16平面四杆机构特点及应用

16平面四杆机构特点及应用
16平面四杆机构特点及应用

课题:平面连杆机构应用及特点

教材分析:

本课题选自世维主编、高等教育出版的中等职业教育国家规划教材《机械基础》(机械类)第6章“常用机构”中“§6-1 平面连杆机构”的容。本节课容主要介绍的铰链四杆机构的实际应用及特点。

学情分析:

中职生文化基础差、学习能力较弱、学习的主动性不强,这是一个不争的事实,也是一个普遍的现实问题,但他们对新事物有较强的好奇心,善于联想,从这一现状出发,教学中应以调动学生学习积极性为出发点,以生活中的实例为教学模型,扩散思维,归纳总结来组织教学,让学生在发现问题,解释问题的思索中提高对本课程的学习兴趣,不断积累专业知识,并能活学活用,理论联系实践。教学目标:

1. 知识目标

(1)掌握铰链四杆机构的特点和应用实例;

(2)了解铰链四杆机构的急回特性及应用实例;

(3)掌握铰链四杆机构的死点位置及应用实例。

2. 能力目标

培养学生理论联系实际的能力,从生活中,从身边去挖掘教学模型,学以致用。

3. 情感目标

培养学生口头表达能力,如何去欣赏别人的优点,如何去肯定别人,从而培养团队意识,合作意识。

教学重点:1.铰链四杆机构的急回特性

2.铰链四杆机构的死点位置。

教学难点:极位夹角和摆角的画法。

课时安排:2课时

教学手段:利用多媒体辅助教学

教学方法:情景教学、启发引导、讲练结合

学法指导:教法与学法室相辅相成的,教法直接影响学生对知识点掌握和能力的提高,而学法指导是学生智力发展目标得以实现的重要途径。

教学过程:

(一)新课导入教学模型实物展示,多媒体展示汽车雨刮器动画,雷达天线俯仰机构动画,引出新课

(二)新课讲授:

一、铰链四杆机构的应用

1、曲柄摇杆机构

两连架杆中一为曲柄、一为摇杆的铰链四杆机构称为曲柄摇杆机构,如图所示,曲柄AB为主动件,并作等速运动。从动摇杆CD将在弧C1C2围作变速往复摆动,C1、C2两个位置是摇杆摇摆的两个极限位置。

(1)曲柄摇杆机构能将曲柄的整周回转运动转换成摇杆的往复摆动。

曲柄主动,摇杆从动。如剪刀机、筛砂机、搅拌机以及碎石机等,都可以连续的工作。

(2)曲柄摇杆机构,除可将曲柄的整周回转运动转换成摇杆的往复摆动外,也可以使摇杆的摆动转换成曲柄的整周回转运动。

摇杆主动,曲柄从动。如缝纫机踏板机构。当踏板(主动件)作上下往复摆动时,通过连杆使曲柄(从动件)作整周转动,再经过带传动驱使机头主轴转动。

2、双曲柄机构。两连架杆均为曲柄的铰链四杆机构称为双曲柄机构,如图2-7所示。双曲柄机构的运动特点是:当主动曲柄作等速转动时,从动曲柄随之作变速转动(即从动曲柄在每转一周中的角速度,有时大于主动曲柄的角速度,有时小于主动曲柄的角速度)。

(1)不等长双曲柄。

如惯性筛分机。当曲柄AB作等速转动时,另一个曲柄CD作周期性的变速转动,EF杆连接物料和CD杆,利用CD的变速转动和物料的惯性达到筛分目的。

(2)等长双曲柄

1)平行双曲柄双曲柄机构中,当两曲柄长度相等而且平行时(即其他两杆的长度也相等),称为平行双曲柄机构。如图所示,这时四根杆组成了平行四边形,平行双曲柄机构的两曲柄旋转方向相同,角速度相等。

2)反向双曲柄双曲柄机构如果对边长度相等,但互不平行,则称为反向双曲柄机构。如图所示,反向双曲柄机构的两曲柄旋转方向相反,角速度不相等。

平行双曲柄机构在运动过程中,主动曲柄AB转动一周,从动曲柄CD将会

出现两次与连杆BC共线位置,这样会造成从动曲柄CD运动的不确定现象为避免这一现象的发生,除可利用从动曲柄本身的质量或附加一转动惯量较大的飞轮,利用其惯性作用来导向外,还可用增设辅助机构或将若干组相同机构错列等方法来解决。

图示为机车主动轮联动装置。它是增设了一个曲柄EF的辅助构件,保证被联动的各轮与主动轮作相同的运动。

图示为两组车轮的错列装置,利用左右两组车轮相错90°的方法,而使车轮能正常运行。

公共汽车车门启闭机构。这是应用反向双曲柄机构的一个实例,当主动曲柄AB转动时,通过连杆BC使从动曲柄CD朝反向转动,从而保证两扇车门能同

时开启和关闭到预定的各自位置。

3、双摇杆机构。两连架杆均为摇杆的铰链四杆机构称为双摇杆机构,摇杆都只能摆动一定角度,即摇摆围不超过这两个极限点。

上图a是港口用起重吊车,吊钩的移动轨迹近似水平线。

上图b是自卸载货汽车的翻斗机构,AD杆是固定杆,当液压缸中输入压力油时,活塞杆向右伸出,使AB和CD向右摇动,从而使车斗货物卸下。

二、铰链四杆机构的基本特性

1、急回特性:当主动件作等速运动时,从动件空回行程的平均速度大于工作行程的平均速度的性质,称为机构的急回特性。

图示为一曲柄摇杆机构,设曲柄AB为原动件,在其转动一周的过程中,有两次与连杆共线,这时,摇杆CD分别位于两极限位置C1D和C2D。曲柄摇杆机构所处的这两个位置,称为极位。

