高等代数对中学数学的指导意义
高代是什么课

高代是什么课
高代是高等代数:
1.高等代数是大学数学专业三门基础课(数学分析、高等代数、解析几何)之一.万丈高楼平地起,打好基础最重要.
这门课程,主要包括多项式代数(第二章)与线性代数(第三章——第十一章).多项式代数理论包括多项式的整除性、因式分解及多项式的根,它是中学因式分解、方程与不等式内容的深化和提高.线性代数理论主要包括行列式、线性方程组、矩阵、二次型、线性空间与线性变换、欧氏空间等内容.它在中学二元一次方程组、三元一次方程组的基础上,展开了全新的理论天地.
2.通过这门课程的学习,一方面使我们获得基本的、系统的代数知识,为其它后继课程的学习打下基础.另一方面,它又是中学代数的继续和提高,可以从更高的观点上来理解和认识中学数学的内容,指导中学数学的教学.特别还要提到的是线性代数已经成为工程技术和科学研究必不可少的数学工具,因此学习这门课程也为了解数学在现代科学技术中的广泛应用打下基础.
3.这门课程与中学代数既有紧密地联系,又有很大的不同.这种不同,不仅表现在内容的深度和广度上,更重要的体现在观点和方法上.通过这门课程的学习,帮助我们树立从特殊到一般,一般到特殊,即具体——抽象——具体的辩证观点和掌握初步的严密的逻辑推理方法,从更广泛的意义上来讲,观念上的基础作用比具体定理、公式、法则的基础作用更为重要.。
《高等代数(上)》课程标准

《高等代数(上)》课程标准1.课程说明《高等代数(上)》课程标准课程编码〔 37008 〕承担单位〔师范学院〕制定〔〕制定日期〔2022.11.20 〕审核〔〕审核日期〔〕批准〔〕批准日期〔〕(1)课程性质:本门课程是数学教育专业的专业基础课程之一,是本专业的核心课程,也是必修课程。
本课程是初等代数的延续与提高, 它的知识,技能,思想方法,对中小学数学教学有直接的指导作用,特别是数学能力的培养和提升发挥着不可替代的作用,可以增强学生的数学思维品质和提高学生的数学素养,为未来的数学教师生涯和今后的再学习奠定良好的专业理论基础。
(2)课程任务:本课程主要针对中小学数学教育教师及相关等岗位开设,主要任务是培养学生在中小学数学教育教师岗位的数学课程教学能力,要求学生掌握中小学数学教师在代数方面的专业理论基础知识、基本技能及思想方法和解决相关问题的能力。
(3)课程衔接:在课程设置上,前导课程有中学数学,后续课程有《高等代数(下)》、《解析几何》、《概率统计基础》、《数论》等。
2.学习目标通过本课程的学习,使学生掌握《高等代数(上)》的基础知识、基本理论、基本方法。
提高学生的逻辑推理能力,提高学生的数学思维能力,提高学生的再学习的能力。
培养学生实事求是、诚实守信、爱岗敬业、团结协作的职业精神,培养学生善于沟通、勇于合作的良好品质,为发展职业能力奠定良好的基础。
使学生成为具备从事中小学数学教育职业的高素质劳动者和教学高级技术人才。
(1)知识目标掌握一元多项式理论、线性方程组、行列式与矩阵及二次型的基本知识、基本理论。
熟练掌握行列式、矩阵的运算。
熟练掌握运用初等变换求解线性方程组、求可逆矩阵的逆矩阵等基本方法。
(2)素质目标培养良好的思想品德、心理素质。
培养良好的职业道德,包括爱岗敬业、诚实守信、遵守相关的法律法规等。
培养学生踏实、认真、求实的做事态度,使学生形成勇于承担责任、实事求是的工作作风。
培养良好的团队协作、协调人际关系的能力。
高等代数简介

高等代数简介一、高等代数的教学目的及重要性代数学是以代数结构作为研究对象的一门学科。
所谓代数结构, 就是指带有一个或多个代数运算并且满足一定运算规则的非空集合。
高等代数是代数学的基础部分,是高等学校数学学院的学生的一门专业基础课程,它既是中学代数的继续和提高,也是数学各分支的基础和工具。
高等代数这门课程概念多, 理论性强, 内容抽象, 充分体现了数学的严密逻辑性、高度抽象性、广泛应用性等特征。
通过该课程的学习, 可逐渐培养和训练学生的抽象思维能力、逻辑推理能力和空间想象能力,提高学生的数学素质。
随着科学技术的进步, 特别是计算机技术的迅速发展与普及,代数学在信息科学、计算机科学和物理学等许多领域都有着非常广泛的应用。
