3
2021/5/6
4
1、看清分率。
2、找准单位“1”的量。
2021/5/6
3、确定单位“1”是已知还是未知?
4、 单位“1”的量×分率=分率对应量
(分率对应量÷分率=单位“1”的量)
5
下面各题中应把哪个量看作单位“1”?
(1)男生人数是全班人数的
3 5
。 全班人数
(2)苹果重量比桔子多
5 的重量。桔子的重量
7
(3)已修的长度占这条路的
4 7
。这条路的长度
(4)一种电视机打九折出售。 原价
2021/5/6
6
看谁先找到题中的单位“1”。
第五讲 六年级数学分数除法应用题(三)“不变量”解题

第五讲 分数除法应用题(三)“不变量”解题一、夯实基础有些分数应用题,数量变化多,分析难度大,不易列式计算。
但是,如果我们仔细分析就会发现,变来变去,总有一个量是不变的,这就是我们所说的“不变量”。
对于这类分数应用题,我们通常是抓住“不变量”,巧设单位“1”,把其他分率统一转化为同一个单位“1”,求出单位“1”的量,把它作为解题的中间条件,问题就迎刃而解了。
运用“量不变”的思维方法解题时,大体上有以下几种情况:(1)分量发生变化,总量没有变化;(2)总量发生变化,但其中有的分量没有发生变化;(3)总量和分量都发生变化,但分量之间的差没有发生变化。
二、典型例题例1.学校阅览室里有36名学生在看书,其中女生占94,后来又有几名女生来看书,这时女生人数占所有看书人数的199。
问后来又有几名女生来看书?例2.有两缸金鱼,如果从甲缸中取出1尾放入乙缸,则两缸的金鱼尾数相等,如果从乙缸中取出1尾放入甲缸,则乙缸是甲缸的21。
求原来甲、乙两缸各有金鱼多少尾?例3.一筐香蕉,筐的重量是香蕉的121,卖掉19千克后,剩下的香蕉重量是筐重量的25倍,求原来筐里有香蕉多少千克?三、熟能生巧1.某校原有科技书和文艺书共630本,其中科技书占20%,后来又买进一些科技书,这时科技书占总数的30%,求又进科技书多少本?2.小芳在看一本小说,晚饭前,已看的页数是未看的71,晚饭后,她又看了8页,这时已看的页数是未看的61,这本小说有多少页?3.某车间男工人数是女工人数的2倍,若调走21个男工,那么女工人数是男工人数的2倍。
这个车间的女工有多少人?四、拓展演练1.一批葡萄运进仓库时的质量是100千克,测得含水量为99%,过一段时间,测得含水量为 98%,这时葡萄的质量是多少千克?2.有甲、乙两个粮库,原来甲粮库存粮的吨数是乙粮库的75。
如从乙粮库调6吨到甲粮库,甲粮库存粮的吨数就是乙的54。
原来甲、乙粮库各存粮多少吨?3.袋中有若干个皮球,其中花皮球占125,后来往袋中又放入了6个花皮球,这时花皮球占皮球总数的21,现在袋中有多少个皮球?星级挑战★1.小强和小明各有图书若干本。
2021年部编版小学数学六年级上册第三单元《分数除法》教学PPT课件

03 巩 固 扩 展 04 课 堂 小 结
复习导入
1.出示口算卡片,指名口算。
49÷ 8 =
1 18
1 6
÷
2=
1 12
2 5
÷
3
=
2 15
3 4
÷
3=
1 4
45÷2=
2 5
71÷
7=
1 49
3 5
÷6=
1 10
5 6
÷ 5=
1 6
复习导入2.ຫໍສະໝຸດ 答应用题。一辆汽车2小时行驶90千米,平均每小时行驶多少千米? 提示:
这道题有哪几种量? 已知哪两种量? 求什么? 数量关系是什么?
互动新授
2
小明 2 小时走了2km,小红 5 小时走了 5 km。
3
12
6
谁走得快些?
互动新授
信息提取
路程/km 2 5 6
所求问题
时间/时
2 3 5 12
速度 小明的速度 小红的速度 谁的速度快
互动新授
解法探究
先求
13小时走的千米数,也就是求2的
互动新授
规范解答
所以小明走得快些。
5 6
1 2
÷ 5 =2(km/h)
3km/h>2km/h
巩固扩展
1.计算下面各题。
24÷
8 9
=
24
×( (
9 8
))=(
27
)
7 16 ÷
4 (7 5 =( 16
)×( 5 )( 4
))=
(35 (64
) )
巩固扩展
2.算一算。
8 9
÷4
=
2 9
15÷