铝合金电阻点焊所存在的主要问题
铝合金点焊接头疲劳性能研究及寿命分析

2021年第2期2021No.2汽车工艺与材料Automobile Technology &Material铝合金点焊接头疲劳性能研究及寿命分析寇宏滨王得天(泛亚汽车技术中心有限公司,上海201208)摘要:为了支持多环形纹路表面电极帽式铝合金点焊接头在车辆正向开发中的设计应用,设计并开展了一系列的铝合金点焊接头疲劳试验研究和疲劳寿命预测方法研究。
过程中获得了点焊接头的载荷-寿命对应关系,总结了铝合金点焊接头疲劳强度受载荷方向、母材强度及厚度等因素影响的普遍规律,分析了铝合金点焊接头的疲劳失效破坏模式,并提出了评价铝合金点焊接头疲劳寿命的S -N 曲线,可以有效指导铝合金点焊接头的抗疲劳设计开发工作。
关键词:铝合金点焊接头疲劳强度疲劳寿命预测中图分类号:TG405;U465.1文献标识码:BDOI:10.19710/ki.1003-8817.20200197Fatigue Performance Study &Life Analysis of Aluminum Alloy SpotWelded JointKou Hongbin,Wang Detian(Pan Asia Technical Automotive Center Co.,Ltd.,Shanghai 201208)Abstract :A series of physical durability tests and fatigue life prediction method studies are carried out,tosupport the design application of aluminum alloy spot-welded joint featuring multi-annular surface electrode cap in vehicle forward development.the corresponding relationship between load and fatigue life of spot welded joint is studied and abtained,the general rules are summarized to show the effect of base metal strength,base metal thickness and load direction on the fatigue strength of aluminum alloy spot-welded joint,the fatigue failure mode is analyzed.The S/N curves for evaluating the fatigue life of spot-welded joints are proposed,which can effectively guide the anti-fatigue design development of aluminum alloy spot-welded joint.Key words:Aluminum alloy spot weld,Fatigue strength,Fatigue life prediction作者简介:寇宏滨(1980—),男,高级工程师,硕士学位,研究方向为车辆疲劳强度,轿车底盘、门盖外饰等子系统结构优化设计。
汽车车身电阻点焊技术的研究与改进

汽车车身电阻点焊技术的研究与改进随着汽车工业的飞速发展和消费者对汽车质量的不断提高,汽车车身电阻点焊技术也日益受到关注。
汽车车身电阻点焊技术是汽车生产中不可或缺的一项重要技术,它直接关系到汽车的结构强度和安全性。
在汽车行业中,传统的车身电阻点焊技术已经得到广泛应用,但随着汽车轻量化和材料的不断更新换代,传统的焊接技术也需要不断进行研究和改进,以适应新的材料和工艺技术的需求。
