约瑟夫森效应

合集下载

高温超导

高温超导

高温超导在脉冲功率中应用
超导磁储能:相对于目前普遍应用
的电容型储能技术,电感储能的功率释 放需要开断开关,与电容储能只需要闭 合开关相比,在大电流、大功率时技术 难度较大,电感储能的充放电速度也受 电感值的影响。但是,随着超导技术的 进步,超导磁储能已经成为可能。超导 磁储能损耗低,可长时间储存能量,这 对于需要长时间集聚能量和长时间储存 能量的脉冲功率系统,比如,利用太阳 能的脉冲功率系统,则有它独有的优势。 100kJ/25kW超导储能装置
水知道答案
相同的4颗葡萄

制 量
相同的2个塑料杯

等量的水淹没
相同的室内环境下
水知道答案
一天过 去
两天过 去
一周过 去

水知道答案
新鲜程度
95% 95% 95% 95%
葡萄1号
葡萄2号
葡萄3号
葡萄4号
水知道答案
结果分析
现象:通过一周的“鼓励”与“批评”,两组水中的葡萄并没有明显的变
或差别。
分析:时至冬日,天气较凉,加上葡萄并没有去掉果皮,使得葡萄很
约瑟夫森效应:超导体的第三大特性产生 于导体——绝缘薄层——超导体形成的超 导结上。这种超导结有着和一般导体或半 导体形成的结完全不同的电子隧道效应。 约瑟夫森效应主要应用于超导电子学、微 弱电磁场测量等领域。
迈斯纳效应:迈斯纳效应是超导
体的第二大基本特性。对超导体, 无论是先加磁场再将之冷却到临 界温度以下,还是冷却到临界温 度以下后再加磁场,超导体内部 的磁场感应强度都是零。就是说 磁通线不能通过处于超导态的超 导体,即它是完全抗磁性的。
高温超导在脉冲功率中应用
高温超导在脉冲功率中应用
脉冲变压器 :

超导现象的基本特征

超导现象的基本特征

超导体(英文名:superconductor),又称为超导材料,指在某一温度下,电阻为零的导体。

在实验中,若导体电阻的测量值低于10-25Ω,可以认为电阻为零。

超导体不仅具有零电阻的特性,另一个重要特征是完全抗磁性。

基本特性超导体具有三个基本特性:完全电导性、完全抗磁性、通量量子化。

完全导电性完全导电性又称零电阻效应,指温度降低至某一温度以下,电阻突然消失的现象。

完全导电性适用于直流电,超导体在处于交变电流或交变磁场的情况下,会出现交流损耗,且频率越高,损耗越大。

交流损耗是超导体实际应用中需要解决的一个重要问题,在宏观上,交流损耗由超导材料内部产生的感应电场与感生电流密度不同引起;在微观上,交流损耗由量子化磁通线粘滞运动引起。

交流损耗是表征超导材料性能的一个重要参数,如果交流损耗能够降低,则可以降低超导装置的制冷费用,提高运行的稳定性。

完全抗磁性完全抗磁性又称迈斯纳效应,“抗磁性”指在磁场强度低于临界值的情况下,磁力线无法穿过超导体,超导体内部磁场为零的现象,“完全”指降低温度达到超导态、施加磁场两项操作的顺序可以颠倒。

完全抗磁性的原因是,超导体表面能够产生一个无损耗的抗磁超导电流,这一电流产生的磁场,抵消了超导体内部的磁场。

超导体电阻为零的特性为人们所熟知,但超导体并不等同于理想导体。

从电磁理论出发,可以推导出如下结论:若先将理想导体冷却至低温,再置于磁场中,理想导体内部磁场为零;但若先将理想导体置于磁场中,再冷却至低温,理想导体内部磁场不为零。

对于超导体而言,降低温度达到超导态、施加磁场这两种操作,无论其顺序如何,超导体超导体内部磁场始终为零,这是完全抗磁性的核心,也是超导体区别于理想导体的关键。

[4]通量量子化通量量子化又称约瑟夫森效应,指当两层超导体之间的绝缘层薄至原子尺寸时,电子对可以穿过绝缘层产生隧道电流的现象,即在超导体(superconductor)—绝缘体(insulator)—超导体(superconductor)结构可以产生超导电流。

