姜启源《数学模型》第三版课件

合集下载

数学模型(姜启源第三版第二章)

数学模型(姜启源第三版第二章)

数学模型(姜启源第三版第⼆章)1.学校共1000名学⽣,235⼈住在A宿舍,333⼈住在宿舍,432⼈住在,学⽣梦要组织⼀个10⼈的委员会,试⽤下列办法分配各宿舍的委员数:(1)按⽐例分配取整数的名额后,剩下的名额按惯例分给⼩树部分较⼤者。

(2)节中的Q值⽅法。

(3)⽅法:将A,B,C各宿舍的⼈数⽤正整数相除,其商数如下表:将所得商数从⼤到⼩取前10个(10为席位数),在数字下标以横线,表中A,B,C⾏有横线的数分别为2,3,5,这就是3个宿舍分配的席位。

你能解释这种⽅法的道理吗。

如果委员会从10⼈增⾄15⼈,⽤以上3种⽅法两次分配的结果列表⽐较。

(4)你能提出其它⽅法吗。

⽤你的⽅法分配上⾯的名额。

2.⽤微积分的⽅法导出节的公式(2)。

3.在节中考虑8⼈艇分重量级组(桨⼿体重不超过86kg)和轻量级组(桨⼿体重不超过73kg,建⽴模型说明重量级组的成绩⽐轻量级组⼤约好5%。

4.⽤节实物交换模型中介绍的⽆差别曲线的概率,讨论以下雇员和雇主之间的协议关系:(1)以雇员⼀天的⼯作时间t和⼯资ω分别为横坐标和纵坐标,画出雇员⽆差别曲线族的⽰意图。

解释曲线为什么是你画的那种形状。

(2)如果雇主付计时⼯资,对不同的⼯资率(单位时间的⼯资)画出计时⼯资线族。

根据雇员的⽆差别曲线族和雇主的计时⼯资线族,讨论双⽅将在怎样的⼀条曲线上达成协议。

(3)雇员和雇主已经达成了⼀个协议(⼯作时间1t和⼯资1ω).如果雇主想使雇员的⼯作时间增加到2t,他有两种⽅法:⼀是提⾼计时⼯资率,在协议线的另⼀点(2t,2ω)达成新的协议;⼆是实⾏超t t-付给更⾼的超时时⼯资制,即对⼯时1t仍付原计时⼯资,对⼯时21⼯资。

试⽤作图⽅法分析哪种办法对雇主更有利,指出这个结果的条件.5.在节核武器竞赛模型中,证明由(6)式表⽰的⼄安全线=的性质。

()y f x6.在节核武器竞赛模型中,讨论以下因素引起的平衡点的变化:(1)甲⽅提⾼导弹导航系统的性能。

数学模型第一章文稿演示

数学模型第一章文稿演示

1.1 从现实对象到数学模型
我们常见的模型 玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
地图、电路图、分子结构图… … ~ 符号模型 模型是为了一定目的,对客观事物的一部分 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征
数学模型:是指对于现实世界的某一特定研究对象,为了
某个特定的目的,在做了一些必要的简化假设,运用适当的数 学工具,并通过数学语言表述出来的一个数学结构,数学中的 各种基本概念,都以各自相应的现实原型作为背景而抽象出来 的数学概念。
简单地说,数学建模就是运用数学思想、方法和知识解决 实际问题的过程。
问题分析 通常 ~ 三只脚着地 放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚
模 连线呈正方形;
型 假
• 地面高度连续变化,可视为数学上的连续
设 曲面;
• 地面相对平坦,使椅子在任意位置至少三
只脚同时着地。
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来
• 椅子位置 利用正方形(椅脚连线)的对称性
你碰到过的数学模型——“航行问题”
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?
用 x 表示船速,y 表示水速,列出方程:
(x y)30750
x =20
(x y)50750求解 y =5
答:船速每小时20千米/小时.
航行问题建立数学模型的基本步骤
具体一点说,数学模型是关于部分现实世界为某种目的的一 个抽象的简化的数学结构。
更确切地说:数学模型就是对于一个特定的对象为了一个特 定目标,根据特有的内在规律,做出一些必要的简化假设,运 用适当的数学工具,得到的一个数学结构。数学结构可以是数 学公式,算法、表格、图示等数学模型是用数字、字母以及其 它符号来体现和描述现实原型的各种因素形式以及数量关系的 一种数学结构。

