铝合金电阻点焊所存在的主要问题
铁道车辆铝合金车体电阻点焊缺陷分析及预防措施

铁道车辆铝合金 车体 电阻点焊缺 陷分析及预 防措施
张铁浩 , 李振江
( 南 车青岛四方机车车辆股份有限公司, 山东 青 岛 2 6 6 1 1 1 )
收稿 日期 : 2 0 1 3 - 0 1 — 1 0
基金项 目: “ 十一 五” 国家科技支撑计划高速列车车体技术项 目( 编4  ̄ - : 2 0 0 9 B A G 1 2 A 0 4 - B 0 4 ) 作者简 介:  ̄ ( 1 9 7 7 -) , 男, 工程师 , 本科 , 主要从事动车组 、 地铁车辆制造工艺及新技术 开发工作 。
Q=I 2 R t ( 1 )
式中, Q为产 生 的热量 , J ;
, 为 焊接 电流 , A;
为 电极 间 电阻 , Q;
t 为焊 接 时 间 , s 。 在 忽 略 电极 自身 电阻 的情 况下 ,以双层 板 的工 件 点焊 为例 , 电阻 由 5部 分组 成 :
摘 要: 介 绍了电阻点焊的基本原理及铁 道车辆用 A5 0 8 3 、 A 6 N0 1 、 A 7 N0 1 等铝合金材料 的焊接 特性和点焊工艺。分析 了 气孔、 熔核偏移 、 熔核不足、 飞溅 、 电极 粘附、 表面 凹坑等常见焊接缺 陷产 生的原 因。针对 具体 情况 , 从控 制焊接 电流、 电 极形状 、 压力、 许 用间隙和焊前清理等方面 , 制定 了铝合金电 阻点焊缺陷的预防措施。
M I G焊 中常见的焊接缺陷 ,但在 电阻点焊试 验和生
铝及铝合金合金化学性质活泼 ,表面在 空气 中 产中几乎没有出现过裂纹 、 烧穿缺陷。本文主要针对 极易生成 氧化铝薄膜( A 1 2 0 3 ) , 这层氧化膜的熔 点达 铝合金 电阻点焊生产 中常见的气孔 、 熔核偏移 、 熔核 到2 0 5 0℃, 远远超过铝合金的熔点( 约6 6 0℃ ) 。氧 不足 、 飞溅 、 电极粘 附 、 表 面凹坑等缺 陷产生 的原 因 化膜会吸附水分 , 容易产生焊接气孔。铝合金导热系 进行分析 , 并提出解决措施 。 数 比热容比钢材约大 2 倍, 导热性 比钢约大 3 倍, 凝 3 . 1 气 孔 固收缩率大( 约6 %一 7 %) , 焊接残余应力大。 气孔是铝合金熔焊中最容易产生的空穴型缺陷, 铝 合金 车体 常用 材料 有 A 5 0 8 3 一 O板材 、 电阻点焊也不例外 。大量试验发现 , 铝合金点焊气孔 A 6 N O 1 一 T 5 和A 7 N 0 1 一 T 5 型材等 , 其主要成分见表 l 。 几乎全部发生在工件界 面附近 , 熔核上部 、 下部及 焊 A 5 0 8 3 一 O为 A l — M g 系合金 , 为非热处理强化铝合金 , 点表面一般没有气孔 , 这与电弧焊气孔多发生在焊缝 焊接性好 。A 6 N 0 1 一 T 5 为A l — S i — M g 系的热处理强化 上 部及 表 面有 明显 的 区别 。 图 2为 A 6 N 0 1 + A 5 0 8 3材 合 金 , 电 阻 点 焊 的 焊 接 性 较 差 。 A7 N 0 1 一 T 5为 料在氧化膜未清理干净的情况下点焊产生 的气孔。 “ A l — Z n — M g ” 系的热处理强化合金 , 电阻点焊的焊接
电阻焊常见问题解决方法

电阻焊常见问题解决方法一、车身点粘电极及炸枪1、前言粘电极是点焊时电极与零件形成非正常焊接而产生的电极与零件的粘连现象。
严重时造成电极被拔出,冷却水外流使零件生锈。
炸枪是点焊时电极与零件之间产生瞬时强电弧并发出爆炸声的异常现象。
这种现象造成电极与零件的烧损,造成浪费。
2.1粘电极的原因(1)两电极工作面不平行。