高等代数作为数学学院各专业的重要基础课,学习的好坏, 直接关系到多门后续课程的学习, 同时又关系到学生以后从事科学与技术研究的基本功。
二、高等代数简要发展史代数学是一门古老的数学学科,最简单的代数运算—正整数和有理数的算术运算及这些运算的代数性质在古代就知道了,17-18世纪“代数学”被理解为在代数符合上进行运算的科学,即对由字母组成的公式的“恒等”变换、解代数方程等,到18世纪中叶,代数学或多或少地相当于现在的“初等代数”。
18世纪和19世纪的代数学处理的主要内容是多项式。
历史上,首要的问题是求解一个未知数的代数方程即求解下述类型的方程1010n n n a x a x a -+++=其目的是推导出由方程的系数经加、减、乘、除及开方所构成的公式来表示方程的根。
事实上,人们很早就已经知道了一元一次和一元二次方程的求解方法。
16世纪意大利数学家发现了解三次方程和四次方程的求解公式。
这就很自然地促使数学家们继续努力寻求五次及五次以上的高次方程的求解公式。
遗憾的是这个问题虽然耗费了许多数学家大量的时间和精力,但一直持续了长达三个多世纪都没有解决。
同时,这个时期对于任意复系数代数方程的复根的存在性就成为数学家的主要兴趣,在18世纪和19世纪交替的时候,德国数学家高斯证明了代数方程有解存在的基本定理即代数基本定理。
浅谈高师高等代数课程对中学数学教学的指导作用

iu ta e ha h i r vng ef c fh g rag b a o id e s h o ah mais ta h n .urh r r , i p p r l sr td t tt e mp o i fe to ihe l e r n m d l c o lm t e tc e c i gF t e mo et s a e l h
Ab ta tB n lzn h o n cin o ihe le r o o ma o lg n i de s h o ah m aist i p p r sr c : y a ay ig t e c n e t fh g rag b a f rn r lc l e a d m d l c o lm t e t , s a e o e c h
浅谈高等数学在初等数学中的应用

浅谈高等数学在初等数学中的应用初等数学是学习高等数学基础,高等数学是初等数学的继续和提高,它不但解释了许多初等数学未能说清楚的问题,并使许多初等数学束手无策的问题,至此迎刃而解了。
本文从三个方面探讨高等数学在初等数学中的作用。
高等数学是在初等数学的基础上发展起来的,与初等数学有着紧密的联系。
站在高等数学的角度来看中学数学的某些问题又会更深刻、更全面。
运用高等数学的知识可以解决一些用初等方法难以解决的初等数学问题,以便使学生了解到高等数学对于初等数学的指导作用。
标签:初等数学;高等数学;联系;应用数学是一门科学性、概括性、逻辑性很强的学科。
它源自于古希腊,是研究数量、结构、变化以及空间模型等概念。
透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。
数学的基本要素是:逻辑和直观、分析和推理、共性和个性。
问题的提出许多学生经常提出这样的问题:我们为什么要学这么多高等数学?这些问题长期以来困扰着我们。
本文通过讨论初等与高等数学的联系,使他们真正觉得高等数学对初等数学教学有向导性意义,帮助他们用高等数学知识去分析和理解初等数学教材,从而站得更高,对中学数学的来龙去脉看得更清楚。
一、初等数学初等数学时期从公元前五世纪到公元十七世纪,延续了两千多年、由于高等数学的建立而结束。
这个时期最明显的结果就是系统地创立了初等数学,也就是现在中小学课程中的算术、初等代数、初等几何(平面几何和立体几何)和平面三角等内容。
二、高等数学内容包括函数与极限、一元函数微积分、向量代数与空间解析几何、多元函数微积分、级数、常微分方程等。
其中极限论是基础:微分、积分是是核心,是从连续的侧面揭示和研究函数变化的规律性,微分是从微观上揭示函数的局部性质,积分是从宏观上揭示函数的整体性质:级数理论是研究解析函数的主要手段:解析几何为微积分的研究提供了解析工具,為揭示函数的性质提供了直观模型:微分方程又从方程的角度把函数、微分、积分犹记得联系起来,揭示了它们之间内在的依赖转化关系。