双jj管原理

双jj管原理

双jj管原理
双JJ管是一种特殊的超导电子器件,由两个相连的约瑟夫森结(Josephson junction,简称JJ)组成。

它是一种高性能的微波调制器和探测器,广泛应用于超导量子计算、量子通信和微波电子学领域。

双JJ管的工作原理基于约瑟夫森效应,该效应描述了两个超导电极之间的电流通过一个超薄绝缘层的现象。

当两个超导电极之间施加一个直流电压时,超薄绝缘层中的电子将会以量子隧道效应的方式穿过绝缘层,形成一个由电子对组成的超流。

在这个过程中,电子对将会形成一个特殊的量子相干态,使得电流通过超导电极之间的约瑟夫森结。

双JJ管的一个重要特点是具有非线性的电压-电流特性,这使得它可以被用作高灵敏度的微波探测器。

当微波信号通过双JJ管时,它将改变约瑟夫森结中的电流-电压特性,从而导致输出电压的变化。

通过测量这种变化,可以获得微波信号的幅度、相位和频率等信息。

双JJ管还可用作微波调制器,通过施加交变电压来改变约瑟夫森结的电流-电压特性。

这种调制器可以被用于生成和操控微波信号,广泛应用于超导量子计算中的脉冲序列控制和量子通信中的量子密钥分发等方面。

此外,双JJ管还可以作为超导量子比特(qubit)的基本元件之一。

通过将其集成到超导电路中,可以实现量子比特的控制和测量操作,从而构建起超导量子计算系统。

总之,双JJ管作为一种特殊的超导电子器件,具有非线性、高灵敏度和低噪声等优良特性,在超导量子计算、量子通信和微波电子学领域具有重要的应用前景。

超导导体的结构

超导导体的结构
I 有效电流值 KA Tm 最大许可温度℃ Ta 环境温度 ℃ Tr 材料常数的参考温度℃ α0 0 ℃时电阻率的温度系数 1/℃ TCAP 为单位体积的热容量, 单位 J/(cm3.℃)
• 超导层的设计 • 超导层是电流的载体(即载流层或导体层)。导体层的设计通常需要 考虑电缆的额定载流能力与耐短路电流冲击能力。额定电流值越高, 需要的超导带材数量越多。
超导导体的结构
16013520 丁立 16013522 何伟
高温超导基本特性
• 零电阻现象 • 迈纳斯效应 • 约瑟夫森效应
零电阻现象
零电阻现象是无损耗电流传输的基础。 在低温时,金属的电阻率与温度的关系可表示为:
其中ρ0是 T=0K 时的电阻,也被称为剩余电阻余电 阻的大小与金属的纯度及材质晶格的完整性有关。 金属材质总是会存在杂质和和工艺缺陷,因此金属 电缆线一定会有剩余电阻。
• 护套层
高温超导电缆一般埋于地下,容易受到侵蚀。超导 电缆护套的作用和制造方法与常规电力电缆相似, 其主要作用是为电缆提供保护,防止如湿度、温度 等外界物理、化学环境的侵蚀。可用于电缆护套的 材料很多,主要有普通橡胶(如氯丁胶)、聚乙烯 (高、中、低密度、线性低密度)、聚氯乙烯温超导电缆可分为冷绝缘高温超导 电缆(CD)和热(室温)绝缘高温超导电缆(WD), CD 型高温超导电缆结构更为紧凑,损耗更低,是目前开 发的重点。
• 支撑体的设计
• 支撑体的作用是为其余各层提供支撑,在超导输电层发生故障时,还 可起到分流的作用,及时导出多余的热量与电流,保护超导电缆。支 撑体通常选用具有高电导率和高热导率的材料,同时要具有一定的机 械强度且易于加工,常用的支撑体材料为铜。当支撑体直径过小时, 不能起到保护超导电缆的作用;直径过大,则导致成本高及超导电缆 尺寸过大。此外,支撑体的尺寸对超导电缆的输电能力也有影响。基 于此,必须对支撑体进行合理的设计。根据接地线最小截面积要求, 支撑体的截面尺寸可通过以下公式算出:

超导材料基础知识介绍

超导材料基础知识介绍

超导材料基础知识介绍超导材料具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。

现已发现有28种元素和几千种合金和化合物可以成为超导体。

特性超导材料和常规导电材料的性能有很大的不同。

主要有以下性能。

①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。

如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。

这种“持续电流”已多次在实验中观察到。

②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。

③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。

当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。

这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。

基本临界参量有以下 3个基本临界参量。

①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。

Tc值因材料不同而异。

已测得超导材料的最低Tc是钨,为0.012K。

到1987年,临界温度最高值已提高到100K左右。

②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。

Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。

③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。

Ic一般随温度和外磁场的增加而减少。

单位截面积所承载的Ic 称为临界电流密度,以Jc表示。

超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。

以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=4.2K)起,直到1986年以前,人们发现的最高的 Tc才达到23.2K(Nb3Ge,1973)。

SQUID(超导量子干涉仪)

SQUID(超导量子干涉仪)

x y
Supercon.2 Ψ2
2qB0 d
z
y )(d t 2a)
2qB0 d y) I c sin qB0 dLy sin(2 1 )
Isolator
dx

Ly

2 Ly 2
dy jc sin(2 1
qB0 dLy
sin(2 1 ) 1 I达到极值,
超导中的磁通量子化
超导体内js=0, Cooper对波函数相位满足
1 2m 2eA [ js 2eA] ns e
取一个回路,作环路积分
.dl

2e


A.dl
2e
B
黄昆《固体物理学》
超导中没有磁场,这就是通过环孔 的磁通量,左端为一周的相位增加, 为使波函数回到同一点不会发生实 质变化于是 B 2n
ns 2 ei2代入,经处理得
j 2q
ns1 4qk ns1 ns 2 sin(2 1 ) jc sin t
在外加电压为零时,有一超导电流,其数 值由位相差决定。 V
交流约瑟夫森效应
Supercon.1 Supercon.2
Ψ1
Ψ2
若在结的两侧加上电压,则方程变为 1 i qV 1 k 2 t