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

简单优化模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

简单优化模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制

要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系。
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元。
• 每天生产一次,每次100件,无贮存费,准备费5000元。
每天费用5000元
• 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。
允许 T ' 缺货
模型
Q'
2c1
c 2

c 3
rc2 c3
2c1r c3 c2 c2 c3
不允 许缺 货模 型
T 2c1 rc2
Q rT 2c1r c2
记 c2 c3
c3
T T , Q Q
不 允
1 T ' T , Q' Q c3
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
10 0
0.06 0.08 0.1 0.12 0.14 g 0.16
生猪价格每天的降低量g增加1%,出售时间提前3%。
强健性分析
研究 r, g不是常数时对模型结果的影响
模型应用
c2 T,Q
r T ,Q
c1=5000, c2=1,r=100
• 回答问题
T=10(天), Q=1000(件), C=1000(元)
• 经济批量订货公式(EOQ公式)
用于订货、供应、存贮情形
每天需求量 r,每次订货费 c1,每天每件贮存费 c2 , T天订货一次(周期), 每次订货Q件,当贮存量降到 零时,Q件立即到货。

数学建模介绍 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

数学建模介绍 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制

阻滞增长模型( 模型) 阻滞增长模型(Logistic模型) 模型
人口增长到一定数量后,增长率下降的原因: 人口增长到一定数量后,增长率下降的原因: 资源、 资源、环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数 是 的减函数
r(x) = r − sx (r, s > 0)
评注和思考 建模的关键 ~ θ和 f(θ), g(θ)的确定 的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
1.3.2 商人们怎样安全过河
问题(智力游戏) 问题(智力游戏)
随从们密约, 随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货. 人多, 就杀人越货. 但是乘船渡河的方案由商人决定. 但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 商人们怎样才能安全过河
模型是为了一定目的, 模型是为了一定目的,对客观事物的一部分 是为了一定目的 进行简缩、抽象、提炼出来的原型 原型的替代物 进行简缩、抽象、提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征 模型集中反映了原型中人们需要的那一部分特征 集中反映了原型
你碰到过的数学模型——“航行问题” “航行问题” 你碰到过的数学模型
数学建模的具体应用
• 分析与设计 • 预报与决策 • 规划与管理

控制与优化
数学建模
如虎添翼
模示例
1.3.1 椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 四条腿一样长,椅脚与地面点接触, 连线呈正方形; 连线呈正方形 • 地面高度连续变化,可视为数学上的连续 地面高度连续变化, 曲面; 曲面 • 地面相对平坦,使椅子在任意位置至少三 地面相对平坦, 只脚同时着地。 只脚同时着地。

MATLAB basics姜启源《数学模型》第三版课件

MATLAB basics姜启源《数学模型》第三版课件

山东大学威海分校应用数学系数学建模课程Matlab基础及其应用山东大学威海分校应用数学系编程的难点和对策☐Matlab为什么也称为语言?语言的用途?词典意味着什么?☐难点:1、编程的工作就是映射2、调试、找错误☐对策:实践,实践,再实践Matlab的学习方法☐必须做大量的练习,熟悉其中的函数☐多看帮助文件,又一本好的参考书☐熟练使用Google等网络资源☐培养良好的编程习惯参考书(1)高等应用数学问题的MATLAB求解薜定宇,陈阳泉著清华大学出版社价格:43.00元参考书(2)优化建模与LINDO/LINGO软件谢金星等清华大学出版社价格:48.00元MATLAB 基础及其应用MATLAB 基础•概述•MATLAB 基本使用•MATLAB 的基本矩阵分析•矩阵操作•流程控制>>>>>一、概述MATLAB是一种交互式的以矩阵为基础的系统计算平台,它用于科学和工程的计算与可视化。

它的优点在于快速开发计算方法,而不在于计算速度。

1.1 MATLAB的出现☐70年代中期,Cleve Moler和他的同事开发了LINPACK和EISPACK的Fortran子程序库☐70年代末期,Cleve Moler 在新墨西哥大学给学生开线性代数,为学生编写了接口程序,这程序取名为MATLAB,即MATrix LABoratory☐1983年春天,工程师John Little与Moler、Steve Bangert一起开发了第二代专业版MATLAB ☐1984年,MathWorks公司成立,MATLAB正是推向市场。

1.2 Matlab的版本演化☐Matlab 1.0☐Pc matlab->matlab 386☐Matlab3.5+simulink☐Matlab 4.0:simlink内嵌☐Matlab 5.0 :全面的面向对象☐Matlab 5.1~5.3☐Matlab 6.0☐Matlab 6.5:购并了MATRIXx ☐Matlab 7.0:20041.3 MATLAB特点☐高度适应性、开放性:MATLAB的工具箱可以任意增减,任何人可以自己生成MATLAB工具箱☐可扩充性:MATLAB的函数大多为ASCII文件,可以直接编辑、修改☐基于矩阵运算的工作平台。

