非线性规划方法

合集下载

非线性规划算法

非线性规划算法

非线性规划算法现代数学算法的发展,使得计算机在解决多种实际问题中发挥出越来越重要的作用。

其中,非线性规划算法作为一种重要的优化算法,被广泛应用于生产、经济、地质和金融等领域。

本文将介绍非线性规划问题的定义、特点、求解方法和应用。

一、非线性规划问题的定义非线性规划问题是指在目标函数和约束条件中至少有一项是非线性函数的数学规划问题。

具体的表示形式可以是以下形式:$$\min f(x)$$$$s.t.\ \ \ \ \ \ \ \ \ \ \ g_i(x) \leq 0, \ \ i=1,2, \cdots, m $$$$h_j(x) =0,\ \ j=1,2, \cdots, n$$其中,$x$为决策变量,$f(x)$为目标函数,$g_i(x)$和$h_j(x)$分别是不等式约束和等式约束条件。

二、非线性规划问题的特点非线性规划问题与线性规划问题相比,具有以下几个特点:1. 非线性规划问题的数学模型较为复杂。

在考虑实际问题时,目标函数中经常包含各种复杂的非线性函数,如三角函数、指数函数、对数函数等等。

同时,约束条件的不等式表达式也可能是非线性函数。

2. 非线性规划问题的求解难度较大。

因为非线性规划问题的目标函数和约束条件不再满足线性性质,导致求解过程中出现很多非线性优化问题。

这也意味着,非线性规划问题中需要用到高级的优化算法,这些算法的计算成本和正确性都需要严格考虑。

3. 非线性规划问题的解可能存在多个局部最优解。

相比线性规划问题,非线性规划问题的解集合往往具有多个局部最优解。

这意味着,解决这类问题时需要针对不同的局部解进行分析,从而找到全局最优解。

三、非线性规划求解方法通常情况下,非线性规划问题的求解方法包括以下几种:1. 梯度方法。

梯度方法是一种基于梯度信息的优化算法,能保证解的收敛性和稳定性。

这种方法的主要思想是通过计算目标函数的梯度信息来确定下一步迭代的方向和步长。

2. 共轭梯度法。

共轭梯度法是在梯度法基础上改进而来的算法,更加高效和优化。

非线性规划问题的求解及其应用

非线性规划问题的求解及其应用

非线性规划问题的求解及其应用非线性规划,可以说是一种非常复杂的数学问题。

在实际应用中,许多系统的优化问题,都可以被转化为非线性规划问题。

但是,由于这种问题的复杂性,非线性规划的求解一直是数学界的一个研究热点。

一、非线性规划的基本概念1. 可行域在非线性规划中,可行域指的是满足所有约束条件的点集。

在二维平面上,可行域能够很容易地表示出来,但在多维空间中,可行域的表示就变得非常困难。

2. 目标函数目标函数是一个数学公式,它用来评估在可行域中各个点的“好坏程度”。

一个非线性规划问题的求解,其实就是在可行域内寻找一个能够最大化目标函数值的点。

3. 约束条件约束条件是指规划问题中需要满足的条件。

这些条件包括函数值的范围限制、变量之间相互制约等。

通常来说,非线性规划的约束条件相对于线性规划而言更加复杂。

二、非线性规划的求解方法在非线性规划问题的求解中,有很多种方法可供选择。

下面,我们来介绍其中一些常用的方法。

1. 半定规划半定规划(Semi-definite Programming, SDP)是非线性规划的一个子集,它具有线性规划的一些特性,但可以解决一些非线性问题。