高等代数对中学代数的指导作用【文献综述】

毕业论文文献综述数学与应用数学高等代数对中学代数的指导作用一、前言部分人们常有一种片面的观点, 认为高校里所学的专业知识在中学数学教学中几乎无用. 甚至有些中学数学教师和师范院校数学系的学生认为学习高等数学对于中学数学教学作用不大。
其实高等数学知识在开阔中学教师的视野、指导中学数学解题等方面有很大的作用.我们还认为要把初等数学教好, 不仅要学习高等数学, 而且还一定要学“好”。
学“好”高等数学是指不仅要学习它的定理和方法, 更重要的是要学习它的“观点” ,也即必须掌握高等数学处理问题的特点, 并且将这些观点应用在处理初等数学的问题与教学中去。
众所周知, 我们可以用求导数的方法来求函数的极值, 用微分学中值定理来证明一些不等式、用行列式来求线性方程组的解、用空间解析几何来解立体几何的一些问题。
可能有些同志会说即使熟练地掌握了这些内容, 也不能对中学生讲, 因而在初等数学教学工作中还是用不上。
但是, 我们应该注意到, 学好高等数学不仅要学会这些方法, 而且要了解这些方法的精神实质以及为什么要这样处理问题。
这一切都将成为从事初等数学教学工作的指导思想。
我们可以用高等数学中的一些观点引伸出解初等数学问题的某些技巧, 这些方法是完全初等的, 可以为中学生所接受的, 而应用这些方法都可以将相当数量的、表面上看来完全无关的初等数学问题用儿乎相同的方法解出。
高等数学类课程在知识上是中学数学的继续和提高,在思想方法上是中学数学的因素和扩张,在观念上是中学数学的深化和发展。
高等代数与中学数学在思想方法方面的联系主要体现在抽象化思想、分类思想、结构思想、类比推理思想、公理化方法等方法。
注意与中学数学的联系对比,不但可以降低高等代数课的学习难度,而且增强了高等代数课对培养中学数学的指导作用。
通过研究高等代数与中学数学的联系、区别,探讨高等代数对中学数学的指导,可以更好的学习高等代数和中学数学。
二、主题部分高等代数与中学代数是一脉相承的,是相辅相成的,高等代数是中学代数的深化与进一步研究,中学代数是中学生学习的比较简单基础的高等代数,已有许多教学第一线的教学工作者和数学家及相关研究人员,从不同的角度对高等代数与中学代数的关系。
从数学方法论看高等代数与中学数学的多种联系

从数学方法论看高等代数与中学数学的多种联系
首先,高等代数和中学数学都是数学的一部分,它们都基于数学的基
本概念和性质展开研究。
无论是高等代数还是中学数学,都涉及因式分解、运算规则、代数方程、几何图形等基本概念。
学习中学数学的时候,学生
们已经接触过代数方程的解法、数列的求和、几何图形的性质等知识,这
些知识都包含了高等代数的基础概念和性质。
其次,高等代数提供了更为抽象和一般化的数学方法,而中学数学则
更加注重具体问题的解决。
在高等代数中,通过引入向量空间、线性映射
等概念,可以将不同学科领域的问题抽象为一个个矩阵或向量的运算问题,从而用更通用的方法来解决。
而在中学数学中,更多地是通过具体的例子
和问题来引导学生学习,注重运用知识解决实际问题。
此外,高等代数的一些概念和方法在中学数学中也有所应用。
例如,
矩阵的乘法在高等代数中是一个重要的概念和运算方法,而在中学数学中,矩阵的乘法被应用于几何变换的研究中,如平移、旋转、缩放等。
同样,
高等代数中的行列式和特征值也有在中学数学中的应用,如解二元一次方
程组、矩阵的对角化等。
最后,学习高等代数可以加深对中学数学的理解和应用。
高等代数涉
及的概念和方法更加抽象和一般化,学习高等代数可以帮助学生更好地理
解和应用中学数学中的一些基本概念和性质。
通过学习高等代数,学生可
以更深入地了解中学数学中的代数、几何和概率等知识,从而提高数学素
养和解决实际问题的能力。
高等数学在中学数学中的应用----毕业论文