回归模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

回归模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制
500 0
-500
e ~ x1
-1000 0 5 10 15 20
500
0
-500
e ~组合
1 2 3 4 5 6
-1000
R2,F有改进,所有回归系数置信 区间都不含零点,模型完全可用
消除了不正常现象 异常数据(33号)应去掉
去掉异常数据后的结果
200
参数 参数估计值 置信区间 a0 11200 [11139 11261] a1 498 [494 503] a2 7041 [6962 7120] a3 -1737 [-1818 -1656] a4 -356 [-431 –281] a5 -3056 [-3171 –2942] a6 1997 [1894 2100] R2= 0.9998 F=36701 p=0.0000
参数
0 1 2 3 4
两模型销售量预测比较
控制价格差x1=0.2元,投入广告费x2=6.5百万元
ˆ ˆ ˆ ˆ 2 ˆ 0 1x1 2 x2 3 x2 y
ˆ y 8.2933 (百万支)
区间 [7.8230,8.7636]
ˆ x x x2 x x ˆ y 0 1 1 ˆ2 2 ˆ3 2 ˆ4 1 2
输入 y~n维数据向量
2 x= [1 x1 x2 x2 ] ~n4数 据矩阵, 第1列为全1向量
输出
b~的估计值
bint~b的置信区间
r ~残差向量y-xb
rint~r的置信区间
alpha(置信水平,0.05) 参数
0 1 2 3
参数估计值 置信区间 17.3244 [5.7282 28.9206] 1.3070 [0.6829 1.9311 ] -3.6956 [-7.4989 0.1077 ] 0.3486 [0.0379 0.6594 ] R2=0.9054 F=82.9409 p=0.0000

第一章 建立数学模型

第一章 建立数学模型

x=3, y=0,1,2,3; x=y=1,2}
y
3 2
s1
d1
d1, ,d11给出安全渡河方案 d11
1
0
评注和思考
规格化方法,易于推广
sn+1
1
2
3
x
考虑4名商人各带一随从的情况
人、狗、鸡、米均要过河,船需要人划,每次只能运载 其中的一物和人本身,而当人不在时,狗要吃鸡,鸡要 吃米。问人、狗、鸡、米怎样过河? 用四元数组(即由4个数所组成的数组来表示初 始状态,目标状态以及中间的各种可取状态
现在问题变为在图中找一条从顶点(1,1,1,1)通 过相联结的边到顶点(0,0,0,0)的路径,每条路 径就是一个解。
1.3.3 如何预报人口的增长
背景 世界人口增长概况
年 1625 1830 1930 1960 1974 1987 1999 人口(亿) 5 10 20 30 40 50 60 中国人口增长概况 年 1908 1933 1953 1964 1982 1990 1995 2000 人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0 研究人口变化规律 控制人口过快增长
r ( xm ) 0
x r ( x) r (1 ) xm
阻滞增长模型(Logistic模型)
dx rx dt
dx/dt
dx x r ( x) x rx (1 ) dt xm
x xm xm/2 x0 0 t
0
xm/2
xm x
x (t )
xm xm 1 ( 1) e rt x0
模型应用——预报美国2010年的人口 加入2000年人口数据后重新估计模型参数 r=0.2490, xm=434.0 x(2010)=306.0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章建立数学模型1.1 从现实对象到数学模型1.2 数学建模的重要意义1.3 数学建模示例1.4 数学建模的方法和步骤1.5 数学模型的特点和分类1.6 怎样学习数学建模1.1从现实对象到数学模型我们常见的模型玩具、照片、飞机、火箭模型… …~ 实物模型水箱中的舰艇、风洞中的飞机… …~ 物理模型地图、电路图、分子结构图… …~ 符号模型模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物模型集中反映了原型中人们需要的那一部分特征你碰到过的数学模型——“航行问题”用x 表示船速,y 表示水速,列出方程:75050)(75030)(=⨯-=⨯+y x y x 答:船速每小时20千米/小时.甲乙两地相距750千米,船从甲到乙顺水航行需30小时,从乙到甲逆水航行需50小时,问船的速度是多少?x =20y =5求解航行问题建立数学模型的基本步骤•作出简化假设(船速、水速为常数);•用符号表示有关量(x, y表示船速和水速);•用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);•求解得到数学解答(x=20, y=5);•回答原问题(船速每小时20千米/小时)。

