高职院高等数学课程标准

合集下载

4《高等数学》课程标准 80学时

4《高等数学》课程标准 80学时

广州市机电技师学院萝岗校区广州市天河金领技工学校《高等数学》课程标准一、课程名称高等数学二、课程性质、学分、课时数学是反映客观世界的科学,是对客观世界定性把握和定量描述,进而逐渐抽象概括形成方法和理论,并且进行广泛应用的科学。

数学是抽象的,又是具体的,是一种工具,也是一种文化,更是一种信息。

高等数学是高职高专院校中各专业重要的基础课程,其教学内容与后继专业课教学内容有着紧密的联系,它影响到学生后继专业课程的学习,影响到学生专业素质的提高。

它具有综合性高、逻辑性强和应用性广等特点,对于理解专业知识、培养思维能力有着十分重要的意义,是学生全面发展和终身发展的基础。

本课程80学时。

三、课程设计思路本课程教学内容考虑技工学校理论课的实际情况,适当降低难度,加强应用。

1.以培养学生运用数学知识解决实际问题的能力,锻炼学生的逻辑思维能力、空间想象能力、数学建模能力和运算能力为目的,强化教材的针对性和实用性。

2.以解决学生日常接触的实际问题为切入点,讲解数学概念和理论,激发学生的学习兴趣,降低数学学校的难度3.以现实问题的解决为落脚点,提高学生分析问题、解决问题的能力,还能提升学生的学习成就感,增强学生的学习信心。

4.在不影响数学教学内容科学性和系统性的前提下,适当删减了部分理论的繁杂证明过程,有利于学生对知识点的把握,有利于学生能力的培养。

四、课程教学目标学生学完本课程之后能够:1.使学生掌握本课程的基本概念、基本理论和基本运算,为学习各专业课程提供必要的工具;2.进一步培养学生科学的逻辑思维能力和简单的实际应用能力3.培养学生用数学原理和方法消化、吸收专业知识的能力。

4.使学生养成实事求是的科学态度,养成独立思考的习惯,培养学生的质疑精神和创新精神。

将辩证法寓于高等数学教学中,培养学生的辩证唯物主义世界观。

六、课程考核办法本课程为学期考查课,采用百分制形式计分。

该课程考核内容与所占比重如下表:七、课程建议(1)教学建议:教学方法的选择要从技工学校学生的实际出发,要符合学生的认知心理特征,要关注学生数学学习兴趣的激发与保持,学习信心的坚持与增强,鼓励学生参与教学活动,包括思维参与和行为参与,引导学生主动学习;要根据不同的数学知识内容,结合实际地充分利用各种教学媒体,进行多种教学方法探索和试验。

《高等数学》课程标准

《高等数学》课程标准

高等数学(电类专业)课程标准课程代码: 0001011 课程性质:必修课课程类型:A类(一)课程定位《高等数学》是高等职业技术院校电类专业必修的一门重要基础课,它是学生进一步学习有关专业知识、专业技术以及参加社会实践的重要基础和必不可少的工具,它对培养高素质的中高级专门人才具有十分重要的意义(二)基本任务与目标1.基本任务结合机电类专业特点,使学生通过一元函数微积分、微分方程、级数(含傅里叶级数)和拉普拉斯变换的教学,为后继专业课程学习以及解决实际问题提供必不可少的数学基础及常用数学方法。

并通过教学的各个环节,逐步培养学生运用数学思想方法及数学语言、分析和解决实际问题或与专业相关问题的能力;培养学生的逻辑思维能力和创新思维能力;培养学生良好的学习习惯和方法,培养学生的自我管理、表达沟通、团队合作、信息处理等核心能力。