【标题】高等数学在中学数学中的应用【作者】丁海云【关键词】高等数学中学数学联系应用【指导老师】陈强【专业】数学与应用数学【正文】1 引言近几年来,高等师范院校数学系的不少大学生对学习高等数学存在不少看法,如“现在学的高等数学好像与初等数学没有多大联系”,“学习高等数学对今后当中学数学教师作用不大”,有的甚至提出“高等数学在中学教学里根本用不上”等等.这些看法正如著名数学家克莱因早已指出的那样:“新的大学生一入学就发现,他面对的问题好像和中学里学过的东西一点也没有联系似的,当然他很快就忘了中学学的知识.但是毕业以后当了老师,他们又突然发现,要他们按老师的教法来教传统的初等数学,由于缺乏指导,他们很难辨明当前数学内容和所受大学数学训练之间的联系,于是很快坠入相沿成习的教学方法,而他们所受的大学训练至多成为一种愉快的回忆,对他们对教学毫无影响”.然而在新的数学教材中已经出现了一些基础的高等数学知识,可以说是数学发展的一种必然.现在的中学数学教师必须掌握高等数学的基础知识以适应数学发展和教材改革,而高等数学知识在开阔视野、指导数学解题、指导数学教学、对初等数学问题加以诠释等方面的作用就尤为突出了.本文探讨一些高等数学知识和方法在初等数学中的应用.2 初等数学与高等数学的联系一般说来,数学史家把数学的发展分成四个阶段(萌芽时期、初等数学时期、古典高等数学时期、现代高等数学时期)或五个时期(再加上“当代时期”).无论何种方法,都把第二发展时期叫做“初等数学时期”,这个时期的数学知识和经验就是“初等数学”,而把第三、第四或第三、四、五阶段叫做“高等数学时期”,这些阶段的数学知识和经验就是“高等数学”.理论意义下的初等数学和高等数学是按照恩格斯(Engles)的经典分法:所谓初等数学就是指常量数学,高等数学就是指变量数学,并把笛卡尔(R?Descartes)1637年发明的解析几何看成为出现高等数学或进入高等数学时期的标志.而教育意义下的初等数学和高等数学是依据教育的发展历程和教育的等级加以区分的,即视普通初等、中等教育(即中、小学教育)阶段的数学主要内容为初等数学,视高等教育阶段的数学主要内容为高等数学.当然,由于社会和教育的思想、方法、手段尤其是教育内容都在不断发展,“初等数学”和“高等数学”也是一个变化的客体对象,两者没有严格的概念区别.事实上,数学科学是一个不可分割的整体,它的生命力在于各部分之间的有机联系,只从学科表面上看,难以看清两者之间的内在联系,这就需要深入研究初等数学,理清其中最基本的思想和方法,努力寻求初等数学和高等数学的结合点.2.1 知识方面的联系高等代数在知识上是中学数学的继续和提高.它能解释许多中学数学未能说清楚的问题,如多项式的根及因式分解理论、线性方程组理论等.从以下几个方面说明:首先,中学代数讲多项式的加、减、乘、除运算法则.高等代数在拓宽多项式的含义,严格定义多项式的次数及加法、乘法运算的基础上,接着讲多项式的整除理论及最大公因式理论;中学代数给出了多项式因式分解的常用方法.高等代数首先用不可约多项式的严格定义解释了“不可再分”的含义,接着给出了不可约多项式的性质、唯一因式分解定理及不可约多项式在三种常见数域上的判定;中学代数讲一元一次方程、一元二次方程的求解方法及一元二次方程根与系数的关系.高等代数接着讲一元n次方程根的定义,复数域上一元n次方程根与系数的关系及根的个数,实系数一元n次方程根的特点,有理系数一元n次方程有理根的性质及求法,一元n次方程根的近似解法及公式解简介;中学代数讲二元一次、三元一次方程组的消元解法.高等代数讲线性方程组的行列式解法和矩阵消元解法、讲线性方程组解的判定及解与解之间的关系.中学代数学习的整数、有理数、实数、复数为高等代数的数环、数域提供例子;中学代数学习的有理数、实数、复数、平面向量为高等代数的向量空间提供例子.中学代数中的坐标旋转公式成为高等代数中坐标变换公式的例子.其次,中学几何的内容体系主要是由平面几何、立体几何和平面解析几何三部分构成.平面几何研究由点的集合而形成的平面几何图形的性质;立体几何研究空间几何图形的性质诸如直线、平面及旋转体;平面解析几何研究形与数结合的问题,重点是二次曲线理论的研究.侧重研究直线间的合同、相似极度量关系,就二次曲线而言也侧重于定义的直观描述和各自所具有的性质.作为高等几何而言,侧重于对直线形的结合关系、顺序关系及二次曲线一般理论的研究,具有普适性、全面性.