极位夹角:曲柄与连杆两次共线位置之间所夹的锐角θ,称为极位夹角。

摆角:摇杆两个极限位置之间所夹锐角

2、死点:当主动件通过连杆作用于从动件上的力恰好通过其回转中心,不能使从动件转动而出现“顶死”现象的位置,称为死点位置。

当摇杆为主动件,且从动曲柄与连杆成一直线时机构处于死点位置,在平面

四杆机构中是否存在死点位置,决定于从动件是否与连杆共线。

(1)顺利通过死点的办法:

①增设辅助机构,如机车主动轮联动机构。

②采用机构错位排列,使各组机构的死点相互错开,如机车车轮错位排列机构。

③安装飞轮,加大惯性,借惯性作用使机构闯过死点。

“死点”位置是有害的,但在某些场合却利用“死点”来实现工作要求。(2)利用死点的场合:

①飞机起落架,在机轮放下时,杆BC与杆CD成一直线,机构处于死点,此时虽然机轮上可能受到很大的力,但起落架不会反转(折回),使降落更加可靠。

②钻床工件夹紧机构,当工件夹紧后,机构处于死点位置,将工件紧紧压住,保证在钻削加工时,工件不会松脱。

作业:

1.杆长分别为AB = 25 mm,BC = 35 mm,CD = 45 mm,AD = 55 mm 的机构,如何成为双曲

柄机构?

2.曲柄摇杆机构中,当以曲柄为主动件时,摇杆为什么会产生急回运动?3. 平面连杆机构中,哪些机构在什么情况下会出现“死点”位置?

(三)课堂小结

本节课我们讲了四杆机构的应用实例、四杆机构的特性,极位夹角的画法重点介绍四杆机构的应用,希望同学们睁大双眼,去发现身边的四杆机构,分析其结构组成和运动特点,并能灵活应用。

教学反思:

这节课过和学生的互动反映,我们的学生愿意和老师互动,但分析问题时不知如何着手,说不到重点或关键。机构的实际应用还要带同学们多分析,多说。

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析 1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 2.1问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

2.2平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。 如E点轨迹不符合设计要求,则可适当调整各杆件的尺寸,再通过尺寸动画功能检验。

平面机构的运动分析答案

1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有 6 个速度瞬心,其中 3 个是绝对瞬心。 8.速度比例尺μ ν 表示图上每单位长度所代表的速度大小,单位为: (m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为 (m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij P直接标注在图上)。 P 24)

12 三、 在图a 所示的四杆机构中, l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度最小的一点E 的位置及速度的大小; 3)当v C =0时,φ角之值(有两个解); 解:1)以选定的比例尺μl 作机构运动简图(图b )。 2)求v C ,定出瞬心P 13的位置(图b ) a ) (P 13) P P 23→∞

平面六杆机构的运动分析

机械原理大作业(一)平面六杆机构的运动分析 班级: 学号: 姓名: 同组者: 完成时间:

一.题目 1.1 说明 如图所示为一片面六杆机构各构件尺寸如表格1所示,又知原动件1以等角速度ω=1rad/s沿逆时针方向回转,试求各从动件的角位移、角加速度以及E点的位移、速度及加速度的变化情况。1.2 数据 组号L1L2L’2L3L4L5L6 x G y G 1-A 26.5 105.6 65.0 67.5 87.5 34.4 25.0 600 153.5 41.7 表格1 条件数据 1.3 要求 三人一组,编程计算出原动件从0~360o时(计算点数N=36)所要求各运动变量的大小,并绘制运动线图及点的轨迹曲线。

二.解题步骤 由封闭图形ABCD可得: 由封闭图形AGFECD可得 于是有: 112233 1122433 sin sin sin1 cos cos sin2 l l l l l l l θθθ θθθ +=-------- +=+----- / 1122225566 / 1122225566 cos cos sin cos cos153.53 sin sin cos sin sin41.74 l l l l l l l l l l θθθθθ θθθθθ +++=+---- +-+=+----- 对以上1到4导可得- 222333111 222333111 / 55566611122222 / 55566611122222 cos cos cos sin sin sin sin sin sin(sin cos) cos cos cos(cos sin) l l l l l l l l l l l l l l l l θωθωθω θωθωθω θωθωθωωθθ θωθωθωωθθ-+= -=- -=--- -=--+

平面机构的运动分析习题和答案

2 平面机构的运动分析 1.图 示 平 面 六 杆 机 构 的 速 度 多 边 形 中 矢 量 ed → 代 表 , 杆4 角 速 度 ω4的 方 向 为 时 针 方 向。 2.当 两 个 构 件 组 成 移 动 副 时 ,其 瞬 心 位 于 处 。当 两 构 件 组 成 纯 滚 动 的 高 副 时, 其 瞬 心 就 在 。当 求 机 构 的 不 互 相 直 接 联 接 各 构 件 间 的 瞬 心 时, 可 应 用 来 求。 3.3 个 彼 此 作 平 面 平 行 运 动 的 构 件 间 共 有 个 速 度 瞬 心, 这 几 个 瞬 心 必 定 位 于 上。 含 有6 个 构 件 的 平 面 机 构, 其 速 度 瞬 心 共 有 个, 其 中 有 个 是 绝 对 瞬 心, 有 个 是 相 对 瞬 心。 4.相 对 瞬 心 与 绝 对 瞬 心 的 相 同 点 是 ,不 同 点 是 。 5.速 度 比 例 尺 的 定 义 是 , 在 比 例 尺 单 位 相 同 的 条 件 下, 它 的 绝 对 值 愈 大, 绘 制 出 的 速 度 多 边 形 图 形 愈 小。 6.图 示 为 六 杆 机 构 的 机 构 运 动 简 图 及 速 度 多 边 形, 图 中 矢 量 cb → 代 表 , 杆3 角 速 度ω3 的 方 向 为 时 针 方 向。 7.机 构 瞬 心 的 数 目N 与 机 构 的 构 件 数 k 的 关 系 是 。 8.在 机 构 运 动 分 析 图 解 法 中, 影 像 原 理 只 适 用 于 。