一、传统车身电阻点焊技术存在的问题1. 车身焊接点强度不足:传统的车身电阻点焊技术在焊接过程中容易产生焊接温度不均匀,焊接点强度不够,这样就会影响整个车身的结构强度和安全性。
2. 能源消耗较大:传统的车身电阻点焊技术在焊接过程中需要大量的电能来加热焊接点,而且焊接速度较慢,导致能源消耗较大。
3. 焊接质量难以保证:由于传统的车身电阻点焊技术在焊接过程中受到工艺、设备和操作水平的限制,导致焊接质量难以保证。
4. 无法满足新材料的需求:随着汽车轻量化和新材料的不断出现,传统的车身电阻点焊技术已经无法满足新材料的需求,例如铝合金、镁合金等。
二、汽车车身电阻点焊技术的研究方向为了解决传统车身电阻点焊技术存在的问题,目前汽车车身电阻点焊技术的研究方向主要包括以下几个方面:1. 新型焊接材料的研究:针对汽车轻量化和新材料的需求,目前越来越多的新型焊接材料被研发出来,例如高强度钢、铝合金、镁合金等,这些新型焊接材料具有更好的焊接性能和耐腐蚀性能,可以满足不同材料的焊接需求。
2. 自动化焊接技术的研究:随着工业化进程的加快,自动化焊接技术在汽车生产中的应用越来越广泛。
自动化焊接技术可以实现焊接过程的自动化控制,提高焊接质量和效率。
3. 激光焊接技术的研究:激光焊接技术是一种高效、高精度的焊接技术,可以应用于汽车车身焊接中,能够实现对焊接点的精确控制,提高焊接质量和效率。
4. 电阻点焊参数优化研究:通过优化焊接参数,例如焊接电流、焊接时间、焊接压力等,可以实现焊接过程的稳定性和均匀性,提高焊接质量。
铁道车辆铝合金车体电阻点焊缺陷分析及预防措施

铁道车辆铝合金 车体 电阻点焊缺 陷分析及预 防措施
张铁浩 , 李振江
( 南 车青岛四方机车车辆股份有限公司, 山东 青 岛 2 6 6 1 1 1 )
收稿 日期 : 2 0 1 3 - 0 1 — 1 0
基金项 目: “ 十一 五” 国家科技支撑计划高速列车车体技术项 目( 编4  ̄ - : 2 0 0 9 B A G 1 2 A 0 4 - B 0 4 ) 作者简 介:  ̄ ( 1 9 7 7 -) , 男, 工程师 , 本科 , 主要从事动车组 、 地铁车辆制造工艺及新技术 开发工作 。
Q=I 2 R t ( 1 )
式中, Q为产 生 的热量 , J ;
, 为 焊接 电流 , A;
为 电极 间 电阻 , Q;
t 为焊 接 时 间 , s 。 在 忽 略 电极 自身 电阻 的情 况下 ,以双层 板 的工 件 点焊 为例 , 电阻 由 5部 分组 成 :
摘 要: 介 绍了电阻点焊的基本原理及铁 道车辆用 A5 0 8 3 、 A 6 N0 1 、 A 7 N0 1 等铝合金材料 的焊接 特性和点焊工艺。分析 了 气孔、 熔核偏移 、 熔核不足、 飞溅 、 电极 粘附、 表面 凹坑等常见焊接缺 陷产 生的原 因。针对 具体 情况 , 从控 制焊接 电流、 电 极形状 、 压力、 许 用间隙和焊前清理等方面 , 制定 了铝合金电 阻点焊缺陷的预防措施。
M I G焊 中常见的焊接缺陷 ,但在 电阻点焊试 验和生
铝及铝合金合金化学性质活泼 ,表面在 空气 中 产中几乎没有出现过裂纹 、 烧穿缺陷。本文主要针对 极易生成 氧化铝薄膜( A 1 2 0 3 ) , 这层氧化膜的熔 点达 铝合金 电阻点焊生产 中常见的气孔 、 熔核偏移 、 熔核 到2 0 5 0℃, 远远超过铝合金的熔点( 约6 6 0℃ ) 。氧 不足 、 飞溅 、 电极粘 附 、 表 面凹坑等缺 陷产生 的原 因 化膜会吸附水分 , 容易产生焊接气孔。铝合金导热系 进行分析 , 并提出解决措施 。 数 比热容比钢材约大 2 倍, 导热性 比钢约大 3 倍, 凝 3 . 1 气 孔 固收缩率大( 约6 %一 7 %) , 焊接残余应力大。 气孔是铝合金熔焊中最容易产生的空穴型缺陷, 铝 合金 车体 常用 材料 有 A 5 0 8 3 一 O板材 、 电阻点焊也不例外 。大量试验发现 , 铝合金点焊气孔 A 6 N O 1 一 T 5 和A 7 N 0 1 一 T 5 型材等 , 其主要成分见表 l 。 