中学几何学习的向量的长度和夹角为欧氏空间向量的长度和夹角提供模型,三角形不等式为欧氏空间中两点间距离的性质提供模型,线段在平面上的投影为欧氏空间中向量在子空间的投影提供模型.第三,高等数学分支之一数学分析的形成和发展体现了数学发展的每个新时期,不仅内容上更加丰富,更在思想方法上发生了根本性的变化.它的形成是深深扎根于初等数学基础之上,它的一些基本概念如导数、积分、无穷级数的收敛等,都是在初等数学有关问题的基础上发展起来的.如导数是在运用代数运算求直线斜率这一问题的基础上,发展成为运用极限方法求曲线上的点的斜率而形成的.可以这样讲,数学分析的形成是初等数学发展到一定阶段的必然结果.第四,集合论是关于无穷集合和超穷数的数学理论.它的建立是数学发展史上的一个里程碑,它给数学奠下了坚实的基础,其思想已渗透到数学的各个领域.它是整个数学的基础,它是数学的基本语言,同时也树立了现代数学的传统.我国中学数学中已经渗透了集合论的内容,如集合、映射及分类的思想,并使用了点集、解集合等集合论语言.综上所述可知,高等代数在知识上的确是中学数学的继续和提高.它不但解释了许多中学数学未能说清楚的如多项式的根及因式分解理论、线性方程组理论等问题,而且以整数、实数、复数、平面向量为实例,引入了数环、数域、向量空间、欧氏空间等代数系统.这对用现代数学的观点、原理和方法指导中学数学教学是十分有用的.2.2 思想方面的联系中学数学思想和方法主要体现为三个层次,第一层次指数学各分科的具体解题方法和解题模式,如代数中的加减消元法、代入消元法、韦达法、判别式法、公式法、非负数法、放缩法、错位相消法、复数法、数学归纳法等等;几何中的平移、旋转、对称、相似、辅助线及辅助面的作法、面积方法、体积方法、图形及几何体的割补方法、三角形奠基法等等;还有在解题教学中教师概括出来的具体解题模式、教科书给出的各种具体的解题程序和模式.第二层次指适用面很广的一些“通法”,如配方法、换元法、待定系数法、分离系数法、消元法、降次法、数形结合法、一般化与特殊化法、参数法、反证法、同一法、观察与实验、比较与分类、分解与组合、分析与综合、归纳与演绎、类比与联想、抽象与概括等等.第三层次指数学观念,即人们对数学的基本看法和概括认识,如推理意识、整体意识、抽象意识、化归意识、数学美的意识等等.在高等数学教育活动中,上述数学思想和方法将得到进一步强化,高等数学各分支学科中几乎渗透了三个层次的思想和方法,在空间解析几何、高等几何、微分几何等学科中明显渗透着第一层次的思想和方法,第二、第三层次的思想和方法是数学学习和研究的重要方法,在各层次的数学教学活动中都应该重视这些思想和方法的训练.除上述所举的思想和方法外,高等数学各分支学科中也渗透着许多新的思想和方法,如分析中的极限法、微分法、积分法等等;代数中的求公因式法、线性方程组的矩阵解法、二次型的正负判定法、线性变换法等等.现代中学数学和高等数学教学的一个显著特征就是注重知识形成过程的教学,形成和发展学生的数学思想和方法,会用数学思想和方法来解决问题.3 高等数学在中学数学中的应用用高等数学的观点、原理和方法,认识、理解和解决中学数学问题是我们大多数人的共同目的,也是高等数学价值的一种体现,尤其是在指导教学、指导解题、诠释初等数学问题等方面,体现非常明显.3.1 高等数学在中学数学教学中的作用我们知道,初等数学与高等数学之间无论在观点上还是在方法上都有着很大的区别.正因为这个原因,有许多学者就认为:学生不需要懂得什么高等数学知识,教师只要能照本本讲下去就可以了,其实这是一种误解.诚然,我们在课堂上不能把高等数学知识传授给学生,但我们作为一名教师倘若仅仅停留在本本上,那是很不够的,有时甚至连自己对一些初等数学问题也可能会感到费解,这是因为:一方面,高等数学是初等数学的继续和提高;另一方面,初等数学里很多理论遗留问题必须在高等数学中才能得以澄清.因此,我们对高等数学在初等数学教学中的作用不能掉以轻心,下面就这个问题谈谈笔者的一些初浅的体会.3.1.1 高等数学原理与中学数学教学首先,注重高等数学对初等数学的指导作用,运用原理,把握本质.多数教育工作者实践中认识到:教师只有深人研究高等数学,才能深刻把握初等数学的本质,使数学课堂教学不失科学性,做到居高临下,把课教活.如有这样一道题目:例1 解方程.