数学模型(Mathematical Model) 和数学建模(Mathematical Modeling)对于一个现实对象,为了一个特定目的,根据其内在规律,作出必要的简化假设,运用适当的数学工具,得到的一个数学结构。

建立数学模型的全过程(包括表述、求解、解释、检验等)数学模型数学建模1.2数学建模的重要意义•电子计算机的出现及飞速发展;•数学以空前的广度和深度向一切领域渗透。

数学建模作为用数学方法解决实际问题的第一步,越来越受到人们的重视。

•在一般工程技术领域数学建模仍然大有用武之地;•在高新技术领域数学建模几乎是必不可少的工具;•数学进入一些新领域,为数学建模开辟了许多处女地。

数学建模的具体应用•分析与设计•预报与决策•控制与优化•规划与管理如虎添翼数学建模计算机技术知识经济1.3 数学建模示例1.3.1椅子能在不平的地面上放稳吗问题分析模型假设通常~ 三只脚着地放稳~ 四只脚着地•四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;•地面高度连续变化,可视为数学上的连续曲面;•地面相对平坦,使椅子在任意位置至少三只脚同时着地。

模型构成用数学语言把椅子位置和四只脚着地的关系表示出来•椅子位置利用正方形(椅脚连线)的对称性x B A DC OD ´C ´B ´ A ´用θ(对角线与x 轴的夹角)表示椅子位置•四只脚着地距离是θ的函数四个距离(四只脚)A,C 两脚与地面距离之和~ f (θ)B,D 两脚与地面距离之和~ g (θ)两个距离θ椅脚与地面距离为零正方形ABCD 绕O 点旋转正方形对称性用数学语言把椅子位置和四只脚着地的关系表示出来f(θ) , g(θ)是连续函数对任意θ,f(θ), g(θ)至少一个为0数学问题已知:f(θ) , g(θ)是连续函数;对任意θ,f(θ) • g(θ)=0 ;且g(0)=0,f(0) > 0.证明:存在θ,使f(θ) = g(θ0) = 0.模型构成地面为连续曲面椅子在任意位置至少三只脚着地模型求解给出一种简单、粗糙的证明方法将椅子旋转900,对角线AC和BD互换。