2.基本目标(一)知识目标1)使学生掌握复数的相关概念及计算;2)使学生了解函数极限、连续的描述性概念,会求函数的极限,能讨论分段函数在分段点的连续性;3)使学生理解导数的概念,了解导数的几何意义和物理意义,掌握导数的求法;4)使学生了解函数微分的概念,了解微分的几何意义;5)使学生理解不定积分的概念,了解不定积分与导数的互逆的关系,会求函数的不定积分;6)使学生理解定积分的概念,了解定积分的几何意义,会求函数的定积分,能利用微元法的思想解决相关的几何问题和威力问题;7)使学生了解微分方程的基本概念,认识微分方程的几种类型,会求几类微分方程的解;8)使学生了解数项级数的相关概念,会判别数项级数的敛散性;9)使学生了解幂级数和傅里叶级数的概念,会求幂级数的收敛半径和收敛域,能利用公式将函数展开为幂级数,会将非正弦的周期函数展开为傅里叶级数;10)使学生理解拉普拉斯变换和逆变换的概念,知道常见函数的拉普拉斯变换,了解用拉普拉斯变换和逆变换求常系数线性微分方程的解的方法.(二)能力目标1)能利用复数表示正弦交流电;2)能根据实际问题建立函数模型,熟悉电类专业中常见的函数;3)能利用极限的思想分析简单问题;4)能利用连续的描述性定义分析生活中的某些现象;5)能利用导数描述电学中的电流、电功率等概念;6)能利用定积分的思想求解平面图形的面积和旋转体的体积,能解决简单的变力做功问题;7)能利用微分方程分析RLC和LC电路问题;8)能利用傅里叶级数对非正弦周期信号进行谐波分析;9)能利用拉氏变换分析电路中的暂态特性;(三)素质目标1)开拓学生的逻辑思维和创新思维,培养学生求真务实,缜密严谨的科学态度;2)培养学生良好的学习习惯和方法;3)培养学生的自我管理、表达沟通、团队合作、信息处理、数据处理等核心能力,以适应未来职业发展的需求;(三)课程内容体系(一)基础模块(学时:76 )(二)应用模块(学时: 42 )(四)实施建议1.教材及参考资料选用(1)教材选用及编写教材选用由庄小红主编,北京交通大学出版社出版的《高等数学》(电类),本教材为全国高职高专教育精品规划教材,内容结合电类专业需求,突出培养电类专业人才的能力,以注重数学的概念、思想和方法,淡化理论性推导和证明,强化应用为重点,充分体现“以应用为目的,以必需够用为度”的原则。

《高等数学》课程标准

《高等数学》课程标准

《高等数学》课程标准第一部分课程概述一、课程性质和作用高等数学是高职高专各专业重要的基础课程,其教学内容与后继专业课教学内容有着紧密的联系,它影响到学生后继专业课程的学习,影响到学生专业素质的提高。

它具有综合性高、逻辑性强和应用性广等特点,对于理解专业知识、培养思维能力有着十分重要的意义,是学生全面发展和终身发展的基础。

通过本课程的教学,首先让学生掌握高等数学的基本理论、技巧和思想方法,为后设专业课程提供必要的数学基础知识和科学的思想方法。

其次,逐步培养了学生具有一定的抽象概括问题能力,一定的逻辑推理能力,比较熟练的运算能力,综合分析并解决实际问题的能力等。

最后还充分调动学生已有的数学知识为专业目标服务,培养学生运用数学知识分析处理实际专业问题的数学应用能力和综合素质,以满足后继专业课程对数学知识需要,培养出能够满足工作需要的,具有良好综合素质的应用型人才。

二、课程基本理念高等数学作为高职高专各专业公共基础课,在课程设计中,我们对照教育部最新制定的《高职高专教育高等数学课程教学基本要求》,致力于实现高职高专院校的培养目标,着眼于学生的整体素质的提高,促进学生全面、持续、和谐发展。

课程内容不仅反映出专业的需要、数学学科的特征,同时符合学生的认知规律;不仅包括数学的结论,而且包括数学结论的形成过程和数学思想方法。

同时,课程设计努力满足学生对未来的学习、工作和生活的需要,使学生通过本课程的学习,在抽象思维、推理能力、应用意识、情感、态度与价值观等诸多方面均有大的发展。

三、课程标准设计思路及依据(一)教学内容《标准》安排了《一元函数微积分》的基本内容。

课程内容的学习,强调学生的数学学习活动,发展学生的应用意识。

(二)目标根据教育部制定的《高职高专教育高等数学课程基本要求》和《高职高专教育人才培养目标及规格》,《标准》明确了高等数学课程的总目标,其子目标从知识、能力、情感等三个方面作出了进一步阐述。