几乎全部发生在工件界 面附近 , 熔核上部 、 下部及 焊 A 5 0 8 3 一 O为 A l — M g 系合金 , 为非热处理强化铝合金 , 点表面一般没有气孔 , 这与电弧焊气孔多发生在焊缝 焊接性好 。A 6 N 0 1 一 T 5 为A l — S i — M g 系的热处理强化 上 部及 表 面有 明显 的 区别 。 图 2为 A 6 N 0 1 + A 5 0 8 3材 合 金 , 电 阻 点 焊 的 焊 接 性 较 差 。 A7 N 0 1 一 T 5为 料在氧化膜未清理干净的情况下点焊产生 的气孔。 “ A l — Z n — M g ” 系的热处理强化合金 , 电阻点焊的焊接
铝合金电阻点焊技术研究

车身制造工程BODY ENGINEERING46 ・2021年第03期铝合金电阻点焊技术研究基于轻量化的诉求,蔚来ES8车身铝材的使用率高达95%以上,这是全球量产的全铝车身中最高比例的铝材应用量。
同时为了确保车身强度刚性,ES8车身综合使用了3系、5系、6系和7系铝材成分的板材、挤出型材、高精密压铸件以及碳纤维复合材料,针对车身不同部位的强度和外观要求,突破传统钢车身单一材料的焊接工艺,实现了异性异种材料的连接。
ES8车身的连接工艺以结构胶粘接为核心,以SPR 自冲铆接和FDS 热熔直钻两种冷连接为主,辅助以铝点焊、激光焊和CMT 等热连接工艺。
铝点焊工艺规划1.铝点焊概念及特点铝点焊是电阻焊的一种,利用电流通过焊件及附近区域产生的电阻热作为热源将工件局部加热,同时加压使工件形成金属结合的一种方法。
由于铝合金材料有导热性好、导电率高、易与铜发生合金反应等特点,电阻点焊在铝合金材料结构件的连接中遇到能耗大、电极易失效、点焊质量不稳定等困难。
钢铝性能对比见表1。
基于车身轻量化连接技术的发展,本文重点介绍铝点焊工艺规划、质量评价及优化。
其中,工艺规划主要包含焊枪选择、电极帽选择和工装要求等。
质量评价及优化包含铝点焊检测标准及几种常见质量缺陷处理方法。
□ 安徽江淮集团汽车股份有限公司 吴卫枫 鲁厚国鉴于铝合金与碳钢性能的差异,铝点焊的主要特点如下:①铝材的电阻率是钢材的1/3,焊接相同厚度的铝材需要3~5倍的电流,铝合金分流损失比钢材分流严重;②铝合金具有高导热性(是钢材的4~5倍),焊接过程中热损失率较高,铝材焊接需要大电流和短时间;③铝合金焊核形成温度范围窄,铝点焊需要短焊接时间和快速的电流上升时间;④铝合金热膨胀系数高,在脆性温度区间内易产生热裂纹,铝点焊需要大的焊接压力和大的平面电极来控制焊接变形;⑤铝合金易氧化及合金化,氧化层焊接过程中易产生焊点气孔、泡群缺陷,铝点焊中铝、铜易生成合金,电极帽腐蚀快,需要频繁修磨,保持电极清洁,确保点焊质量;⑥连接强度相对低,常与结构胶配合使用;⑦不能连接异种材料,尤其是钢和铝;⑧无法做类似钢点焊的凿检,目视检查为主。
电阻焊

电阻焊电阻焊是工件组合后通过电极施加压力,利用电流通过接头的接触面及邻近区域产生的电阻热进行焊接的方法,` 电阻焊的种类很多,按接头形式可分为搭接电阻焊和对接电阻焊两种。
结合工艺方法,搭接电阻焊又可分为点焊、缝焊和凸焊三种,对接电阻焊一般有电阻对焊和闪光对焊两种在点焊过程中,影响焊点质量的因素有:焊接电流、焊接压力、电极的端面形状、穿过电极的铁磁性物质及分流等。
特别在阻焊设备较多的焊接车间,同时工作的焊机相互感应,对电网产生影响,导致焊接质量的稳定性和一致性较差。
因此,电阻点焊控制技术显得尤为重要。
目前,控制模式已由单模式控制发展为多模式控制,调节参量已由初始的单变量调节发展为多变量调节,在焊接过程中可同时对焊接电流、焊接时间和焊接压力进行调节。
特点:(1)利用电流通过工件焊接处的电阻而产生的热量对工件加热。
即热量不是来源于工件之外,而是内部热源。
(2)整个焊接过程都是在压力作用校完成的,即必须施加压力。
(3)在焊接处不需加任何填充材料,也不需任何保护剂。
形成电阻焊接头的基本条件只有电极压力和焊接电流。