此情况造成电极工作面与零件局部接触,电极与零件的接触电阻增大,这会使焊接回路的电流有所下降。
但是电流集中于局部接触点,使接触点的电流密度大于正常焊接时电极工作面的电流密度,造成接触点的温度升高到电极与零件的可焊接温度,形成电极与零件的熔合。
(2)电极工作面粗糙。
电极工作面与零件不能完全贴合,只有凸出的一些部位与零件接触。
此情况同样会造成(1)中的情况。
(3)电极压力不足。
接触电阻与压力成反比。
电极压力不足造成电极与零件之间接触电阻增大,接触部位电阻热增加,使电极与零件接触面的温度升高到可焊温度,形成电极与零件熔合连接。
(4)焊枪冷却水出口的水管接反或冷却水循环受阻,电极温度升高,在连续点焊时可造成电极与零件的熔合连接。
2.2粘电极的解决方法(1)修锉电极头,使两电极的工作面平行、表面无粗糙缺陷。
将焊接程序选择为修磨程序(无电流输出),通过空打焊枪来观察两电极工作面是否平行。
(2)在修磨状态下,将焊枪空打5~10次。
目的为锻压两电极的工作面,使其在规定的电极头直径范围内增大接触面积,同时提高表面硬度。
(3)用氧乙炔火焰加热电极的工作面,使电极工作面形成氧化层(氧化铜),氧化铜的热稳定性好,熔点可达1300ºC。
可以提高电极工作面的熔点,同时破坏电极与零件之间的焊接性。
(4)在电极工作面涂以钳工配制的红丹,以破坏电极与零件之间的焊接性。
(5)调整电极压力,使用高压力、大电流、短通电时间的焊接参数。
(6)定期清理冷却水管。
保证冷却水流量。
3.1炸枪的原因(1)电极长度不足。
这种情况下气缸不能将电极推到位,使两电极工作面之间存在间隙。
铝合金电阻点焊技术研究

车身制造工程BODY ENGINEERING46 ・2021年第03期铝合金电阻点焊技术研究基于轻量化的诉求,蔚来ES8车身铝材的使用率高达95%以上,这是全球量产的全铝车身中最高比例的铝材应用量。
同时为了确保车身强度刚性,ES8车身综合使用了3系、5系、6系和7系铝材成分的板材、挤出型材、高精密压铸件以及碳纤维复合材料,针对车身不同部位的强度和外观要求,突破传统钢车身单一材料的焊接工艺,实现了异性异种材料的连接。
ES8车身的连接工艺以结构胶粘接为核心,以SPR 自冲铆接和FDS 热熔直钻两种冷连接为主,辅助以铝点焊、激光焊和CMT 等热连接工艺。
铝点焊工艺规划1.铝点焊概念及特点铝点焊是电阻焊的一种,利用电流通过焊件及附近区域产生的电阻热作为热源将工件局部加热,同时加压使工件形成金属结合的一种方法。
由于铝合金材料有导热性好、导电率高、易与铜发生合金反应等特点,电阻点焊在铝合金材料结构件的连接中遇到能耗大、电极易失效、点焊质量不稳定等困难。
钢铝性能对比见表1。
基于车身轻量化连接技术的发展,本文重点介绍铝点焊工艺规划、质量评价及优化。
其中,工艺规划主要包含焊枪选择、电极帽选择和工装要求等。
质量评价及优化包含铝点焊检测标准及几种常见质量缺陷处理方法。
□ 安徽江淮集团汽车股份有限公司 吴卫枫 鲁厚国鉴于铝合金与碳钢性能的差异,铝点焊的主要特点如下:①铝材的电阻率是钢材的1/3,焊接相同厚度的铝材需要3~5倍的电流,铝合金分流损失比钢材分流严重;②铝合金具有高导热性(是钢材的4~5倍),焊接过程中热损失率较高,铝材焊接需要大电流和短时间;③铝合金焊核形成温度范围窄,铝点焊需要短焊接时间和快速的电流上升时间;④铝合金热膨胀系数高,在脆性温度区间内易产生热裂纹,铝点焊需要大的焊接压力和大的平面电极来控制焊接变形;⑤铝合金易氧化及合金化,氧化层焊接过程中易产生焊点气孔、泡群缺陷,铝点焊中铝、铜易生成合金,电极帽腐蚀快,需要频繁修磨,保持电极清洁,确保点焊质量;⑥连接强度相对低,常与结构胶配合使用;⑦不能连接异种材料,尤其是钢和铝;⑧无法做类似钢点焊的凿检,目视检查为主。