c
b
A.dl J .dl
b
c
2 d c 2 0
代入并整理后得

d
c
A.dl
2 a d 0

a
d
A.dl J .dl
d
a
2 1 2n
i 2 I C cos(

0

超导电性及其在现代技术中的应用

超导电性及其在现代技术中的应用

超导电性及其在现代技术中的应用超导电性是一种物理现象,指的是一些特定材料在低于某一临界温度时,其电阻突然下降到零的现象。

这种状态下,电流可以在材料中无阻力地流动。

超导电性的发现为现代科学技术的发展带来了许多重要的应用。

1.超导体的临界温度:超导体的临界温度是指材料从正常态转变为超导态的温度。

不同材料具有不同的临界温度,有的材料的临界温度很低,接近绝对零度,而有的材料则相对较高。

2.超导体的迈斯纳效应:迈斯纳效应是指超导体能够排斥外部磁场,使得超导体内部磁场为零的现象。

这是超导体的一个重要特性,对于超导体的应用具有重要意义。

3.超导体的约瑟夫森效应:约瑟夫森效应是指两个超导体之间的电流可以通过一个绝缘层(弱连接)相互耦合的现象。

这个效应是超导体应用的基础,例如超导量子干涉器(SQUID)就是利用约瑟夫森效应制成的。

4.超导电性的应用:超导电性在现代技术中有广泛的应用,主要包括以下几个方面:a.超导磁体:超导磁体利用超导体的迈斯纳效应和电流的磁效应,可以产生强大的磁场。

超导磁体广泛应用于粒子加速器、磁共振成像(MRI)、磁悬浮列车(Maglev)等领域。

b.超导电缆:超导电缆利用超导体的低电阻特性,可以实现大功率传输。

超导电缆的研究和开发对于未来电力系统的升级和优化具有重要意义。

c.超导量子干涉器(SQUID):SQUID是一种利用超导体的约瑟夫森效应制成的精密测量仪器,具有极高的灵敏度。

SQUID广泛应用于地质勘探、生物医学、物理学等领域。

d.超导量子计算:超导量子计算是利用超导体的量子特性进行计算的一种新型计算方式。

超导量子计算有望实现量子比特的固态实现,对于未来量子计算的发展具有重要意义。

超导电性作为一种特殊的物理现象,在现代技术中发挥着重要作用。

随着科学技术的不断发展,超导电性的研究和应用将会不断拓展,为人类社会带来更多的便利和进步。

习题及方法:1.习题:超导体的临界温度是多少?解题方法:查阅相关教材或资料,了解不同超导体的临界温度,并给出具体数值。

物理效应定律大全及解释

物理效应定律大全及解释

物理效应定律大全及解释在自然界中,存在着许多不同的物理效应定律,这些定律是描述物理现象和规律的基础。

通过研究这些定律,我们可以更好地理解宇宙的运行规律和各种现象的产生原因。

以下将介绍一些常见的物理效应定律及其解释。

1. 费曼定律费曼定律是由物理学家理查德·费曼提出的,它指出“你不了解某个东西,直到你尝试解释它给别人听”。

这个定律强调了沟通与理解的重要性,通过将复杂的物理概念简化为可被他人理解的形式,我们加深了自己对知识的理解,并提高了与他人交流的效果。

2. 狄拉克方程狄拉克方程是描述物质粒子行为的基本定律之一,它将薛定谔方程与相对论结合起来,描述了自旋为1/2的费米子。

狄拉克方程的提出开启了量子场论的发展进程,深刻影响了现代物理学的发展。

3. 磁场对电流的作用安培定律指出了磁场对电流的作用规律,即电流在外磁场中会受到磁力的作用,导致电流产生受力或受扭矩的效应。

这一定律在电磁学和电力工程中具有重要的应用,例如电动机、电磁感应等方面。

4. 约瑟夫森效应约瑟夫森效应是描述固体物质中电阻随温度的变化规律的定律,即当温度降低时,固体的电阻会急剧下降直至消失。

这一效应在超导体的研究中具有重要意义,也为低温物理学和超导体技术的发展提供了重要启示。

5. 光的干涉与衍射光的干涉与衍射是描述光波在传播过程中产生干涉和衍射现象的定律。

这些现象是光学中的基础理论,通过对光波的干涉和衍射现象的研究,我们可以揭示光的波动性质,并应用于光学仪器的设计与制造中。

6. 流体静力学流体静力学是研究流体静止状态下的力学性质的学科,根据推导出的数学方程和定律,可以描述流体受力平衡的情况。

流体静力学在水力学、气象学等领域有广泛应用,帮助我们理解大气、海洋和水力系统等自然现象。

结语物理效应定律的研究对于推动科学技术的发展和人类文明的进步起着重要作用。

通过了解这些定律,我们可以更好地理解自然界的规律,拓展科学知识的边界,为人类社会的发展贡献力量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
约瑟夫森效应
目 录 Contents
1
约瑟夫森预言 库伯电子对
2
3
约瑟夫森效应
1 约瑟夫森