(三)实施建议《标准》针对教学、评价、教材编写、教案编写、课程资源的利用与开发提出了建议,以保证《标准》的顺利实施。

2024年高等数学(高职)教案

2024年高等数学(高职)教案

空间直角坐标系和向量概念
01
介绍右手坐标系和左手坐标系的区别和应用
02
向量的概念和性质
定义向量及其表示方法
03
空间直角坐标系和向量概念
阐述向量的模、方向和单位向量的概 念
介绍向量的相等、共线和垂直等性质
向量运算和向量场初步
向量的线性运算
1
向量的加法运算及其性质
2
向量的数乘运算及其性质
3
向量运算和向量场初步
平面和直线方程及其性质
01
平面的方程和性质
02
平面的点法式方程和一般式方程
03
平面与坐标轴的交点和截距
平面和直线方程及其性质
01
两平面的夹角和点到平面的距离公式
02
直线的方程和性质
03 直线的点向式方程、参数式方程和一般式方程
平面和直线方程及其性质
直线与坐标轴的交点和截距
两直线的夹角、直线到直线的距离公式以及点到直线的距离公式
04
积分学
不定积分概念及计算方法
不定积分的定义与性质
通过实例引入不定积分的概念,阐述 其性质,如线性性、可加性等。
基本积分公式与法则
介绍基本的不定积分公式和法则,包 括幂函数、三角函数、指数函数等的 积分方法。
换元积分法
通过变量代换简化被积函数,从而求 出原函数的方法。
分部积分法
将复杂函数拆分为简单函数进行积分 的方法。
高等数学(高职)教案

CONTENCT

• 课程介绍与教学目标 • 函数、极限与连续 • 导数与微分 • 积分学 • 微分方程初步 • 无穷级数初步 • 空间解析几何与向量代数 • 多元函数微积分学初步
01

高职院校高等数学课程标准框架研制

高职院校高等数学课程标准框架研制

高职院校高等数学课程标准框架研制高职院校高等数学课程是一门基础课程,是为各专业同学打好数学基础,为日后专业理论和实践的学习服务的。

因此,高职院校高等数学课程的教学质量直接影响着学生的专业水平和就业竞争力。

为推动高等数学课程的教学质量不断提高,需要制定符合高职院校特点的高等数学课程标准框架。

一、课程的基本思想与目标1.1 基本思想高职院校高等数学课程是一门理论性较强的基础性课程,必须突出基本的数学思想,培养学生以数学的本质、方法和应用为出发点,从事具体问题的抽象、全面的分析和解决。

因此,在教学过程中要突出贯通思想,强调数学与现代科技应用之间的联系。

1.2 课程目标本课程的目标是培养学生具备以下素质:(1)掌握基本的数学知识、数学思想和数学方法,修炼数学思维,具有初步的解决数学问题的能力。

(2)有一定的数学素养,能够在数学学科中读懂和撰写较为简单的数学论述和证明。

(3)能够运用数学知识解决与专业相关的问题,能够理解和应用现代科技中常用的数学模型和方法。

(4)具有团队协作精神和创新精神。

二、课程内容2.1 线性代数(1)线性方程组和矩阵(2)矩阵运算和矩阵的逆(3)向量和向量空间(4)线性变换2.2 微积分(1)极限与连续(2)导数和微分(3)函数的应用(4)积分及其应用(5)微分方程2.3 概率论与数理统计(1)概率与随机变量(2)概率分布(3)多维随机变量与联合分布(4)数理统计基础(5)参数估计三、课程教学要求教师要具备扎实的数学功底和科学的教育理念,教学应注重贯通思想、启发学生,激发学生兴趣,能够自主学习和掌握知识。

学生应注重理解和运用,在课内调动学习积极性,在课外及时完成作业和复习任务,积极参加讨论和合作学习。

3.2 教学方法(1)教师要设计理论与实践相结合、启发性、互联互动的教学内容和形式,采用案例分析、计算练习、探究性学习等教学策略,让学生自我探索发现,理清知识框架。