铝及铝合金在焊接时容易出现哪些问题

铝及铝合金在焊接时容易出现哪些问题?1、极易敏化铝不论是固态或液态都极易氧化,生成三氧化二铝薄膜。
氧化膜熔点很高,为2050℃,而铝的熔点仅为658℃。
A1203具有很高的电阻,在电弧焊中,相当于电弧与工件之间有一层绝缘层,使电弧燃烧不稳定。
氧化膜妨碍焊接过程的顺利进行,而且氧化铝的密度大于铝,因此造成焊缝夹渣和成形不良。
2、熔化时无颜色变化铝从固体到液体的升温过程中没有颜色变化,温度稍高就会造成金属塌陷和熔池烧穿。
再者,由于高熔点的氧化膜覆盖在熔池表面,给观察母材的熔化、熔合情况带来困难。
这样就增加了焊接工艺上控制温度的难度,稍不注意,整个接头就会塌落,所以铝的焊接比钢材焊接要困难得多。
3、易变形由于铝的导热系数是铁的2倍,凝固时的收缩率比铁大2倍,所以铝焊件变形大,如果措施不当就会产生裂纹;并且在焊接时,因导热性好,需要较大的焊接热量才能熔化接头。
因此,一般要求对焊件预热,并采用强规范,由此也恶化了焊接工艺条件。
4、易产生气孔铝及铝合金在焊接时,在空气中马上氧化生成A1203,不但阻碍金属熔合,还会吸收一定的水分。
焊丝表面和母材表面氧化膜吸收的水分,在电弧作用下分解出来的氢被液态金属铝吸收。
此外,焊条药皮中的潮气、空气中的水分也都是氢的来源。
铝合金的一个特征是,氢在液态金属中的溶解度随温度变化的幅度大,又由于铝导热性能好,焊缝凝固快,因此来不及逸出的氢气便形成很多气孔。
铝的纯度愈高,产生气孔的倾向就愈大。
5、易开裂铝合金的凝固不是在某一温度下进行,而是在一温度区间进行。
在开始凝固时温度较高,焊缝呈液-固状态,液态金属比较多,此时的收缩量可由未凝固的液态金属补充;在最后凝固之前,焊缝呈固液状态,液态金属已很少,以间层状存在,由于此时温度处于凝固温度区间的下限,已产生很大的收缩,这样就会在液态的层间处拉开,若无液体补充,便形成裂纹。
一般说,纯铝不易产生凝固裂纹,防锈铝合金裂纹倾向也很小,但硬铝、超硬铝等经热处理强化的铝合金的热裂纹倾向较大。
电阻焊常见缺陷和产生原因

项目 常见缺陷分析
缺陷描述 漏焊
错焊(焊错位置、方向、标准件型号) 与工件焊接接触不良,间隙>0.1mm
偏孔:工件凸焊螺母过孔中心与螺母孔中心偏差 虚焊:螺母/螺栓脱落 焊接接头不能单点连接 焊接接头不能存在裂纹 焊渣、滑丝 板材变形、表面麻点
目录
三、与工件焊接接触不良,间隙>0.1mm
直接原因:焊接时间短;焊接压力低;焊接电流低;板材金属特性; 间接原因:预压压力大;存在焊接分流 列举生产中实例并讨论
点焊八大缺陷及产生原因
压痕过深
• 直接原因:焊接时间长;电极使用时间过长 • 间接原因:预压时间短;焊接压力低;焊接压力高;焊接电流高;电
极头部面积小;冷却不通畅;板材金属特性;焊接角度不垂直 • 列举生产中实例并讨论
点焊八大缺陷及产生原因
多余焊点
焊点数目不能超过规定的数目,除非是返修需要.
目录
厚度,三层板或三层以上的选择次薄厚度板材要
求的熔核直径作为规定的尺寸.
T=2mm熔核 尺寸过小
BUTTON DIAMETER 即 为板材接合面处 熔核的尺寸
凸点平均直径是由长轴测
量数值加上与长轴垂直轴的测 量数值,再除以2而得.测量数要 在接触面上测得.
点焊八大缺陷及产生原因
虚焊
理论焊核直径计算标准:
间接原因:标准件螺纹质量问题;调用错误规范;绝缘套磨损 列举生产中实例并讨论
目录
九、板材变形、表面麻点
直接原因:焊接压力高;焊接电流高;冷却不通畅;电极面磨损等 间接原因:未按时修磨电极;调用参数错误 列举生产中实例并讨论
THANKS!!
放映结束 感谢各位的批评指导!
谢 谢!