约瑟夫森,英文:Josephson effect。1962年由B.D约瑟 夫森首先在理论上预言,对于超导体-绝缘层-超导体相互 接触的结构,只要绝缘层足够薄,超导体内的电子对就有 肯能穿透绝缘层势垒,导致如下效应: 1. 在零电压下,有直流超流产生,这一电流对磁场非常敏感, 磁场加大,电流将迅速减小。 2. 在恒定电压下,既有直流超导电流产生,也有交流超流, 其频率为2eV/h。 3. 如果在直流电压上再叠加一交流电压,其频率为v,则会 出现一零斜率的电阻区,在这个区域内电流有傅里叶成分, 电压V与v的关系为2eV/h=nv(其中n为整数)
上面所述的NIS结和SIS结,其隧道电流都是正常电子穿越势垒。 正常电子导电,通过绝缘介质层的隧道电流是有电阻的。这种情况的绝缘 介质厚约几十纳米到几百纳米。 如果SIS隧道结的绝缘层厚度只有1nm左右,那么理论和实验都证实了将会 出现一种新的隧道现象,即库珀电子对的隧道效应,电子对穿过位垒后仍保 持着配对状态。 当绝缘层太厚时,隧道效应不明显,太薄时,两块超导体实际上连成一块, 这两种情形都不会发生约瑟夫森效应。绝缘层不太厚也不太薄时成为弱连接 超导体。两块超导体夹一层薄绝缘材料的组合称S-I-S超导隧道结或约瑟夫森 结。
自由电子经由间接的吸引力结合成库珀电子 对,库珀电子对互相也随着晶格振动产生的 正负电荷区间依序移动,彼此不在碰撞,也 就没有电阻的产生。
BCS理论可以得到磁通量子化的结论,即磁通 量子的电荷有效单位是2e而不是e。 由于BCS基态涉及的是库珀电子对,所以磁通 量子化中的电子对电荷2e是BCS理论的一个推论 。
图3-3 Sn-SnOx-Sn结构的电流和电压关系
3.3 直流约瑟夫森效应
图3-4 Sn-SnOx-Sn结的约瑟夫森电流和磁场的关系
3.3 交流约瑟夫森效应
U i
超导体
i
超导体
薄绝缘势垒
3.3 交流约瑟夫森效应
I
V
The End
19
3.1 电子隧道效应
在经典力学中,若两个空间区域被一个势垒分隔开,则只有粒子具有足够的能 量越过势垒时,它才会从一个空间进入另一个空间区域中去。 在量子力学中,一个能量不大的粒子也可能以一定的几率“穿过”势垒,这就 是所谓的隧道效应。 i 绝缘体通常阻挡从一种金属流 向另一种金属的传导电子。如果 阻挡层足够薄,则由于隧道效应 ,电子具有相当大几率穿越绝缘 层。
BCS理论是第一个成功地解释了超导现象的微 观理论,也是目前唯一成功的超导微观理论。 后来,虽然又有了一些形式上的发展和完善, 但基本思想和物理图像则没有更大的改变。
3. 约瑟夫森效应
在两片超导中间夹 入一片薄薄的绝缘体, 在没有外加电压的情 况下,仍会有直流电 流通过绝缘体。
如果在超导体两端施上 一固定电压,则居然会出 现交流电流;我们可以从 交流电的频率得到非常准 确的物理常数。
3.3 直流约瑟夫森效应
U i
超导体
i
超导体
薄绝缘势垒
3.3 直流约瑟夫森效应
当直流电流通过超导隧道结时,只 要电流值低于某一临界电流Ic,则与一 块超导体相似,结上不存在任何电压, 即流过结的是超导电流。但一旦超过临 界电流值,结上即出现一个有限的电压, 结的性状过渡到正常电子的隧道特性。 图3-3给出了典型的I-V特性曲线。这种 超导隧道结能够承载直流超导电流的现 象,称为直流约瑟夫森效应。对于典型 的结,临界电流一般在几十微安到几十 毫安之间。
N
I
N
V
3.1 电子隧道效应
i
N
I
N
当两个金属都处于正常态,隧道结的电 流-电压曲线在低电压下是欧姆型,即 电流正比于电压,如下图3-1。 如果金属中的一个变为超导体时,电流 -电压的特性曲线会变化如下图3-2。
V i i
0 图3-1
0 V 图3-2
Vc
V
3.2 约瑟夫森结
超导体 超导体 薄绝缘势垒
2. 库珀电ቤተ መጻሕፍቲ ባይዱ对
库柏电子对的形成原理描述:金属晶体中的外层价电子处在带正电性的原子实组 成的晶格环境中,带负电的电子吸引原子实向它靠拢,在电子周围形成正电势密 集的区域,它又吸引第二个电子,即电子通过格波声子相互作用形成电子对,称 为“库柏电子对”。这种库柏电子对具有低于两个单独电子的能量,在晶格中运 动没有任何阻力,因而产生超导性。 电子间的直接相互作用是相互排斥的库伦力。如果仅仅存在库伦直接作用的话, 电子不能形成配对。 但电子间还存在以晶格振动(声子)为媒介的间接相互作用。电子间的这种相互 作用是相互吸引的,正是这种吸引作用导致了“库珀对”的产生。 大致上,其机理如下:电子在晶格中移动时会吸引邻近格点上的正电荷,导致格 点的局部畸变,形成一个局域的高正电荷区。这个局域的高正电荷区会吸引自旋 相反的电子,和原来的电子以一定的结合能相结合配对。在很低的温度下,这个 结合能可能高于晶格原子振动的能量,这样,电子对将不会和晶格发生能量交换, 也就没有电阻,形成所谓“超导”。 核心是计算出导体中存在电子相互吸引从而形成一种共振态,即存在“电子对”。
相关文档
最新文档