9.当 两 构 件 组 成 转 动 副 时, 其 速 度 瞬 心 在 处; 组 成 移 动 副 时, 其 速 度 瞬 心 在 处; 组 成 兼 有 相 对 滚 动 和 滑 动 的 平 面 高 副 时, 其 速 度 瞬 心 在 上。 10..速 度 瞬 心 是 两 刚 体 上 为 零 的 重 合 点。 11.铰 链 四 杆 机 构 共 有 个 速 度 瞬 心,其 中 个 是 绝 对 瞬 心, 个 是 相 对 瞬 心。 12.速 度 影 像 的 相 似 原 理 只 能 应 用 于 的 各 点, 而 不 能 应 用 于 机 构 的 的 各 点。 13.作 相 对 运 动 的3 个 构 件 的3 个 瞬 心 必 。 14.当 两 构 件 组 成 转 动 副 时, 其 瞬 心 就 是 。 15.在 摆 动 导 杆 机 构 中, 当 导 杆 和 滑 块 的 相 对 运 动 为 动, 牵 连 运 动 为 动 时, 两 构 件 的 重 合 点 之 间 将 有 哥 氏 加 速 度。 哥 氏 加 速 度 的 大 小 为 ; 方 向 与 的 方 向 一 致。 16.相 对 运 动 瞬 心 是 相 对 运 动 两 构 件 上 为 零 的 重 合 点。 17.车 轮 在 地 面 上 纯 滚 动 并 以 常 速 v 前 进, 则 轮缘 上 K 点 的 绝 对 加 速 度 a a v l K K K KP ==n /2 。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -( ) 18.高 副 两 元 素 之 间 相 对 运 动 有 滚 动 和 滑 动 时, 其 瞬 心 就 在 两 元 素 的 接 触 点。- - - ( ) 19.在 图 示 机 构 中, 已 知ω1 及 机 构 尺 寸, 为 求 解C 2 点 的 加 速 度, 只 要 列 出 一 个 矢 量 方 程 r r r r a a a a C B C B C B 222222=++n t 就 可 以 用 图 解 法 将 a C 2求 出。- - - - - - - - - - - - - - - - - - ( ) 20.在 讨 论 杆2 和 杆3 上 的 瞬 时 重 合 点 的 速 度 和 加 速 度 关 系 时, 可 以 选 择 任 意 点 作 为 瞬 时 重 合 点。- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ( )

第3章 平面机构的运动分析答案

一、填空题: 1.速度瞬心是两刚体上瞬时速度相等的重合点。 2.若瞬心的绝对速度为零,则该瞬心称为绝对瞬心; 若瞬心的绝对速度不为零,则该瞬心称为相对瞬心。 3.当两个构件组成移动副时,其瞬心位于垂直于导路方向的无穷远处。当两构件组成高副时,两个高副元素作纯滚动,则其瞬心就在接触点处;若两个高副元素间有相对滑动时,则其瞬心在过接触点两高副元素的公法线上。 4.当求机构的不互相直接联接各构件间的瞬心时,可应用三心定理来求。 5.3个彼此作平面平行运动的构件间共有 3 个速度瞬心,这几个瞬心必定位于一条直线上。 6.机构瞬心的数目K与机构的构件数N的关系是K=N(N-1)/2 。 7.铰链四杆机构共有6个速度瞬心,其中3个是绝对瞬心。 8.速度比例尺μν表示图上每单位长度所代表的速度大小,单位为:(m/s)/mm 。 加速度比例尺μa表示图上每单位长度所代表的加速度大小,单位为(m/s2)/mm。 9.速度影像的相似原理只能应用于构件,而不能应用于整个机构。 10.在摆动导杆机构中,当导杆和滑块的相对运动为平动,牵连运动为转动时(以上两空格填转动或平动),两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为2×相对速度×牵连角速度;方向为相对速度沿牵连角速度的方向转过90°之后的方向。 P直接标注在图上)。 二、试求出图示各机构在图示位置时全部瞬心的位置(用符号 ij

12 三、 在图a 所示的四杆机构中,l AB =60mm,l CD =90mm ,l AD =l BC =120mm ,ω2=10rad/s ,试用瞬心法求: 1)当φ=165°时,点C 的速度v C ; 2)当φ=165°时,构件3的BC 线上速度 a ) 24) 14(P 13) P 24 P 23→∞