让我们共同进步
目录
铝焊常见缺陷及原因

精心整理铝焊常见缺陷原因及措施(一)焊接缺陷种类常见的缺陷主要有焊缝成形差、裂纹、气孔、烧穿,未焊透、未熔合、夹渣等。
1、焊缝成形差产生原因:焊接规范选择不当;焊枪角度不正确;焊工操作不熟练;导电嘴孔径太大;焊接电弧没有严格对准坡口中心;焊丝、焊件及保护气体中含有水分。
焊缝成形差主要表现在焊缝波纹不美观,且不光亮;焊缝弯曲不直,宽窄不一,接头太多;焊缝中心突起,两边平坦或凹陷;焊缝满溢等。
2、气孔产生原因:氩气纯度低或氩气管路内有水分、漏气等;焊丝或母材坡口附近焊前未清理干净或清理后又被污物、水分等沾污;焊接电流和焊速过大或过小;熔池保护欠佳,电弧不稳,电弧过长,钨极伸出过长等。
焊接时熔池中的气孔在凝固时未能逸出而留下来所形成的空穴称为气孔。
在MIG焊接过程中,气孔是不可避免的,只能尽量减少它的存在。
在培训的过程中,仰角焊、立向上焊气孔倾向尤为明显,根据DIN30042标准规定,单个气孔的直径最大不能超过0.25α(α为板厚),密集气孔的单个直径最大不超过0.25+0.01α(α为板厚)。
氢是铝及铝合金熔化焊产生气孔的主要原因。
氮不溶于液态铝,铝又不含碳,因此铝合金中不会产生氮气孔和一氧化碳气孔;氧和铝有很大的亲和力,总是以氧化铝的形式存在,所以也不会产生氧气孔;氢在高温时大量的溶于液态铝,但几乎不溶于固态铝,所以在凝固点溶于液体中的氢几乎全部析出,形成气泡。
但铝和铝合金的比重轻,气泡在熔池中的上升的速度较慢,加上铝的导热能力强凝固,不利于气泡的浮出,故铝和铝合金易产生气孔,氢气孔在焊缝内部一般呈白亮光洁状。
氢的来源比较多,主要来自弧柱气氛中的水、焊丝以及母材所吸附水分对焊缝气孔的产生常常占有突出的地位。
厂房空气中的湿度也影响弧柱气氛。
MIG焊接时,焊是以细小熔滴形式通过弧柱而落入熔池的,由于弧柱温度最高,熔滴比表面积很大,故有利于熔滴金属吸收氢,产生气孔的倾向也更大些。
弧柱中的氢之所以能够形成气,与它在铝合金中的溶解度变化有。
电阻焊(点焊)产品质量缺陷及解决方法

.4.
电阻焊的工作程序
电阻焊三要素
➢ 焊接电流 ➢ 加压力 ➢ 通电时间
.5.
二、电阻焊的主要过程参数与控制
焊接电流
由热量公式Q = I2Rt,可见电流对产热 的影响比电阻R和时间 t两者都大。因此焊 接时必须保证焊接电流的适宜和稳定。
焊接时电流选用应接近C点处,抗剪强 度增加缓慢,越过C后,由于飞溅或工件 表面压痕过深,抗剪强度会明显降低
.22.