1.点焊点焊是利用在焊件间形成的一个个焊点来联接焊件的。
两焊件被压紧于两柱形电极之间并通以强大的电流,利用电阻热将工件焊接区加热到形成应有尺寸的熔化核心为止。
然后切断电流,熔核在压力作用下冷却结晶形成焊点。
点焊在车身制造中应用最广。
点焊的形式很多,但按供电方向来分只有单面点焊和双面点焊两种。
在这两种点焊中按同时完成的焊点数又可分为单点、双点和多点焊。
A.焊点质量的一般要求点焊结构靠单个或若干个合格的焊点实现接头的连接,接头质量的好坏完全取决于焊点质量及点距。
焊点质量除了取决于焊点尺寸外,还与焊点表面与内部质量有关。
焊点外观上要求表面压坑浅、平滑呈均匀过渡,无明显凸肩或局部挤压的表面鼓起;外表面没有环状或颈项裂纹,也无熔化、烧伤或粘附的铜合金。
从内部看,焊点形状应规则、均匀,无超标的裂纹和缩孔等内部缺陷及热影响区金属的组织与力学性能有无发生明显的变化等。
6061铝合金低功率电阻点焊工艺优化

6061铝合金低功率电阻点焊工艺优化【摘要】本文旨在探讨6061铝合金低功率电阻点焊工艺优化的相关问题。
在首先介绍了背景知识,指出6061铝合金在工业生产中的重要性,随后阐述了研究意义,即通过优化电阻点焊工艺参数,提高焊接质量和效率。
在重点分析了6061铝合金电阻点焊工艺参数的优化、影响因素的分析、优化方法的探讨以及试验设计与结果分析等内容。
在总结了文章的研究成果,展望了未来研究方向,指出进一步优化工艺将有助于提升焊接品质和效率。
通过本文的研究,可以为相关领域的工程技术人员提供一定的参考和指导,促进6061铝合金低功率电阻点焊工艺的进一步发展和提升。
【关键词】6061铝合金、低功率电阻点焊、工艺优化、影响因素、优化方法、试验设计、结果分析、优化效果评估、结论总结、未来研究方向1. 引言1.1 背景介绍6061铝合金是一种常用的铝合金材料,具有优良的机械性能和耐腐蚀性能。
在工业生产中,6061铝合金常常用于制造航空航天器件、汽车零部件、船舶结构等领域。
而电阻点焊是一种常见的连接技术,用于将金属部件焊接在一起。
由于6061铝合金的导热性较好,导致在电阻点焊过程中很容易出现热变形、焊接裂纹等质量问题。
对6061铝合金低功率电阻点焊工艺进行优化研究,对于提高焊接质量、降低成本具有重要意义。
通过优化工艺参数,合理控制焊接过程中的温度分布和热影响区,可以有效减少焊接变形和裂纹的发生。
优化工艺还可以提高工件的焊接强度和耐磨性,延长其使用寿命。
本文旨在通过对6061铝合金低功率电阻点焊工艺进行优化研究,探讨影响因素及优化方法,设计试验方案并分析结果,评估工艺优化效果,为进一步提高焊接质量和效率提供参考依据。
希望通过本文的研究,能够为相关行业的工程技术人员提供有益的参考和借鉴。
1.2 研究意义6061铝合金是一种常用的工业材料,在许多领域都有广泛的应用。
而在电子制造领域,6061铝合金低功率电阻点焊工艺的优化对于提高焊接质量、降低生产成本具有重要意义。
电阻焊接技术存在的优缺点分析

电阻焊接技术存在的优缺点分析电阻焊是将被焊工件压紧于两电极之间,并通以电流,利用电流流经工件接触面及邻近区域产生的电阻热将其加热到熔化或塑性状态,使之形成金属结合的一种方法。
点焊时,工件只在有限的接触面上即所谓“点”上被焊接起来,并形成扁球形的熔核。
点焊又可分为单点焊和多点焊。
多点焊时,使用两对以上的电极,在同一工序内形成多个熔核。
缝焊类似点焊。
缝焊时,工件在两个旋转的盘状电极(滚盘)间通过后,形成一条焊点前后搭接的连续焊缝。
凸焊是点焊的一种变型。
在一个工件上有预制的凸点。
凸焊时,一次可在接头处形成一个或多个熔核。
对焊时,两工件端面相接触,经过电阻加热和加压后沿整个接触面被焊接起来。
电阻焊有下列优点:1)熔核形成时,始终被塑性环包围,熔化金属与空气隔绝,冶金过程简单。
2)加热时间短、热量集中、故热影响区小,变形与应力也小,通常在焊后不必安排校正和热处理工序。
3)不需要焊丝、焊条等填充金属,以及氧、乙炔、氩等焊接材料,焊接成本低。