由g(0)=0,f(0) > 0 ,知f(π/2)=0 , g(π/2)>0.令h(θ)= f(θ)–g(θ), 则h(0)>0和h(π/2)<0.由f, g的连续性知h为连续函数, 据连续函数的基本性, 使h(θ0)=0, 即f(θ0) = g(θ0) .质, 必存在θ因为f(θ) • g(θ)=0, 所以f(θ) = g(θ0) = 0.评注和思考建模的关键~θ和f(θ), g(θ)的确定假设条件的本质与非本质考察四脚呈长方形的椅子1.3.2 商人们怎样安全过河问题(智力游戏)∆∆∆3名商人⨯⨯⨯3名随从随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.但是乘船渡河的方案由商人决定.商人们怎样才能安全过河?问题分析多步决策过程决策~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员要求~在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河.河小船(至多2人)模型构成x k ~第k 次渡河前此岸的商人数y k ~第k 次渡河前此岸的随从数x k , y k =0,1,2,3;k =1,2,⋯⋯s k =(x k , y k )~过程的状态S={(x , y )|x =0, y =0,1,2,3; x =3, y =0,1,2,3; x =y =1,2}S ~ 允许状态集合u k ~第k 次渡船上的商人数v k ~第k 次渡船上的随从数d k =(u k , v k )~决策D={(u , v )|u+v =1, 2} ~允许决策集合u k , v k =0,1,2;k =1,2,⋯⋯s k +1=s k d k+(-1)k ~状态转移律求d k ∈D(k =1,2, ⋯n), 使s k ∈S, 并按转移律由s 1=(3,3)到达s n +1=(0,0).多步决策问题模型求解xy 3322110•穷举法~ 编程上机•图解法状态s =(x,y ) ~ 16个格点~ 10个点允许决策~ 移动1或2格; k 奇,左下移; k 偶,右上移.s 1n +1d 1, ⋯,d 11给出安全渡河方案评注和思考规格化方法,易于推广考虑4名商人各带一随从的情况d 1d 11允许状态S={(x , y )|x =0, y =0,1,2,3;x =3, y =0,1,2,3; x=y =1,2}1.3.3 如何预报人口的增长世界人口增长概况背景年1625 1830 1930 1960 1974 1987 1999人口(亿) 5 10 20 30 40 50 60中国人口增长概况年1908 1933 1953 1964 1982 1990 1995 2000人口(亿) 3.0 4.7 6.0 7.2 10.3 11.3 12.0 13.0研究人口变化规律控制人口过快增长指数增长模型——马尔萨斯提出(1798)常用的计算公式kk r x x )1(0+=x (t ) ~时刻t 的人口基本假设: 人口(相对)增长率r 是常数tr t x t x t t x ∆=-∆+)()()(今年人口x 0, 年增长率rk 年后人口0)0(,x x rx dtdx==rtex t x 0)(=t r e x t x )()(0=tr x )1(0+≈随着时间增加,人口按指数规律无限增长指数增长模型的应用及局限性•与19世纪以前欧洲一些地区人口统计数据吻合•适用于19世纪后迁往加拿大的欧洲移民后代•可用于短期人口增长预测•不符合19世纪后多数地区人口增长规律•不能预测较长期的人口增长过程19世纪后人口数据人口增长率r不是常数(逐渐下降)人口增长到一定数量后,增长率下降的原因:资源、环境等因素对人口增长的阻滞作用且阻滞作用随人口数量增加而变大假设)0,()(>-=s r sx r x r r ~固有增长率(x 很小时)x m ~人口容量(资源、环境能容纳的最大数量))1()(mx xr x r -=r 是x 的减函数mx r s =)(=m x rrx dtdx=)1()(mx x rx x x r dt dx -==dx /dtxx m m x m x t x x x emm rt()()=+--110txx (t )~S 形曲线, x 增加先快后慢x x m /2参数估计用指数增长模型或阻滞增长模型作人口预报,必须先估计模型参数r 或r, x m•利用统计数据用最小二乘法作拟合例:美国人口数据(单位~百万)1860 1870 1880 …… 1960 1970 1980 199031.4 38.6 50.2 …… 179.3 204.0 226.5 251.4专家估计阻滞增长模型(Logistic 模型)r =0.2557, x m =392.1模型检验用模型计算2000年美国人口,与实际数据比较]/)1990(1)[1990()1990()1990()2000(m x x rx x x x x -+=∆+=实际为281.4 (百万)5.274)2000(=x 模型应用——预报美国2010年的人口加入2000年人口数据后重新估计模型参数Logistic 模型在经济领域中的应用(如耐用消费品的售量)阻滞增长模型(Logistic 模型)r =0.2490, x m =434.0x (2010)=306.0数学建模的基本方法•机理分析•测试分析根据对客观事物特性的认识,找出反映内部机理的数量规律将对象看作“黑箱”,通过对量测数据的统计分析,找出与数据拟合最好的模型机理分析没有统一的方法,主要通过实例研究(Case Studies)来学习。

以下建模主要指机理分析。

•二者结合用机理分析建立模型结构,用测试分析确定模型参数1.4数学建模的方法和步骤数学建模的一般步骤模型准备模型假设模型构成模型求解模型分析模型检验模型应用模型准备了解实际背景明确建模目的搜集有关信息掌握对象特征形成一个比较清晰的‘问题’模型假设针对问题特点和建模目的作出合理的、简化的假设在合理与简化之间作出折中模型构成用数学的语言、符号描述问题发挥想像力使用类比法尽量采用简单的数学工具数学建模的一般步骤模型求解各种数学方法、软件和计算机技术如结果的误差分析、统计分析、模型对数据的稳定性分析模型分析模型检验与实际现象、数据比较,检验模型的合理性、适用性模型应用数学建模的一般步骤数学建模的全过程现实对象的信息数学模型现实对象的解答数学模型的解答表述求解解释验证(归纳)(演绎)表述求解解释验证根据建模目的和信息将实际问题“翻译”成数学问题选择适当的数学方法求得数学模型的解答将数学语言表述的解答“翻译”回实际对象用现实对象的信息检验得到的解答实践现实世界数学世界理论实践1.5数学模型的特点和分类模型的逼真性和可行性模型的渐进性模型的强健性模型的可转移性模型的非预制性模型的条理性模型的技艺性模型的局限性数学模型的特点数学模型的分类应用领域人口、交通、经济、生态… …数学方法初等数学、微分方程、规划、统计… …表现特性描述、优化、预报、决策… …建模目的了解程度白箱灰箱黑箱确定和随机静态和动态线性和非线性离散和连续1.6 怎样学习数学建模数学建模与其说是一门技术,不如说是一门艺术技术大致有章可循艺术无法归纳成普遍适用的准则想像力洞察力判断力•学习、分析、评价、改进别人作过的模型•亲自动手,认真作几个实际题目。

相关文档
最新文档