(2)在课外自学方面,应在每个阶段设定适当的学习任务,要求学生在开放性环境中自学、实践、探索,积极参与讨论、汇报。

《高等数学2》课程标准

《高等数学2》课程标准

《高等数学2》课程标准课程名称:高等数学2 课程类别:公共基础课课程编码:210231402 学分:4适用专业(群):生物制药(3+2)学时:60编写执笔人:编写日期:2023年6月专业(群)建设委员会审定(负责人签字):审定日期:2023年 6 月一、前言(一)课程性质《高等数学》是高等职业技术教育中的一门必修公共基础课程,既是工具课也是通识素养课。

一方面为学生后续专业课的学习和职业长远发展奠定必要的数学基础知识,另一方面有助于学生了解数学在推动人类社会和其它学科发展中的重要作用,提升学生人文素养。

(二)课程定位本课程在生物制药课程体系中居于基础服务性的地位,主要为后续各专业课程的教学和学生进行终身学习提供必要的数理基础、数理思维和能力素养。

通过本课程的学习使学生掌握必须够用的数理理论、知识、方法以及培养学生的逻辑思维能力、科学理论理解能力、量化解决相关专业问题的能力,对学生数学文化素养的提升、科学思维的形成、创新能力的培养以及可持续发展都具有重要意义。

前导课程《高等数学1》后续课程专业课程(三)课程设计理念与思路1.课程设计理念本课程以“拓宽文化基础、增强能力支撑、提供专业服务”为指导思想,坚持“以应用为目的,以必须够用为度”的原则,树立“以学生为中心,教师为主导”的教学理念。

2.课程设计思路结合专业需要,依据教材内容和高等数学知识体系设计了“不定积分,定积分,定积分的应用,常微分方程”四个项目,以任务驱动的方法发挥学生的自主性,教师再适当进行引导、补充和修正,实现在做中教,在做中学。

教学中要求降低理论推导,承接数学思想和方法,加强基本概念和基本方法的训练,不追求繁琐的计算和变换技巧。

3.课程思政设计思路以教育部2020年5月《高等学校课程思政建设指导纲要》为指导,深入挖掘数学课程中蕴含的思想政治教育资源,让学生通过学习,掌握事物发展规律,通晓天下道理,丰富学识,增长见识,塑造品格。

培养德智体美劳全面发展的社会主义建设者和接班人。

《高等数学》课程标准

《高等数学》课程标准

《高等数学》课程标准课程名称:《高等数学》课程分类:公共基础课建议学时:64(理论课学时数:58学时,实践课学时数:6学时)学分:3.5学分适应对象:电子与计算机类专业、机电与汽车类专业、经济管理类专业一、总论(一)课程定位1.课程性质《高等数学》课程是高职高专一门重要的公共基础课程。

本课程是在各相关专业人才培养目标确定的基础上,根据“必须、够用”原则及各专业对各种数理理论、知识、方法以及量化思维需求的基础上设置的。

2.课程价值和功能本课程的开设旨在培养和提升各专业学生进行专业学习和终身学习所必须的数理基础和数理思维。

通过本课程的学习,使学生初步掌握必须、够用的数理理论、知识、方法以及培养学生的逻辑思维能力、科学理论理解能力、量化解决相关专业问题能力和继续深造的学习与自主学习能力等。

本课程在各专业的课程体系中居于基础服务性的地位,主要为后续的各专业课程教学提供必要的数理准备,其所服务的专业、课程如下图所示:(二)改革理念1.基本理念本课程以“必须、够用”为改革基本理念,注重让学生学习掌握必要的数理知识和数理方法,培养量化的分析问题和解决问题的能力。

2.改革重点本课程的改革重点主要有三个:各专业教学内容的遴选、教学模式和教学方法、适量的课程实训;3.预期目的初步打算经过大约一年的课程建设和课程改革,使本课程的教学内容能大体符合各专业人才培养的要求,并能摸索实践出符合我校实际的教学模式和教学方法,最后能增加适量的课程实训,以提高学生量化的分析问题和解决问题的能力。