4)操作简单,易于实现机械化和自动化,改善了劳动条件。
5)生产率高,且无噪声及有害气体,在大批量生产中,可以和其他制造工序一起编到组装线上。
但闪光对焊因有火花喷溅,需要隔离。
电阻焊缺点:1)目前还缺乏可靠的无损检测方法,焊接质量只能靠工艺试样和工件的破坏性试验来检查,以及靠各种监控技术来保证。
2)点、缝焊的搭接接头不仅增加了构件的重量,且因在两板间熔核周围形成夹角,致使接头的抗拉强度和疲劳强度较低。
3)设备功率大,机械化自动化程度较高,使设备成本较高、维修较困难,并且常用的大功率单相交流焊机不利于电网的正常运行。
随着航空航天、电子、汽车、家用电器等工业的发展,电阻焊起来越受到社会的重视,同时,对电阻焊的质量也提出了更高的要求。
可喜的是,我国微电子技术的发展和大功率可控硅、整流器的开发,给电阻焊技术的提高提供了条件。
目前我国已生产了性能优良的次级整流焊机。
由集成元件和微型计算机制成的控制箱已用于新焊机的配套和老焊机的改造。
6061铝合金低功率电阻点焊工艺优化

6061铝合金低功率电阻点焊工艺优化6061铝合金是一种常用的工业铝合金材料,具有良好的可加工性、耐腐蚀性和强度,因此在汽车制造、航空航天和电子设备等领域得到广泛应用。
而在电子设备中,通常需要进行点焊工艺来连接不同部件,而低功率电阻点焊工艺则是其中一种常见的焊接方法。
本文将对6061铝合金低功率电阻点焊工艺进行优化研究,以提高焊接质量和效率。
6061铝合金是一种经典的热处理铝合金,具有优良的加工性能和焊接性能。
而在低功率电阻点焊工艺中,焊接过程中主要依靠电流通过两个不同材料间的接触面产生的热量,将两个材料点焊在一起。
低功率电阻点焊的优点在于焊接过程中对材料的热影响小,可以减少焊接区域的变形和金属组织的变化。
由于焊接过程中产生的热量较小,也可以减少对工件表面的损伤,保持工件的表面质量。
在6061铝合金低功率电阻点焊工艺中,通常需要考虑的参数包括焊接电流、焊接时间、电极压力等。
而选取合适的焊接参数并对焊接工艺进行优化,可以显著提高焊接质量,降低焊接成本,提高焊接生产效率。
1. 确定合适的焊接参数在确定焊接参数时,可以通过实验方法进行辅助。
首先选择一组初步的焊接参数,然后进行一系列的焊接实验,观察焊接接头的质量、焊接强度和焊接表面的状态,从而确定最佳的焊接参数。
2. 优化电极设计电极在低功率电阻点焊工艺中起到了传递电流和施加压力的作用。
合适的电极设计可以对焊接工艺的质量起到显著的影响。
在6061铝合金低功率电阻点焊工艺中,通常可以选择适当形状和尺寸的电极头来适应不同的焊接需求。
对于需要在较小的区域进行焊接的工件,可以选择较小的电极头来实现焊接。
还可以选择合适的电极材料,通常选取导电性好、耐磨性强的材料作为电极材料,以提高焊接质量和电极的使用寿命。
3. 控制焊接环境焊接环境的控制对于6061铝合金低功率电阻点焊工艺也是至关重要的。
在焊接过程中,需要保持焊接区域的清洁,并且控制好焊接环境的温度和湿度。
保持焊接区域的清洁可以有效地避免焊接接头表面的氧化和杂质的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2铝合金电阻点焊所存在的主要问题
(1)喷溅与飞溅严重。
铝元素非常活泼,在铝合金材料表面非常容易形成氧化膜,这层氧化膜组织致密、熔点极高、导电性能极差。
这就使得接触面上的接触电阻比较大。
在硬规范焊接条件下,接触面上产生较多的热量。
另一方面,铝合金材料熔点低,加热熔化时的塑性温度区间窄,所以很容易在工件间接触面上造成喷溅,在电极与工件间造成飞溅,喷溅和飞溅的产生会带走部分热量和熔化金属,严重影响了熔核直径的大小,对焊点质量极为不利。
(2)焊点表面质量差。
铝与铜合金容易形成低熔点(547℃)共晶物,并且这种低熔
点共晶物的电阻率比较大,接触面上较大的产热量使电极与工件接触面上产生局部熔化,并发生较为剧烈的共晶反应,以致出现电极与工件的粘连,恶化了焊点的表面质量。