解此题若按三次方程求解相当困难.但若将“”看作“未知数”,看作常量,则是一个关于“”的“一元二次方程”,,解之得= .所以原方程的解为,.可以看出,该题很好的把握了题目的主旨—变量和函数的观点.虽然变量与函数是数学分析研究的对象,中学数学中以常量问题为主,但有时若将这些问题中的字母,甚至常数看作变量,而将字母间的关系看作函数关系,运用变量和函数的观点去考察它,会使一些问题变得容易或为解题提示一种可行的思路.另外,中学数学教材中的数学知识,由于充分考虑到数学的社会性原则和学生的可接受性原则,往往是以教育形态(不是学术形态)的呈现,因此中学数学教材中的一些知识内容不可能严谨透彻,例如高中代数中的指数函数(a> 0且a≠1),由于中学阶段指数概念仅推广到有理数,而指数函数的定义域是实数集.然而要在中学阶段讲清这个问题是不大容易的,需要涉及极限理论.事实上,指数函数是群(R, +)到群(R+, )的同构映射,且保持序结构.同时,一些重要的数学基本定理,根据其在中学数学中的地位与作用,大都以“公理”的形式直接加以肯定,并予以直观的描述,严格的证明需通过高等数学的知识加以证明和完善.可以说,运用高等数学的知识能将中学数学中不能或很难彻底解决的基本理论加以严格地证明;反过来,中学数学中的问题也为高等数学的理论提供可靠的背景和模型.因此,教师学习和运用高等数学知识可以加深理解中学数学教学内容的安排意图,更利于提高高师生数学解题能力.其次,在教学中讲解高等数学在初等数学中的渗透,深化对中学知识的掌握高等数学中的概念、思想、方法很多已渗透到中学数学中,在教学中注意这方面的讲解,就能使学生充分地认识到高等数学对中学数学教学的指导意义,也说明教师充分认识到了“居高临下”的重要性.另外在中学数学中,对有些概念和方法没有加以解释和说明,就交给学生应用,虽然使用时能解决问题,但深入理解是不可能的.而作为未来的中学数学教师,对这些概念的理解与掌握就不能只停留在中学时的水平上,而应该更清楚和深刻.如:中学数学中把“形如a+bi(a,b都是实数)的数”叫作复数.这里的“+”是什么意思?a与bi是两个不同单位的元素,怎么可以相加?因此,这里的“+”只能看作是将a与bi连结成一个整体的符号.那么,能不能把这个符号理解为普通实数的加法符号呢?为此,就必须学习了近世代数中复数的构造性理论后才能解答.C是复数集,+,分别表示复数的加法与乘法,则(C;+,)是一个域,叫复数域.在对应关系:(a,0) a之下可证集合与实数域同构,故可把(a,0)看成实数a,即(a,0)=a,从而复数域就是实数域的一个扩域.由复数乘法的定义得.因此复数(0,1)和的性质相同.它是方程的一个根,令(0,1)=i,i为虚数单位.故任意复数(a,b)就可以写成(a,b)=(a,0)+(0,b)=a+bi中的“+”不仅是形式上的符号,它与实数算术运算中的“+”完全一致.3.1.2 高等数学观点与中学数学教学中学数学教学以渗透高等数学思想、观点,使它们相结合.现代高等数学的新思想、新理念、新观点及许多美妙而诱人的技巧和方法,使它更具有魅力.3.1.2.1 数学分析的辩证观点与中学数学教学数学分析不仅继承了初等数学的方法,而且又引进新的思想方法———极限法.运用极限方法,“常量”与“变量”、“直”与“曲”、“均匀”与“非均匀”等可实现相互转化.所以,从方法论的角度来讲,数学分析的有关知识和方法对理解和解决一些中学数学问题会起导向作用.例2 设有三次函数y= (p、q∈R),用微分方法求函数极值.解所以当>0时,无驻点,因而也无极值点;当=0时,驻点=0,但此时在=0两侧不变号,故=0不是极值点,即=0时无极值点;当 0时,有二驻点,又所以函数在处取得极大值在处取得极小值.这从思想、方法上更有指导性的是数学分析中的辩证观点,运用这样的方法,将会使我们中学数学问题的解决思路大为开阔,方法更加灵活有效,从而摆脱对问题束手无策或盲目乱试的困境.另外高等数学知识进一步探讨和学习,可增强学生的求知欲,达到培养学生的学习兴趣.教师运用高等数学知识可以提高对学生提出的一些问题的回答的正确性及敏捷性.3.1.2.2 高等几何思想与中学数学教学高等几何对教材内容的安排一般不同于中学几何,它是先给出定义、定理而后直观解释和证明,中学几何一般是先通过实例描述而后给出重要的概念和定理.