与线性规划不同的是,半定规划中的目标函数和约束条件都可以是非线性的。

2. 内点法内点法是一种非常流行的求解非线性规划问题的方法。

它是一种基于迭代的算法,可以在多项式时间内求解最优解。

内点法的一个优点是,它能够解决带有大量约束条件的规划问题。

3. 外点法外点法是另一种常用的求解非线性规划问题的方法。

外点法首先将非线性规划问题转化为一组等式和不等式约束条件的问题。

然后,采用一种迭代的方法,不断地拟合目标函数,以求得最优解。

4. 全局优化法全局优化法是非线性规划问题中最难的问题之一。

全局优化法的目标是寻找一个区域内的全局最优解,这个解要在这个区域中所有可能的解中处于最佳位置。

由于非线性规划问题的复杂性,全局优化法通常需要使用一些高级算法来求解。

三、非线性规划的应用非线性规划被广泛地应用于各种领域,下面我们来介绍其中一些应用。

非线性规划的MATLAB解法

非线性规划的MATLAB解法
特点
非线性规划问题通常具有多个局部最 优解,解的稳定性与初始条件有关, 需要使用特定的算法来找到全局最优 解。
非线性规划的应用场景
数据拟合、模型选择、参 数估计等。
生产计划、物流优化、设 备布局等。
投资组合优化、风险管理、 资本预算等。
金融
工业
科研
非线性规划的挑战与解决方法
挑战
非线性规划问题可能存在多个局部最优解,且解的稳定性与初始条件密切相关,需要使用特定的算法来找到全局 最优解。
共轭梯度法
总结词
灵活、适用于大型问题、迭代方向交替
详细描述
共轭梯度法结合了梯度下降法和牛顿法的思 想,通过迭代更新搜索方向,交替使用梯度 和共轭方向进行搜索。该方法适用于大型非 线性规划问题,具有较好的灵活性和收敛性。
04
非线性规划问题的约束 处理
不等式约束处理
处理方式
在Matlab中,可以使用 `fmincon`函数来求解非线性规划 问题,该函数可以处理不等式约 束。
要点二
详细描述
这类问题需要同时考虑多个目标函数,每个目标函数可能 有不同的优先级和权重。在Matlab中,可以使用 `gamultiobj`函数来求解这类问题。该函数可以处理具有 多个目标函数的约束优化问题,并允许用户指定每个目标 函数的权重和优先级。
谢谢观看
具体操作
将等式约束条件表示为线性方程组,并使用`Aeq`参 数指定系数矩阵,使用`beq`参数指定常数向量。
注意事项
等式约束条件需要在可行域内满足,否则会 导致求解失败。
边界约束处理
处理方式
边界约束可以通过在目标函数中添加惩罚项来处理,或者使用专门的优化算法来处理。
具体操作
在目标函数中添加惩罚项时,需要在目标函数中添加一个与边界约束相关的项,并调整 其权重以控制边界约束的重要性。

第5讲 非线性规划

第5讲 非线性规划

例1
min
f
x1
2x2
1 2
x12
1 2
x22
2x1 3x2 6
s.t.
x1
4x2
5
x1, x2 0
1.写成标准形式: min
f
x1
2 x2
1 2
x12
1 2
x22
2x1 3x2 6 0 x1 4x2 5 0
s.t. 0 x1 0 x2
例1
min
f
x1
2)当用新建原料场时,决策变量为:xij,xj,yj
1.使用临时原料场
模型求解
使用两个临时原料场A(5,1),B(2,7). 求从料场j 向使用单位i 的运送量
xij,在各建筑工地使用量必须满足和各料场运送量不超过日储量的条件下,
使总的吨千米数最小,此时由于ai,bi 、xj,yj都是已知的,故这是一个线性
输出极值点 M文件 迭代的初值
(6) [x,fval]= fmincon(...) (7) [x,fval,exitflag]= fmincon(...) (8) [x,fval,exitflag,output]= fmincon(...)
变量上下限
参数说明
注意:
[1] fmincon函数提供了大型优化算法和中型优化算法。默认 时,若在fun函数中提供了梯度(options参数的GradObj设置 为’on’),并且只有上下界存在或只有等式约束,fmincon函 数将选择大型算法。当既有等式约束又有梯度约束时,使用 中型算法。 [2] fmincon函数的中型算法使用的是序列二次规划法。在每 一步迭代中求解二次规划子问题,并用BFGS法更新拉格朗日 Hessian矩阵。 [3] fmincon函数可能会给出局部最优解,这与初值X0的选取 有关。

非线性规划的基本概念及问题概述

非线性规划的基本概念及问题概述

牛顿法在凸优化问题上表现较好,但在非凸问题 上可能陷入局部最优解。
拟牛顿法
01
拟牛顿法是一种改进的牛顿法,通过构造海森矩阵 的近似来降低计算成本。
02
拟牛顿法在每一步迭代中更新搜索方向,并逐渐逼 近最优解。
03
拟牛顿法在处理大规模非线性规划问题时表现较好 ,但仍然需要计算目标函数的二阶导数。
共轭梯度法
共轭梯度法结合了梯度法和牛 顿法的思想,通过迭代更新搜 索方向来寻找最优解。
共轭梯度法的迭代方向是梯度 方向和上一次迭代方向的线性 组合,可以加快收敛速度。
共轭梯度法适用于大规模优化 问题,尤其在约束条件较多或 非凸函数情况下表现较好。
05
非线性规划的挑战与解决方 案
局部最优解问题
局部最优解问题
案例二:生产计划优化问题
总结词
生产计划优化问题旨在通过合理安排生 产计划,降低生产成本并满足市场需求 。
VS
详细描述
生产计划优化问题需要考虑生产过程中的 各种因素,如原材料需求、设备能力、劳 动力成本等。目标函数通常是非线性的, 因为生产成本和产量之间的关系是非线性 的。约束条件可能包括资源限制、交货期 限制等。
例子
最小化成本函数,其中成本是生产量 的函数,生产量受到资源、生产能力 等约束。
最大化问题
最大化目标函数
在给定的约束条件下,找到一组变量 ,使得目标函数达到最大值。
例子
最大化收益函数,其中收益是销售量 的函数,销售量受到市场需求、价格 等约束。
约束条件下的优化问题
01
在满足一系列约束条件下,寻找最优解,使得目标函数达到最 优值。
梯度法适用于目标函数和约束条件比较简单的情况,但对于非凸函数或约束条件复 杂的情况可能不收敛或收敛到局部最优解。