平面四杆机构分析报告

工业设计机械设计基础大作业 一、序言 平面连杆机构是若干个刚性构件通过低副(转动副、移动副)联接,且各构件上各点的运动平面均相互平行的机构。虽然与高副机构相比,它难以准确实现预期运动,设计计算复杂,但是因为低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器。对连杆机构进入深入透彻的研究,有助于工业设计的学生在今后的产品设计中对其进行灵活应用或创新改进。 二、平面连杆机构优缺点的介绍 连杆机构应用十分广泛,它是由许多刚性构件用低副连接而成的机构,故称为低副机构,这类机构常常应用于各种原动机、工作机和仪器中。例如,抽水机、空气压缩机中的曲柄连杆机构,牛头刨床机构中的导杆机构,机械手的传动机构,折叠伞的收放机构等。这其中铰链四杆机构,曲柄滑块机构和导杆机构是最常见的连杆机构形式。 它们的共同特点是:第一,它们的运动副元素是面接触,所以所受的压力较高副机构小,磨损轻;第二,低副表面为平面和圆柱面,所以制造容易,并且可获得较高的加工精度;第三,低副元素的接触是依靠本身的几何约束来实现的,因此不需要高副机构中的弹簧等保证运动副的封闭装置。 连杆机构也存在如下一些缺点:为了满足设计的要求,往往要增加构件和运动副数目,使机构构造复杂,有可能会产生自锁;制造的不精确所产生的累积误差也会使运动规律发生偏差;设计与计算比高副机构复杂;在连杆机构运动过程中,连杆及滑块的质心都在作变速运动,所产生的惯性力难以用一般方法方法加以消除,因而会增加机构的动载荷,所以连杆机构不宜用于高速运动。此外,虽然可以利用连杆机构来满足一些运动规律和运动轨迹的设计要求,但其设计却是十分困难的,且一般只能近似地得以满足。 正因如此,所以如何根据最优化方法来设计连杆机构,使其能最佳地满足设计要求,一直是连杆机构研究的一个重要课题。 三、平面四杆机构的基本类型与应用实例。 连杆机构是由若干刚性构件用低副连接所组成的。在连杆机构中,若各运动构件均在相互平行的平面内运动,则称为平面连杆机构。平面四杆机构是平面连杆机构的最基本形式,这其中所有运动副均为转动副的四杆机构称为铰链四杆机构。 在铰链四杆机构中,按连架杆能否作整周转动,可将四杆机构分为三种基本形式。即曲柄摇杆机构、双曲柄机构和双摇杆机构。其中: 1.曲柄摇杆机构 在铰链四杆机构中,若两连架杆中有一个为曲柄(整周回转),另一个为摇杆(一定范围内摆动),则称为曲柄摇杆机构。 在这种机构中,当曲柄为原动件时,可将原动件的连续转动,转变为摇杆的反复摆动。如飞剪、间歇传送机构、传送带送料机构等。

第二章平面机构的运动分析

1、试求出下列机构中的所有速度瞬心。 (a) (b) (c) (d) 2、图示的凸轮机构中,凸轮的角速度ω1=10s-1,R=50mm,l A0=20mm,试求当φ=0°、45°及90°时,构件2的速度v。 题2图凸轮机构题3图组合机构 3、图示机构,由曲柄1、连杆2、摇杆3及机架6组成铰链四杆机构,轮1′与曲柄1

固接,其轴心为B,轮4分别与轮1′和轮5相切,轮5活套于轴D上。各相切轮之间作纯滚动。试用速度瞬心法确定曲柄1与轮5的角速比ω1/ω5。 4、在图示的颚式破碎机中,已知:x D=260mm,y D=480mm,x G=400mm,y G=200mm,l AB=l CE=100mm,l BC=l BE=500mm,l CD=300mm,l EF=400mm,l GF=685mm,?1=45°,ω1=30rad/s逆时针。求ω 5、ε5。 题4图破碎机题5图曲柄摇块机构 5、图示的曲柄摇块机构, l AB=30mm,l AC=100mm,l BD=50mm,l DE=40mm,?1=45°,等角速度ω1=10rad/s,求点E、D的速度和加速度,构件3的角速度和角加速度。 6、图示正弦机构,曲柄1长度l1=,角速度ω1=20rad/s(常数),试分别用图解法和解析法确定该机构在?1=45°时导杆3的速度v3与加速度a3。 题6图正弦机构题7图六杆机构 7、在图示机构中,已知l AE=70mm,l AB=40mm,l EF=70mm,l DE=35mm,l CD=75mm,l BC=50mm,?1=60°,构件1以等角速度ω1=10rad/s逆时针方向转动,试求点C的速度和加速度。

平面四杆机构的运动仿真模型分析

平面四杆机构的运动仿真模型分析1前言 平面四杆机构是是平面连杆机构的基础,它虽然结构简单,但其承载能力大,而且同样能够实现多种运动轨迹曲线和运动规律,因而在工程实践中得到广泛应用。 平面四杆机构的运动分析, 就是对机构上某点的位移、轨迹、速度、加速度进行分析, 根据原动件的运动规律, 求解出从动件的运动规律。平面四杆机构的运动设计方法有很多,传统的有图解法、解析法和实验法。随着计算机技术的飞速发展,机构设计及运动分析已逐渐脱离传统方法,取而代之的是计算机仿真技术。本文在UG NX5环境下对平面四杆机构进行草图建模,通过草图中的尺寸约束、几何约束及动画尺寸等功能确定各连杆的尺寸,之后建立相应的连杆、运动副及运动驱动,对建立的运动模型进行运动学分析,给出构件上某点的运动轨迹及其速度和加速度变化规律曲线,文章最后简要分析几个应用于工程的平面四杆机构实例。 2平面四杆机构的建模 问题的提出 平面四杆机构因其承载能力大,可以满足或近似满足很多的运动规律,所以其应用非常广泛,本文以基于曲柄摇杆机构的物料传送机构为例,讨论其建模及运动分析。 如图1所示,ABCD为曲柄摇杆机构,曲柄AB为主动件,机构在运动中要求连杆BC的延伸线上E 点保持近似直线运动,其中直线轨迹为工作行程,圆弧轨迹为回程或空程,从而实现物料传送的功能。