前者训练抽象思维,后者训练形象思维,出发点不同,对同一问题得出的结论相同.全面了解欧氏几何、仿射几何、射影几何的联系与区别,从本质上认识,从整体上把握,又从局部上深入,才能深刻认识动与静、特殊与一般的辩证关系.就内容而言,高等几何比中学几何丰富,而且分析问题、处理问题的观点新颖,方法独特.如对偶原则,在研究点几何的同时,也研究了线几何的内容,对二次曲线的定义,既有几何定义,又有代数定义,开拓了认识眼界.从方法论来看,高等几何对具体问题处理的方法独特,而且灵活,对解决中学几何的有关命题提供了一种新的模式,也为中学几何的有关问题提供了知识背景.如利用中心射影投影一直线到无穷远来证明中学几何问题:若在平面上给定一个与直线有关的本质上是射影性质的几何命题,则只要恰当选择射影中心和向平面,总可以使直线的象直线是上的无穷远直线.由于无穷远直线的特殊性,有时可以将原命题化成上容易证明的新命题.既然射影变换保持射影性质不变,那么只要证明了新命题,则原命题也得到了证明.3.1.2.3 集合论的观点和方法与中学数学教学集合论是整个数学的基础,它不仅是数学的基本语言,而且树立了现代数学的传统.它蕴含着极其深刻的数学思想和丰富的数学方法,对分析和理解中学数学具有指导意义.映射是集合论的有力研究工具,也是数学中十分重要的化归方法,利用映射可以把不容易研究的集合上的问题转化到容易研究的集合上去,从而实现由未知(难、复杂)到已知(易、简单)的转化.映射方法的基本思想是:当处理某问题甲有困难时,可联想适当的映射,把问题甲及关系结构R映成与它有一一对应关系且易于考察的问题及关系结构;在新的关系结构中对问题处理完毕后,再把所得结果通过逆映射反演到R,求得关于问题甲所需的结果.这样启发了解题思路,又可用来指导数学发现.如:数学模型方法. 数学模型方法是指把所考察的实际问题化为数学问题,构造相应的数学模型,通过对数学模型的研究,使实际问题得以解决的一种数学方法.中学数学中的解应用题是最简单的数学模型方法.过程如下图:图1:运用数学模型方法解题过程框图3.2 高等数学在中学数学解题过程中的作用初等数学是高等数学的基础,二者有本质的联系.将高等数学的理论应用于初等数学,使其内在的本质联系得以体现,进而去指导初等数学的教学工作,是一个值得研究的课题.俗话说,站得高才能看得远.因此,笔者认为,作为中学教师,除掌握中学数学各种类型题的已熟知的初等方法外,还应善于用高等数学方法解决中学数学问题,特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用高等数学方法则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平,促进中学数学教学.下面略几举例说明之:3.2.1 变换角度,化繁为简例3 求满足方程.解如果从中学数学考虑的话那颇费周折.但换种思路从变量和函数的观点来看是两个变量,上面的方程只能确定之间的函数关系,而不能求出其具体的值.茅盾的根源在于:中学数学中求未知数总是方程的个数和未知数的个数相同才能求出,但题目里面却是两个未知数一个方程.可以得出启发:应当设法构造出两个关于的方程.在实数范围内,将一个等式分成几个等式,最常见的方法是利用非负数,即若几个非负数之和为零,则其中每个必须为零.根据此思路,可将方程变形为进而变为,由是锐角知,上式中两项均为负,故都都等于零.从而解得.另外,许多初等数学中的问题,往往蕴含着数学中的较高层次理论的再实践的问题.如能在教学中有意将高等数学的原理、方法应用于一些初等数学的证明、计算,不仅可以开拓学生的视野,而且可使学生体会到教师所使用的高等数学的原理、方法在解决初等数学问题时的驾轻驭熟的感觉,进而更加有兴趣学习数学.3.2.2 利用函数的单调性证明不等式不等式是数学中不可缺少的工具之一,有许多不等式在数学研究中有着重要的作用.但用初等数学知识证明一些不等式比较困难,下面利用高等数学的原理和方法,就不等式的证明给出证法以帮助理解.我们知道对定义在区间(a,b)内的函数,若>0(或<0),则函数在(a,b)内严格增加(或严格减少),根据函数的单调性,可证明不等式.