二、课程目标(一)总目标1.让学生掌握微积分的基本知识和基本运算技能,为各专业的后继课程学习提供必要的工具;2.让学生初步掌握函数思想、极限思想、微分思想和定积分思想等数学思想;3.初步培养学生量化分析问题和量化解决问题的能力;(二)分目标1.数理知识:函数、极限、导数、微分、不定积分、定积分、常微分方程初步、数学软件;2.应用能力:极限应用、导数与微分应用、积分应用;3.量化分析与解决问题能力:数学建模初步;三、教学内容、学习要求及建议学时本课程总学时为64,每周4课时,具体教学内容、学习要求和学时安排如下:四、实施建议(一)教与学1.教学方法本课程的教法多种多样,但教无定法,主要有以下几种方法:讲授法讲练法、启发法、问题引导教学法、以练测赛促学法等。

高等数学课程标准1

高等数学课程标准1

精品文档《高等数学》课程标准课程编号:0610005课程名称:高等数学学时:64学时(含实践性教学)适用专业:电子与电气工程系各专业一、课程描述(一)课程性质《高等数学》是高职工科类、文科类、医技类部分专业学生的一门必修课,是服务于各专业的一门重要基础课,是培养学生应用数学知识解决实际问题的能力的有力工具。

通过本课程的学习使学生了解微积分的背景思想,较系统地掌握高等数学的基础知识、必需的基本理论和常用的运算技能,了解基本的数学建模方法。

为学生学习后继课程、专业课程和分析解决实际问题奠定基础。

(二)教学目标与要求本课程目标分为:知识教学目标(极限与连续、一元函数微分学、一元函数积分学、专业应用方面的基础知识、数学建模的初步知识、数学软件知识);能力培养目标(逻辑推理能力、基本运算能力、自学能力、数学建模的初步能力、数学软件运用能力,应用数学知识解决实际问题的能力);素质培养目标(树立辩证唯物主义世界观、培养学生良好的学习习惯、坚强的意志品格、严谨思维、求实的作风、勇.于探索、敢于创新的思想意识和良好的团队合作精神。

)(三)重点和难点重点:使学生掌握一元函数积分这部分教学内容的基本概念、基本定理、基本结论,在此基础上培养学生的应用意识,使学生明确数学知识来源于实践又反作用于实践,体会数学理性逻辑之美,使学生树立辩证唯物主义世界观。

难点:如何让学生转变观念,正确认识《高等数学》这门课程,让绝大部分同学对该课程感兴趣,从而发挥《高等数学》这门课程的基础与服务作用就成了我们的教学难点。

(四)与其他课程的关系高等数学将为今后学习专业基础课以及相关的专业课程打下必要的数学基础,为这些课程的提供必需的数学概念、理论、方法、运算技能和分析问题解决问题的能力素质。

基于职业教育的特点,以及为适应迅猛的社会经济发展,为公司企业输送相应层次的技术人才,注重理论联系实际,强调对学生基本运算能力和分析问题、解决问题能力的培养,以努力提高学生的数学修养和素质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高职院高等数学课程标准
通过本课程的研究,培养学生的数学素养和自主研究能力,提高学生的综合素质,包括创新精神、问题解决能力、团队协作能力、实事求是、勇于攻克难题等。

同时,注重培养学生的社会责任感和适应社会变革发展的能力,使学生成为具有时代意识和国际视野的复合型人才。

三、课程内容
本课程的内容主要包括函数极限和连续、导数与微分、导数应用、不定积分与定积分、偏导数、常微分方程、矩阵等内容。

在教学过程中,注重理论与实践相结合,通过大量的例题、题和实际应用,帮助学生深入理解数学知识的本质和应用方法,提高学生的数学思维和解决实际问题的能力。

四、教学方法
本课程采用多种教学方法,包括讲授、实践、案例分析、小组讨论等。

在讲授过程中,注重启发式教学和互动式教学,引导学生积极思考和参与课堂讨论,提高学生的研究兴趣和参与度。

在实践环节中,注重培养学生的实际操作能力和解决实际问题的能力,通过实际案例和模拟实验,帮助学生将理论知识与实际应用相结合。

五、评价方式
本课程的评价方式采用多种形式,包括平时成绩、期中考试、期末考试、实验报告等。

其中,平时成绩主要包括作业完成情况、课堂表现、小组讨论等方面的评价,期中、期末考试主要考察学生对所学知识的掌握程度,实验报告主要考察学生的实际操作能力和解决实际问题的能力。