平面四杆机构的建模 由于物料传送机构为曲柄摇杆机构,所以它符合曲柄存在条件。根据机械原理课程中的应用实例[1],选取AB=100,BC=CD=CE=250,AD=200,单位均为毫米。 在UG NX5的Sketch环境里,创建如图2所示的草图,并作相应的尺寸约束和几何约束,其中EE'为通过E点的水平轨迹参考线,用以检验E点的工作行程运动轨迹。现通过草图里的尺寸动画功能,令AB与AD 的夹角从0°到360°变化,可看到E点的变化轨迹为直线和圆弧,如图3所示为尺寸动画的四个截图,其中图3(a)中的E点为水平轨迹的起点,图3(b)中的E点为水平轨迹的中点,图3(c)中的E点为水平轨迹的终点,而图3(d)中的E点为圆弧轨迹(图中未画出)即回程的中点。

图解法设计平面四杆机构

图解法设计平面四杆机构 3.4.1按连杆位置设计四杆机构 1.给定连杆的三个位置 给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐图解过程。 ::1::::2:: 2.给定连杆的两个位置 给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。 ①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。 ②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。连接A B1、C1D、B1C1、 A D,A B1C1D即为所求的四杆机构。 ③测量A B1、C1D、A D计算l A B、L C D L A D的长度, 由于A点可任意选取,所以有无穷解。在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。 例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长和两个位置B1C1、B2C2.。要求固定铰链中心A、D在同一水平线上并且A D=B C。自己可以试着在纸上按比例作出图形,再求出各杆长度。若想对答案请点击例题祥解 3.4.2 按行程速度变化系数设计四杆机构 1.设计曲柄摇杆机构 按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。怎样用作图法设计曲柄摇杆机构? 2.设计曲柄摆动导杆机构

基于matlab GUI的平面四杆机构的运动分析

基于matlab GUI的平面四杆机构的运动分析 一、目的 通过matlab对平面四杆机构进行运动仿真,并以GUI界面方式实现输入输出的参数化,对平面四杆机构进行位置分析、速度分析、加速度分析和静力学分析。此外,通过动画演示,更加形象直观地观察机构的运动过程。最后,将程序编译成.exe独立可执行文件,可以在其它没有安装matlab的机器上运行。 二、设计思路 通过matlab的GUI功能模块,创建一个图形用户界面,在自动生成的代码框架中对初始化函数和回调函数等进行编辑,建立与控件相关联的程序:控件属性、位置分析、速度分析、加速度分析、静力学分析、动画演示等。 图1是平面四杆机构的示意图,输入角q的运动规律为q=pi/50*t^2+q0,r1、r2是从动角。对t时刻沿着杆长距离原点A的任意一点进行分析。 注意:输入输出角的单位为度,时间t的取值范围为0:0.05:10,任意点lx的取值范围为0~a1+a2+a3,估算的从动角r1、r2的迭代初始值不能偏离平衡位置太大。 图1、平面四杆机构示意图 三、设计流程 1、通过GUI模块创建图形用户界面

命令方式:在Matlab命令窗口键入>>guide;菜单方式:在Matlab的主窗口中,选择File>New>GUI命令,就会显示GUI的设计模板。如图1所示。 图2、创建图形界面 2、设计图形界面 在创建之后的图形界面中插入坐标轴axes,静态文本框static text,编辑文本框edit text,按钮push button等等。如图所示。 图3、图形界面设计

3、编辑回调函数 1)位置分析:输入角的函数为:q=pi/50*t^2+q0。在时间t=0~10s内,每一个时间点估算两个初始从动角,根据牛顿-拉普森迭代得到准确的机构位置。10s刚好主动角经历了360度,记录每一时刻的位置,便可以动画演示。 2)速度分析:输入角速度为:dq=pi/25*t。选择杆件上的任意一点(坐标表示为质点沿着杆件到原点A的距离)做分析,正确表达出角速度系数和速度系数,便可以求出质点的速度。 3)加速度分析:输入角加速度为:ddq=pi/25。正确表达出向心系数和角加速度系数,便可以求出质点的加速度。 4)静力学分析:由虚功原理可知,当广义力Q(V,H)=0(或近似为零)时机构达到平衡,记录该平衡条件下的位置数据。 四、结果演示 1、机构杆长条件判断 1)不符合杆长条件。如图4所示。 图4、不符合杆长条件