非线性规划的解法

非线性规划的解法

非线性规划的解法非线性规划是一类重要的数学规划问题,它包含了很多实际应用场景,如金融市场中的资产配置问题,工程界中的最优设计问题等等。

由于非线性目标函数及约束条件的存在,非线性规划问题难以找到全局最优解,面对这样的问题,研究人员提出了众多的解法。

本文将从梯度法、牛顿法、共轭梯度法、拟牛顿法等方法进行介绍,着重讨论它们的优劣性和适用范围。

一、梯度法首先介绍的是梯度法,在非线性规划中,它是最简单的方法之一。

梯度法的核心思想是通过寻找函数的下降方向来不断地优化目标函数。

特别是在解决单峰函数或弱凸函数方面优势明显。

然而,梯度算法也存在一些不足之处,例如:当函数的梯度下降速度过慢时,算法可能会陷入局部最小值中无法跳出,还需要关注梯度方向更新的频率。

当目标函数的梯度非常大,梯度法在求解时可能会遇到局部性和发散性问题。

因此,它并不适合解决多峰、强凸函数。

二、牛顿法在牛顿法中,通过多项式函数的二阶导数信息对目标函数进行近似,寻找下降方向,以求取第一个局部极小值,有时还可以找到全局最小值。

牛顿法在计算方向时充分利用二阶导数的信息,使梯度下降速度更快,收敛更快。

因此,牛顿法适用于单峰性函数问题,同时由于牛顿法已经充分利用二阶信息,因此在解决问题时更加精确,准确性更高。

但牛顿法的计算量比梯度法大,所以不适合大规模的非线性规划问题。

此外,当一些细节信息不准确时,牛顿法可能会导致计算数值不稳定和影响收敛性。

三、共轭梯度法共轭梯度法是非线性规划的另一种解法方法。

共轭梯度法沿预定义的方向向梯度下降,使梯度下降的方向具有共轭性,从而避免了梯度下降法中的副作用。

基于共轭梯度的方法需要存储早期的梯度,随着迭代的进行,每个轴线性搜索方向的计算都会存储预定的轴单位向量。

共轭梯度方法的收敛速度比梯度方法快,是求解非线性规划的有效方法。

四、拟牛顿法拟牛顿法与牛顿法的思路不同,它在目标函数中利用Broyden、Fletcher、Goldfarb、Shanno(BFGS)算法或拟牛顿法更新的方法来寻找下降方向。