电极与工件的粘连及飞溅严重破坏了电极表面的连续性,进而恶化了后续焊点焊接时电极与工件间的接触状态,使电极与工件间的接触由起始宏观上的连续接触变为不连续。
在硬规范条件下,这种宏观上的不连续接触加剧了飞溅、局部熔化及粘连的产生,对焊点的表面质量更为不利。
(3)熔核尺寸波动大。
电极与工件接触面上的局部熔化、飞溅及电极与工件的粘连,破坏了电极表面的连续性。
在连续点焊过程中电极表面的不连续性具有较强的随机性,这使得电极与工件间及工件间的接触状态很不稳定。
另外,受工件表面状态、电极压力、焊接电流等因素的影响,连续点焊中熔核直径波动较大。
(4)熔核内部易产生缺陷。
与弧焊相比,铝合金在点焊时金属的熔化量较少,其2A16
铝合金电阻点焊焊点表面缺陷分析与工艺优化导热系数又比较大,所以熔核的冷却速度非常快。
另外,铝合金是非导磁材料,液态熔核区的流动速度非常小,熔核在凝固时极易形成缩孔、缩松和气孔。
虽然这些缺陷对接头强度影响不大,但对接头的疲劳性能却有显著影响。
(5)结合线伸入。
结合线伸入是点焊和缝焊某些高温合金和铝合金时特有的
缺陷,是指结合面伸入到熔核中的部分。
对于铝合金,主要是工件表面有强氧化物,焊接过程中通电时间短暂,导致结合面熔合不完整。
结合线伸入减小了熔核的有效直径,会降低强度,当伸入前端有裂纹时还会影响接头的动载强度和高温持久强度。
(6)熔核偏移。
熔核偏移在铝合金电阻点焊中也经常出现。
不同厚度和不同材料点焊时,熔核不以贴合面为对称,而向厚板或导电、导热性差的焊件中偏移,其结果使其在贴合面上的尺寸小于该熔核直径。
同时,也使其在薄件或导电、导热性好的焊件中焊透率小于规定数值,这均使焊点承载能力降低。
(7)电极寿命低。
由于电极与工件间的接触电阻较大,铝合金的热导率高,而铝合金点焊又是采用硬规范进行焊接,电极与工件间接触面上的温度较高,铝与铜之间存在着强烈的合金化倾向,因此铝合金点焊时铜合金电极的烧损非常严重。
铜铝合金化反应生成合金层的主要成分为CuA金属间化合物,其电阻率为铜的5倍左右。
在后续焊点的焊接过程中,合金层的存在,增大了电极与工件间的接触电阻,也增加了电极与工件间的产热量,电极表面不连续程度的增加也加剧了电极与工件间局部熔化和飞溅的产生,同时也加剧了铜铝合金化反应的程度。
上述因素使得铝合金点焊时电极的烧损速度增加,使用寿命缩短。
由于电极与工件间的接触电阻较大,铝合金工件的热导率也较大,而铝合金点焊又是采用硬规范进行焊接,所以电极与工件间接触面上的温度较高。
由于铝与铜之间存在着强烈的合金化倾向,因此铝合金点焊时铜合金电极的烧损非常严重。
铜铝合金化反应生成合金层的主要成分为CuA1金属间化合物,其电阻率为铜的5倍左右。
由于合金层粘附在电极表面,在后续焊点的焊接过程中,合金层的存在增大了电极与工件间的接触电阻,也增加了电极与工件间的产热量。
在连续点焊过程中,电极表面小连续程度的增加也加剧了电极与工件间局部熔化和飞溅的产生,同时也加剧了铜铝合金化反应的程度。
上述因素使得铝合金点焊时电极的烧损速度大为增加,使用寿命缩短。
2A16铝合金电阻点焊焊点表面缺陷分析与工艺优化
铝合金的电阻率低,其阻温系数也比较小。
因为从室温到熔化温度电阻率的变化幅度仅为3倍左右,所以铝合金电阻点焊过程很难用焊接电参量的变化来描述,这给铝合金电阻点焊过程的闭环控制带来很大困难。
铝合金点焊的焊点质量不仅包括了熔核尺寸的波动,而且也包括飞溅和喷溅严重、焊点表面成形质量差及下件与电极易出现粘连等。
因此,铝合金点焊所面临的质量问题远比低碳钢复杂。
针对低碳钢点焊问题所提出的以保证熔核大小稳定为目标的各种控制方法并不适合于铝合金点焊,尤其是对工件电极的粘连问题和焊点表面成形质量差的问题更是无能为力。
能量是点焊过程的本质问题。
从理论上说,能量控制是点焊质量控制中的最为本质的方法。
能量控制的理论基础是点焊过程中的产热分析和能量分布分析,而点焊过程中的产热分析和能量分布分析是无法通过实验来进行的。
应该说,在目前能量控制的理论依据及如何实现能量控制还没得到很好的解决。