通过多种评价方式,全面评价学生的研究成果,帮助学生发现自身不足,提高研究效果。

边际分析和弹性分析是经济学中重要的概念,研究这些内容可以帮助我们更好地了解经济现象。

在数学实验三中,我们将研究如何用MATLAB求函数的极限,这对于数学建模和计算机应用都非常有用。

不定积分是微积分中的一个重要概念,我们需要掌握不定积分的概念、性质、基本公式和运算法则。

在不定积分的计算方法中,我们需要掌握直接积分法,理解第一类换元积分法,了解第二类换元积分法,以及理解分部积分法。

在数学实验四中,我们将研究如何用MATLAB求不定积分,这对于数学建模和计算机应用都非常有用。

定积分也是微积分中的一个重要概念,我们需要理解定积分的概念、性质、几何意义和微积分基本公式。

在定积分的计算方法中,我们需要掌握定积分换元积分法。

同时,我们还需要了解无穷区间上的反常积分和无界函数的反常积分。

在教学中,我们需要注意与普高和中职数学内容的衔接,利用问题驱动或案例分析引入导数和微分概念。

通过导数和微分教学,培养学生利用导数解决实际中的变化率、速度、加速度等问题,利用微分解决近似值计算等问题的能力,并培养学生的计算技能。

重点是导数、高阶导数及微分的定义、导数和微分的基本公式和运算法则。

在教学定积分时,我们要结合几何直观引进中值定理、函数的单调性、函数的极值、最值等知识,结合具本例子或实例导出洛必达法则、曲线的凹凸性与拐点、边际与弹性等知识。

通过本单元的研究,培养学生对图形的观察和分析能力,并能应用所学的数学知识分析与解决实际问题的能力。

重点是微分中值定理,两种基本类型极限的求法,函数单调性和曲线凹凸性的判定,函数极值的求法,最大值和最小值的应用。

在不定积分和定积分的教学中,我们需要通过具体引例导出不定积分、换元法与分部法等知识。

通过导数与不定积分的关系训练,培养学生数学思维能力,通过求函数的
不定积分训练,培养学生的计算技能。

通过实际问题导出定积分概念,利用速度与路程的关系导出微积分基本公式,通过简单引例导出反常积分,利用微元法导出体积的计算公式。

通过本单元教学,培养学生的观察能力、分析能力与解决实际问题能力、计算技能和计算工具使用技能。

重点是不定积分的概念、基本公式和运算法则、第一类换元积分法和分部积分法,以及定积分换元积分法和无穷区间上的反常积分。

教学考核建议:
1.教学评价的目的是全面考察学生的研究状况,激励学生
的研究热情,促进学生的全面发展。

2.评价原则应该是对研究过程的评价与对研究结果的评价
相统一,教师评价与学生自我评价和相互评价相统一,对学生智力因素与非智力因素评价相统一。

3.在评价学生的知识和技能时,应遵循《课程标准》的基
本理念,以课程标准制订的知识与技能目标为标准,考察学生对基础知识和基本技能的理解和掌握程度。

4.在评价学生的研究过程和研究方法时,应注重学生的研究规律和研究内容的理解程度,同时也要考虑学生的个性特征和研究风格。

5.在评价学生的知识和技能的运用和应用能力时,应注重学生的实际问题解决能力,培养学生的应用型思维。

6.在评价学生的创新意识和创造性思维的能力时,应注重培养学生的创新意识和创造性思维,推动这方面能力的发展和提高。

7.在评价学生的科学素质时,应注重培养学生的求知欲、好奇心,增强团队协作精神,形成为人类造福推动人类文明进步的崇高理想。

8.教学手段可以采用多媒体、数学软件等,实实训建议可以包括数学建模与数学软件实训。

9.教学方法可以鼓励学生自学、自练、自测为主,带问题听课为辅,同时引导帮助学生补缺补漏,鼓励其尽心尽力。

相关文档
最新文档