平面机构的运动分析

平面机构的运动分析 (总分:100.00,做题时间:90分钟) 一、{{B}}填空题{{/B}}(总题数:10,分数:20.00) 1.速度瞬心可以定义为互作平面相对运动的两构件上 1的点。 (分数:2.00) 填空项1:__________________ (正确答案:瞬时相对速度为零(或瞬时绝对速度相同)) 解析: 2.相对瞬心与绝对瞬心的相同点是______,不同点是______;在由N个构件组成的机构中,有______个相对瞬心,有______个绝对瞬心。 (分数:2.00) 填空项1:__________________ (正确答案:互作平面相对运动的两构件上瞬时相对速度为零的点后者绝对速度为零,前者不是 (N-1)/(N/2-1) N-1) 解析: 3.作平面相对运动的三个构件的三个瞬心必 1。 (分数:2.00) 填空项1:__________________ (正确答案:在同一直线上) 解析: 4.在矢量方程图解法中,影像原理只适用于求______。 (分数:2.00) 填空项1:__________________ (正确答案:同一构件上不同点的速度加速度) 解析: 5.平面四杆机构共有______个速度瞬心,其中______个是绝对瞬心。 (分数:2.00) 填空项1:__________________ (正确答案:6 2) 解析: 6.当两构件组成回转副时,其瞬心是 1。 (分数:2.00) 填空项1:__________________ (正确答案:回转副中心) 解析: 7.当两构件不直接组成运动副时,瞬心位置用 1确定。 (分数:2.00) 填空项1:__________________ (正确答案:三心定理) 解析: 8.当两构件的相对运动为______动,牵连运动为______动时,两构件的重合点之间将有哥氏加速度。哥氏加速度的大小为______,方向与______的方向一致。 (分数:2.00) 填空项1:__________________ (正确答案:移转 [*] 将v C2C1沿ω1转90°) 解析: 9.当两构件组成转动副时,其相对速度瞬心在______处;组成移动副时,其瞬心在______处;组成兼有滑动和滚动的高副时,其瞬心在______处。 (分数:2.00) 填空项1:__________________ (正确答案:转动副中心移动方向的垂线上无穷远处接触点处公法线上)解析: 10.速度影像的相似原理只能应用于______的各点,而不能应用于______的各点。 (分数:2.00) 填空项1:__________________ (正确答案:同一构件上不同构件上) 解析:

平面四杆机构特点及应用

教材分析: 本课题选自李世维主编、高等教育出版社出版的中等职业教育国家规划教材《机械基础》(机械类)第6章“常用机构”中“§6-1 平面连杆机构”的内容。本节课内容主要介绍的铰链四杆机构的实际应用及特点。 学情分析: 中职生文化基础差、学习能力较弱、学习的主动性不强,这是一个不争的事实,也是一个普遍的现实问题,但他们对新事物有较强的好奇心,善于联想,从这一现状出发,教学中应以调动学生学习积极性为出发点,以生活中的实例为教学模型,扩散思维,归纳总结来组织教学,让学生在发现问题,解释问题的思索中提高对本课程的学习兴趣,不断积累专业知识,并能活学活用,理论联系实践。 教学目标: 1. 知识目标 (1)掌握铰链四杆机构的特点和应用实例; (2)了解铰链四杆机构的急回特性及应用实例; (3)掌握铰链四杆机构的死点位置及应用实例。 2. 能力目标 培养学生理论联系实际的能力,从生活中,从身边去挖掘教学模型,学以致用。 3. 情感目标 培养学生口头表达能力,如何去欣赏别人的优点,如何去肯定别人,从而培养团队意识,合作意识。 教学重点:1.铰链四杆机构的急回特性

2.铰链四杆机构的死点位置。 教学难点:极位夹角和摆角的画法。 课时安排:2课时 教学手段:利用多媒体辅助教学 教学方法:情景教学、启发引导、讲练结合 学法指导:教法与学法室相辅相成的,教法直接影响学生对知识点掌握和能力的提高,而学法指导是学生智力发展目标得以实现的重要途径。 教学过程: (一)新课导入教学模型实物展示,多媒体展示汽车雨刮器动画,雷达天线俯仰机构动画,引出新课 (二)新课讲授: 一、铰链四杆机构的应用 1、曲柄摇杆机构 两连架杆中一为曲柄、一为摇杆的铰链四杆机构称为曲柄摇杆机构,如图所示,曲柄AB为主动件,并作等速运动。从动摇杆CD将在弧C1C2范围内作变速往复摆动,C1、C2两个位置是摇杆摇摆的两个极限位置。 (1)曲柄摇杆机构能将曲柄的整周回转运动转换成摇杆的往复摆动。 曲柄主动,摇杆从动。如剪刀机、筛砂机、搅拌机以及碎石机等,都可以连续的工作。 (2)曲柄摇杆机构,除可将曲柄的整周回转运动转换成摇杆的往复摆动外,也可以使摇杆的摆动转换成曲柄的整周回转运动。

16平面四杆机构特点及应用

课题:平面连杆机构应用及特点 教材分析: 本课题选自世维主编、高等教育出版的中等职业教育国家规划教材《机械基础》(机械类)第6章“常用机构”中“§6-1 平面连杆机构”的容。本节课容主要介绍的铰链四杆机构的实际应用及特点。 学情分析: 中职生文化基础差、学习能力较弱、学习的主动性不强,这是一个不争的事实,也是一个普遍的现实问题,但他们对新事物有较强的好奇心,善于联想,从这一现状出发,教学中应以调动学生学习积极性为出发点,以生活中的实例为教学模型,扩散思维,归纳总结来组织教学,让学生在发现问题,解释问题的思索中提高对本课程的学习兴趣,不断积累专业知识,并能活学活用,理论联系实践。教学目标: 1. 知识目标 (1)掌握铰链四杆机构的特点和应用实例; (2)了解铰链四杆机构的急回特性及应用实例; (3)掌握铰链四杆机构的死点位置及应用实例。 2. 能力目标 培养学生理论联系实际的能力,从生活中,从身边去挖掘教学模型,学以致用。 3. 情感目标 培养学生口头表达能力,如何去欣赏别人的优点,如何去肯定别人,从而培养团队意识,合作意识。