非线性规划算法介绍

非线性规划算法介绍

非线性规划算法介绍在优化问题中,线性规划被广泛应用,但是有时候我们需要解决一些非线性问题。

非线性规划问题是指目标函数或约束条件至少有一个是非线性的优化问题,求解非线性规划问题是在一些工程和科学领域中很重要的任务。

这篇文章将会介绍非线性规划算法的一些概念和原理。

1. 概述非线性规划(Non-linear programming,简称NLP)是指存在非线性的目标函数和约束的最优化问题。

相对于线性规划问题,非线性规划问题的求解要困难得多,因此需要更复杂的算法来解决。

然而,在实际应用中非线性规划问题比比皆是,如金融风险管理、科学研究、交通规划等,因此非线性规划算法的研究意义非常重大。

2. 常见算法(a) 梯度下降法梯度下降法(Gradient descent algorithm)是求解最小化目标函数的一种方式。

在非线性规划问题中,该方法利用目标函数的梯度方向来确定下降的方向,迭代调整参数,直到梯度为零或达到可接受的误差范围。

梯度下降法有多种变形,包括共轭梯度法、牛顿法等。

(b) 拟牛顿法拟牛顿法(Quasi-Newton methods)是用来求解非线性约束优化问题的经典算法之一。

拟牛顿法利用牛顿法的思想,但不需要求解目标函数的二阶导数,转而用近似的Hessian矩阵来取代二阶导数,并用更新步长向量的方式近似求解目标函数的最小值。

(c) 启发式算法启发式算法(Heuristic algorithms)是一种不确定性的、基于经验的求解方法,因此不保证能找到全局最优解。

虽然有缺点,但启发式算法具有较强的鲁棒性和适应性,可用于非线性规划问题的求解。

常见的启发式算法包括模拟退火、遗传算法、蚁群算法、粒子群算法等。

3. 应用案例非线性规划算法在实际应用中发挥着不可或缺的作用。

这里介绍两个基于非线性规划算法的应用案例。

(a) 水利工程在水利工程中,常常需要寻找最优的方案来解决水库调度、灌溉、排洪等问题。

非线性规划算法能够通过寻找水资源的最优利用方法,保证水利工程的经济和社会效益。

非线性规划问题的求解方法研究

非线性规划问题的求解方法研究

非线性规划问题的求解方法研究随着科技的不断发展,各行各业也在不断发展变化。

非线性规划问题的求解方法也成为了当下热门的话题之一。

非线性规划是指优化问题中目标函数或约束条件是非线性的情况,这类问题在实际应用中很常见。

解决非线性规划问题的数学方法又被称为非线性规划算法。

非线性规划算法主要分为两类:确定性算法和随机算法。

确定性算法是通过一系列有规律的计算来达到问题的最优解。

而随机算法则是简单而暴力的方法,通过一些随机序列来优化思路,最终达到问题的最优解。

下面将介绍几类典型的非线性规划算法。

一、传统算法1. 信赖域算法信赖域算法是一种可应用于大规模非线性规划问题的优化方法。

它考虑了简单的限制条件,以期得到最优解。

它是迭代求解算法,通过寻找限制条件来达到最优解。

2. 罚函数算法罚函数算法的思想是将限制条件进行“惩罚”,使其变得更加强烈。

它可以转化为一个无限制最优化问题来求解原问题。

3. 共轭梯度法共轭梯度法是一种求解大规模非线性规划问题的高效算法。

它是迭代法,通过寻找相互垂直的方向来达到最优解。

二、元启发式算法元启发式搜索(也称为群智能)是一种通过模拟自然界的行为以解决优化问题的算法,包括蚁群算法、粒子群算法、遗传算法等。

1. 蚁群算法蚁群算法是一种基于蚂蚁行为的元启发式算法。

它通过模拟蚂蚁寻找食物的方式来优化问题,即将蚂蚁的行为规则应用于优化问题中。

2. 粒子群算法粒子群算法是一种仿照群体行为的元启发式算法。

它通过模拟鸟群、鱼群等集体行为来寻找最优解。

3. 遗传算法遗传算法是一种模拟自然选择和遗传机制的元启发式算法。

它通过模仿生物进化的过程来寻找最优解。

遗传算法适用于搜索空间大、目标函数复杂的优化问题。

三、其他算法除了传统算法和元启发式算法,还有一些其他的算法也被应用于非线性规划问题中,包括模拟退火算法、蒙特卡罗方法等。

1. 模拟退火算法模拟退火算法是一种随机退火过程,通过在优化问题的解空间中随机地搜索来寻找最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6) 非线性规划方法概述
➢(6.1)微分学方法的局限性:
实际的问题中,函数可能是不连续或者不可微的。 需要解复杂的方程组,而方程组到目前仍没有有效 的算法。 实际的问题可能含有不等式约束,微分学方法不易 处理。
➢(6.2)数值方法的基本思路:迭代
给定初始点x0
根据x0,依次迭代产生点列{xk}
☺若 f ( x), gi ( x), hj ( x) 至少一个为非线性,
即为非线性规划(NLP);
☺对于非线性规划,若没有 gi ( x), hj ( x),即X=Rn,称为
无约束非线性规划或无约束最优化问题; 否则称为约束非线性规划或约束最优化问题。
凸规划的定义及其性质:
凸规划定义:
min f(x)
x tp X 则称向量p是点x处 关于X的可行方向。