例4 证明不等式(其中x>0).证明:先证:.设,则在[0,+ )单调增加,又,当时,,即:.再证:.设,则, 当时,,即:.以上方法体现了用初等数学知识证明比较难的不等式时,可充分利用高等数学的原理和方法思考,进而收到很好的效果.3.2.3 利用高等几何思想解初等几何问题在中学数学教学中往往会碰到一些初等几何问题,欲用传统的综合证法,苦于找不到解决问题的思路,而用解析法却轻而易举,可又不能将此法告知学生,面临如何将它转化为纯几何的证明方法的问题,往往十分棘手.但利用高等几何知识进行思考,可收到很好的效果.例5 过一圆的弦AB的中点M引任意两弦CD和EF,连结CF和ED交AB弦于P、Q.求证:PM=MQ. (蝴蝶定理)分析:如图2,此题若局限在平面几何范围内去研究,虽能找到多种不同的证法,如:为使、是全等三角形的对应边,宜将沿直线翻折至,则有, ,故知.这样,又将线段相等归结为角的相等,而角的相等关系在圆上又可利用圆周角定理进行转化,即因,故内接于圆.再由内接于圆和、对称得出结论.但以上结论的得出来之不易,如果我们利用高等几何的交比来证明,就非常容易了.证明:如图,E(AF,DB)=C(AF,DB) (1)E(AF,DB)=(AM,QB) (2)E(AF,DB)=(AP,MB) (3)由(1)、(2)、(3)式得(AM,QB)=(AP,MB)(AM,QB)=(AP,MB)即亦即(4)因为 AM=BM,设PM=x,MQ=y,AM=BM=a,则由(4)式得图2所以故 PM=MQ这种证法不仅简单地证明了结论,而且还把结论推广到了二次曲线的情形.即如果把“蝴蝶定理”中的园换成椭圆、双曲线、抛物线,一对平行线或一对相交直线,结论仍成立.高等数学的许多方法和技巧都能直接应用于中学数学解题,常能起到以简驭繁,并能使问题得以深化和拓广的作用.以上只是给出两个实例说明高等数学能指导中学数学解题(初等代数和初等几何),且收到了很好的效果.在教学过程中,结合具体内容,不失时机地介绍给学生,对于丰富学生的解题方法,特别是作为教师在将来的数学教学中用它来预测答案,确定初等解法的路线,构造习题,检验结果都有重要的作用.3.2.4 微积分在中学数学解题中的指导作用微积分在高等数学里占有非常高的地位,它之所以能解决初等数学不能解决的问题,其根本原因是在初等数学的基础上它引进了一种新的思想方法——极限法.俗话说,站得高才能看得远.笔者认为,作为中学数学教师,利用微积分思想解决中学数学问题特别是一些用初等数学方法难以解决或虽能解决但显得难、繁,而用微积分思想则易于解决的中学数学问题,从而拓广解题思路和技巧,提高教师专业水平.例6 分解因式.解把看作变量,看作常量.令,求对的导数得。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等代数对中学数学的指导意义
高等代数对中学数学的指导意义主要体现在以下几个方面:
1. 培养抽象思维能力:高等代数是数学中的一个重要分支,它通过抽象的符号和概念,研究代数结构及其性质。
学习高等代数可以培养学生的抽象思维能力,帮助他们建立起抽象概念和符号的联系,从而更好地理解和应用数学知识。
2. 深化对数学概念的理解:高等代数中的概念和理论往往是中学数学的深化和延伸,通过学习高等代数可以更深入地理解中学数学中的一些概念,如向量、矩阵等,并且为后续学习提供更加坚实的基础。
3. 培养逻辑思维和证明能力:高等代数中的定理和证明是数学思维的重要组成部分,学习高等代数可以培养学生的逻辑思维和证明能力。
通过解决高等代数中的问题和证明定理,学生可以锻炼自己的推理和证明能力,提高解决问题的能力。
4. 拓宽数学应用领域:高等代数是应用数学的重要工具,在物理、工程、计算机科学等领域有广泛的应用。
学习高等代数可以帮助学生了解和掌握一些数学工具和方法,为将来的学习和职业发展打下基础。
总之,高等代数对中学数学的指导意义主要体现在培养学生的抽象思维能力、深化数学概念的理解、培养逻辑思维和证明能力以及拓宽数学应用领域等方面。
通过学习高等代数,学生可以更好地理解和应用数学知识,为将来的学习和职业发展奠定坚实的基础。