教学重点:1.铰链四杆机构的急回特性 2.铰链四杆机构的死点位置。 教学难点:极位夹角和摆角的画法。 课时安排:2课时 教学手段:利用多媒体辅助教学 教学方法:情景教学、启发引导、讲练结合 学法指导:教法与学法室相辅相成的,教法直接影响学生对知识点掌握和能力的提高,而学法指导是学生智力发展目标得以实现的重要途径。 教学过程: (一)新课导入教学模型实物展示,多媒体展示汽车雨刮器动画,雷达天线俯仰机构动画,引出新课 (二)新课讲授: 一、铰链四杆机构的应用 1、曲柄摇杆机构 两连架杆中一为曲柄、一为摇杆的铰链四杆机构称为曲柄摇杆机构,如图所示,曲柄AB为主动件,并作等速运动。从动摇杆CD将在弧C1C2围作变速往复摆动,C1、C2两个位置是摇杆摇摆的两个极限位置。

平面机构的运动分析

第三章平面机构的运动分析 教学目的:(1)能用速度瞬心法对平面机构进行速度分析; (2)了解矢量方程图解法对Ⅱ级机构进行运动分析; (3)了解解析法对Ⅱ级机构进行运动分析。 课时安排:2h 重点难点:重点—平面机构速度瞬心的求法及应用。 §3-1 机构运动分析的目的和方法 一、机构运动分析的目的 运动分析:就是对机构的位移(包括轨迹)、速度和加速度进行分析。 位移分析:可以确定机构运动时所需的空间;判断各构件之间是否会互相干涉;确定机构中从动件的行程;考察构件上某一点能否实现预定的位置或轨迹要求。 速度分析:可以了解从动件的速度变化规律能否满足工作要求;还是加速度分析的必要前提。 加速度分析:是计算构件惯性力和研究机械动力性能的必要前提。 二、机构运动分析的方法 1.图解法:速度瞬心法、矢量方程图解法 2.解析法: 按所使用的数学工具分:方程矢量法、矩阵法、复数矢量法 按机构运动分析的本质:针对不同机构建立适合该机构的具体数学模型;把机构视为一个质点,以杆长为约束建立非线性方程,进行求解;基于机构组成原理的杆组法。 §3-2 用速度瞬心法作机构的速度分析 一、速度瞬心 速度瞬心:相互作平面相对运动的两构件在任意瞬时其相对运动速度为 零的重合点。 瞬心的分类:按瞬心的绝对速度是否为零可分为两种:绝对瞬心(绝对 速度为零的瞬心)和相对瞬心(绝对速度不为零的瞬心)。 二、机构中瞬心的数目 每两个构件存在一个瞬心,设由n个构件组成的机构总的瞬心数为N, 根据排列组合可得:2(1) 2 n n n N C - == 三、机构中瞬心位置的确定 1.通过运动副直接相联的两构件的瞬心1)以转动副相联接的两构件的瞬心 2)以移动副相联接的两构件的瞬心 3)以平面高副相联接的两构件的瞬心

(完整版)图解法设计平面四杆机构

3.4 图解法设计平面四杆机构 3.4.1按连杆位置设计四杆机构 1.给定连杆的三个位置 给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。 ::1:: 2.给定连杆的两个位置 给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。 ①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。 ②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。 ③测量A B1、C1D、A D计算l A B、L C D L A D的长度, 由于A点可任意选取,所以有无穷解。在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。 例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。要求固定铰链中心A、D在同一水平线上并且A D=B C。自己可以试着在纸上按比例作出图形,再求出各杆长度。若想对答案请点击例题祥解 3.4.2 按行程速度变化系数设计四杆机构 1.设计曲柄摇杆机构 按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。怎样用作图法设计曲柄摇杆机构? 2.设计曲柄摆动导杆机构 已知机架长度l4和速度变化系数K,设计曲柄导杆机构。 ①求出极位夹角 ②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。 ③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点, A B1(或A B2)即为曲柄。测量A B1。求出曲柄长度。 例设计一偏置曲柄滑块机构,已知滑块行程H=88m m,偏心距e=44m m,速度变化系数K=1.4。 自己可以试着在纸上按比例作出图形,再求出各杆长度。

平面四杆机构的设计与运动分析Matlab代码

平面四杆机构的设计与运动分析M代码平面四杆机构的设计M代码---- A=[cos(50*pi/180),cos((50-35)*pi/180),1;cos(75*pi/180),cos((75-80)*pi/180),1;cos(105*pi/180), cos((105-125)*pi/180),1]; B=[cos(35*pi/180);cos(80*pi/180);cos(125*pi/180)]; P=A\B m= P(1) n=-m/ P(2) l=sqrt(m^2+n^2+1-2*n*P(3)) 运行设计结果显示:

平面四杆机构的运动分析M代码---- %参数赋值 clc,clear l0=1.2512; l1=1.0; l2=1.5829; l3=1.5815; M=-1; Omiga1=10; Theta1=0:0.01:360; Theta1=Theta1*pi/180; %求解各个构件位移、速度、加速度 A=2*l1*l2*sin(Theta1); B=2*l2*(l1*cos(Theta1)-l0); C=l1^2+l2^2+l0^2-l3^2-2*l1*l0*cos(Theta1); E=2*l1*l3*sin(Theta1); F=2*l3*(l1*cos(Theta1)-l0); G=l2^2-l1^2-l3^2-l0^2+2*l1*l0*cos(Theta1); Theta3=2*atan((E+M*sqrt(E.^2+ F.^2- G.^2))./(F-G)); Theta2=2*atan((A+M*sqrt(A.^2+B.^2-C.^2))./(B-C)); Omiga2=Omiga1*l1*sin(Theta1-Theta3)./(l2*sin(Theta3-Theta2)); Omiga3=Omiga1*l1*sin(Theta1-Theta2)./(l3*sin(Theta3-Theta2)); Alfa3=(Omiga1^2*l1*cos(Theta1-Theta2)+Omiga2.^2*l2-Omiga3.^2*l3.*cos(Theta3-Theta2))./ (l3*sin(Theta3-Theta2)); Alfa2=(-Omiga1^2*l1*cos(Theta1-Theta3)+Omiga3.^2*l3-Omiga2.^2*l2.*cos(Theta2-Theta3))./ (l2*sin(Theta2-Theta3)); %绘图 Theta1=Theta1*180/pi; Subplot(3,1,1) plot(Theta1,Theta3*180/pi),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角位移(^。) '); Subplot(3,1,2) plot(Theta1,Omiga3),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角速度(rad/s) '); Subplot(3,1,3) plot(Theta1,Alfa3),grid on xlabel('曲柄转角(^。) ');ylabel('CD杆角加速度(rad/s^2) '); by Xu jianping