解非线性规划问题,关键在于 找到某个方向,使得在此方向 上,目标函数得到下降,同时 还是可行方向。 这样的方向称为可行下降方向。
定义:算法收敛、下降迭代算法
集合S上的迭代算法: (1)初始点 x0 ;
(2)按照某种搜索方向pk产生下一个迭代点 xk1 xk pk . k (i)如果点列 { xk }收敛于最优解 x* ,则称此算法收敛。 (ii)如果 f (x0 ) f (x1) f (xk ) ,则称此算法为
设f :Rn R1, xRn , pRn , p 0,若存在 0,使 f ( x tp) f ( x), t(0, )
则称向量p是函数f ( x) 在点x处的下降方向。 若f ( x)在x可导,则-f ( x)就是 f ( x)在x处下降最快的方向。
定义:特殊搜索方向——可行下降方向
设X Rn , x X , pRn , p 0,若存在t 0,使得
s.t. g(i x) 0
h(j x) 0
i 1, , p j 1, ,q
X
xRn
g(i x) h(j x)
0 0
i 1, , p j 1, ,q
若X是凸集, f 是X上的凸函数, 称(MP)为非线性
凸规划, 简称凸规划。
min f ( x)
s.t .
gi ( x) 0, i 1, , p
hi ( x) 0, j 1, , q
min f ( x)
s.t
.
g( x) 0
h( x) 0
min f ( x)
xX
➢(3)数学规划问题的分类:
min f ( x) s.t. g( x) 0 h( x) 0
☺若f ( x), gi ( x), hj ( x) 为线性函数,即为线性规划(LP);
一般来说,求解非线性规划问题比线性规划问题困难得多。而且, 也不象线性规划那样有单纯形法这一通用的方法。非线性规划的各种 算法大都有自己特定的使用范围,都有一定的局限性。到目前为止还 没有适合于各种问题的一般算法,这是需要深入研究的一个领域。我 们只是对一些模型及应用作简单介绍。
非线性规划问题的数学模型
f ( x* ) f ( x), x X
则称x*是(MP)的整体最优解或整体极小点,
称f ( x* )是(MP)的整体最优值或整体极小值。 如果有 f ( x* ) f ( x), x X , x x*
称x*是(MP)的严格整体最优解或严格整体极小点,
称f ( x* )是(MP)的严格整体最优值或严格整体极小值。
{xk}有限
{xk}无限
{xk}的最后一点为最优解
{xk}收敛于最优解
➢迭代格式
xk pk
xk+1
x k
xk1 xk xk
xk tk pk
xk1 xk xk
称pk为第k轮搜索方向,tk为第k轮沿pk方向的步长。 产生tk和pk的不同方法,形成了不同的算法。
定义:特殊搜索方向——下降方向
第4章 非线性规划方法
2012 统计学
在科学管理和其他领域中,大量应用问题可以归结为线性规划问题, 但是,也有另外许多问题,其目标函数和(或)约束条件很难用线性 函数表达。如果目标函数和(或)约束条件中包含有自变量的非线性 函数,则这样的规划问题就属于非线性规划。
非线性规划是运筹学的重要分支之一。最近30多年来发展很快,不 断提出各种算法,而其应用范围也越来越广泛。比如在各种预报、管 理科学、最优设计、质量控制、系统控制等领域得到广泛且不短深入 的应用。
下降迭代算法。
x
1
.
.
.
x2
x0
➢(6.3)下降迭代算法步骤
(1)给出初始点 x0 ,令 k 0 ;
(2)按照某种规则确定下降搜索方向 d k ; (3)按照某种规则确定搜索步长 k ,使得
定义 对于非线性规划(MP), 若x* X , 并且存在x*的邻域
N ( x* ) x Rn x x* 使
f ( x* ) f ( x),xN ( x* ) X 则称 x* 是(MP)的局部最优解或局部极小解,
称f ( x* )是(MP)的局部最优值或局部极小值
如果有 f ( x* ) f ( x),xN ( x* ) X , x x* 称x*是(MP)的严格局部最优解或严格局部极小点 f ( x* )是(MP)的严格局部最优值或严格局部极小值。
➢(1)数学规划模型的一般形式:
min f ( x) s.t. gi ( x) 0, i 1, , p hi ( x) 0, j 1, ,q
其中, x (x1, x2, , xn )T , f (x), gi (x),hj (x)为x的实值函数, 简记为MP(Mathematical Programming)
➢(2)简记形式: 引入向量函数符号:
h( x)(h1( x), ,hq ( x))T g( x)( g1( x), ,g p( x))T
X
x
Rn
gi ( x) 0, i hi ( x) 0, j
1, 1,
, p , q
min f ( x)
s.t .
gi ( x) 0, i 1, , p
hi ( x) 0, j 1, , q
➢(4)可行域和可行解:

X
Hale Waihona Puke x Rngi ( x) hi ( x)
0, i 1, 0, j 1,
, p , q
为MP问题的约束集或可行域。
若x在X内,称x为MP的可行解或者可行点。
➢(5)最优解和极小点
定义: 对于非线性规划(MP),若 x* X ,并且有
相关文档
最新文档