平面四杆机构的基本特性

《平面四杆机构的基本特性》说课稿 机电工程系刘楠楠 一、教材的地位与作用 《机械设计基础》是机械设计制造及其自动化专业近机类专业的一门主要专业课。本课程主要介绍一般机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和计算方法,同时扼要的介绍与本课程有关的国家标准和规范。在教学过程中综合运用先修课程中有关的知识与技能。本课程在培养学生的机械综合和设计能力及创新能力所需的知识结构中,占有十分重要的地位,为学生的日后工作打下良好的基础。 本节课是选自机械工业出版社出版的《机械设计基础》第十一章第二节的内容。主要介绍平面四杆机构的基本特性——运动特性及传力特性。它即是上节平面四杆机构概述知识点的进一步强化,又为即将学习的平面四杆机构设计的奠定理论基础,是这一章中具有承上启下作用的一节。把平面四杆机构的基本特性讲清讲透,有助于开发和培养学生综合分析、运用机械的能力。 二、教材的处理 这节课教材上的内容包括:平面四杆机构中曲柄存在的条件、平面四杆机构的运动特性及传力特性三方面的内容。为了使课程内容更具连贯性,使学生的思路更顺畅,进一步发挥其分析问题的能力,我们把第一个内容调整到上节课中讲授完毕。即:上次课学习的《概述》中,包括四杆机构的基本形式、四杆机构的演化两方面的内容。我们在学习完四杆机构的基本形式后,设问:以上学习的三种基本类型是根据什么进行分类的?怎样分类的?四杆机构具备曲柄的条件什么?直接引入到曲柄存在得条件(教材上第二节课的内容)。 本节课的内容就调整为两项:平面四杆机构的运动特性和传力特性。 三、教学目标的确定 根据本节课的教学内容和教学大纲的要求,结合学生现有的知识水平和他们的学习特点及认知能力,确定本节课得教学目标: 知识目标:使学生理解并掌握行程速度变化系数K、急回特性、极位夹角、传动角、压力角、死点位置等概念, 能力目标:通过讲、练结合,使学生能够运用所学致用,能熟练通过作图确定和求出四杆机构的极限位置、极位夹角、最小传动角(最大压力角)和死点位置。 情感目标:进一步培养学生的专业兴趣,引导和发觉其勤于思考、善于思考的能力,逐步养成做事一丝不苟、精益求精的良好习惯,为以后的工作打下良好的基础。 四、教学重点和难点的确定 《机械设计基础》这门课中的知识都是与生活、生产中的实际有着密切联系的。特别是平面四杆机构这部分知识,在生活中有很多应用(比如牛头刨床的主体运动机构、缝纫机的踏板机构、机车车轮的联动机构等)。因此,理解并掌握四杆机构的运动特性及传力特性,是至关重要的。在掌握的这些基本特性的同时,能够熟练的确定四杆机构是否有急回特性、最小压力角(最大传动角)的位置在哪,何时会出现死点位置,这些对指导实际的生产具有现实得指导意义。 因此确定去定本节课的重点为:四杆机构的运动特性和传力特性的基本概念的理解。难点为:四杆机构基本特性的的应用。

基于MATLAB的平面四连杆机构运动学分析

一、课程设计容及要求: 1.对连杆机构运动工作原理及运动参数有一定理解 2.掌握MATLAB基本命令 3.了解MATLAB编程的基本知识,并能编写简单M文件 4.了解MATLAB图形界面设计的基本知识 5.课程设计说明书:应阐述整个课程设计容,要突出重点和特色,图文并茂,文字通畅。应有目录、摘要及关键词、正文、参考文献等容,字数一般不少于6000字。 二、主要参考资料 有关复杂刀具参数计算及结构设计、机械制造工艺与设备的手册与图册。 三、课程设计进度安排 指导教师(签名):时间: 教研室主任(签名):时间: 院长(签名):时间:

目录 1平面连杆机构的运动分析 (1) 1.1 机构运动分析的任务、目的和方法 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程 (1) 1.3.2求解方法 (2) 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12)

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析

1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆 为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB 为曲柄,则B 点应能通过曲柄与连杆两次共线的位置。 1.3 机构的数学模型的建立 1.3.1建立机构的闭环矢量位置 方程 在用矢量法建立机构的位置方程时,需将构件用矢量来表示,并作出机构的封闭矢量多边形。如图1所示,先建立一直角坐标系。设各构件的长度分别为1L 、2L 、 3L 、4L ,其方位角为1θ、 2θ、3θ、4θ。以各杆矢量组成一个封闭矢 量多边形,即ABCDA 。其个矢量 图1 四杆机构简图 之和必等于零。即: 2314L L L L +=+ 式1 式1 为图1所示四杆机构的封闭矢量位置方程式。对于一个特定的四杆机构,其各构

相关文档
最新文档