铝合金的点焊
电导率和热导率较高:必须采用较大电流和较短时间,才能做到既有足够的热量形成熔核;又能减少表面过热、避免电极粘附和 电极铜离子向纯铝包复层扩散、降低接头的抗腐蚀性。塑性温度范围窄、线膨胀系数大:必须采用较大的电极压力,电极随动性 好,才能避免熔核凝固时,因过大的内部拉应力而引起的裂纹。也可以采用在焊接脉冲之后加缓冷脉冲的方法避 免裂纹。表面易生成氧化膜:焊前必须严格清理,否则极易引起飞溅和熔核成形不良,使焊点强度降低。 铝合金点焊时,由于电流密度大和氧化膜的存在,很容易产生电极粘着,不仅影响外观质量,还会因电流减小而降低接头强度,为此 需经常修整电极。
将给、排水用的橡胶管牢固连接在焊机本体侧面的给水口和进水口处。 请使用不含杂质尤其是盐份的优质水。(电阻率大于5K.cm)
压缩空气系统的装配
清除金属切管上的切削、灰尘后将进气胶管牢固连接在焊机本 体的进气口上。 气压应确保为5 ~ 7 kgf / cm2,胶管耐压大于7 kgf / cm2。 为延长焊机使用寿命,请使用干燥雾气小的优质空气。
4500 5000 5500 6500 7200 7700 9100 10300 11300 12900
3.2 3.5 4.0 4.5 5.0 5.5 6.3 7.0
铝及铝合金在焊接过程中出现的问题

铝及铝合金在焊接过程中出现的问题铝及铝合金由于具有独特的物理化学性能,因此在焊接过程中会产生一系列的困难,具体来说,主要有以下几点:一、强的氧化能力铝与氧的亲和力很强,在空气中极易与氧结合生成致密而结实的AL2O3薄膜,厚度约为0.1μm,熔点高达2050℃,远远超过铝及铝合金的熔点,而且密度很大,约为铝的1.4倍。
在焊接过程中,氧化铝薄膜会阻碍金属之间的良好结合,并易造成夹渣。
氧化膜还会吸附水分,焊接时会促使焊缝生成气孔。
这些缺陷,都会降低焊接接头的性能。
为了保证焊接质量,焊前必须严格清理焊件表面的氧化物,并防止在焊接过程中再氧化,对熔化金属和处于高温下的金属进行有效的保护,这是铝及铝合金焊接的一个重要特点。
具体的保护措施是:1、焊前用机械或化学方法清除工件坡口及周围部分和表面的氧化物;2、焊接过程中要采用合格的保护气体进行保护;3、在气焊时,采用熔剂,在焊接过程中不断用焊丝挑破熔池表面的氧化膜。
二、铝的热导率和比热大,导热快尽管铝及铝合金的熔点远比钢低,但是铝及铝合金的导热系数、比热容都很大,比钢大一倍多,在焊接过程中大量的热能被迅速传导到基体金属内部,为了获得高质量的焊接接头,必须采用能量集中、功率大的热源,有时需采用预热等工艺措施,才能实现熔焊过程。
三、线膨胀系数大铝及铝合金的线膨胀系数约为钢的2倍,凝固时体积收缩率达6.5%-6.6%,因此易产生焊接变形。
防止变形的有效措施是除了选择合理的工艺参数和焊接顺序外,采用适宜的焊接工装也是非常重要的,焊接薄板时尤其如此。
另外,某些铝及铝合金焊接时,在焊缝金属中形成结晶裂纹的倾向性和在热影响区形成液化裂纹的倾向性均较大,往往由于过大的内应力而在脆性温度区间内产生热裂纹。
这是铝合金,尤其是高强铝合金焊接时最常见的严重缺陷之一。
在实际焊接现场中防止这类裂纹的措施主要是改进接头设计,选择合理的焊接工艺参数和焊接顺序,采用适应母材特点的焊接填充材料等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2铝合金电阻点焊所存在的主要问题
1.2.1铝合金点焊焊点质量不稳定主要体现在以下几个方面。
(1)喷溅与飞溅严重。
铝元素非常活泼,在铝合金材料表面非常容易形成氧化膜,这层氧化膜组织致密、熔点极高、导电性能极差。
这就使得接触面上的接触电阻比较大。
在硬规范焊接条件下,接触面上产生较多的热量。
另一方面,铝合金材料熔点低,加热熔化时的塑性温度区间窄,所以很容易在工件间接触面上造成喷溅,在电极与工件间造成飞溅,喷溅和飞溅的产生会带走部分热量和熔化金属,严重影响了熔核直径的大小,对焊点质量极为不利。
(2)焊点表面质量差。
铝与铜合金容易形成低熔点(547℃)共晶物,并且这种低熔
点共晶物的电阻率比较大,接触面上较大的产热量使电极与工件接触面上产生局部熔化,并发生较为剧烈的共晶反应,以致出现电极与工件的粘连,恶化了焊点的表面质量。
电极与工件的粘连及飞溅严重破坏了电极表面的连续性,进而恶化了后续焊点焊接时电极与工件间的接触状态,使电极与工件间的接触由起始宏观上的连续接触变为不连续。
在硬规范条件下,这种宏观上的不连续接触加剧了飞溅、局部熔化及粘连的产生,对焊点的表面质量更为不利。
(3)熔核尺寸波动大。
电极与工件接触面上的局部熔化、飞溅及电极与工件的粘连,破坏了电极表面的连续性。
在连续点焊过程中电极表面的不连续性具有较强的随机性,这使得电极与工件间及工件间的接触状态很不稳定。
另外,受工件表面状态、电极压力、焊接电流等因素的影响,连续点焊中熔核直径波动较大。
(4)熔核内部易产生缺陷。
与弧焊相比,铝合金在点焊时金属的熔化量较少,其2A16
铝合金电阻点焊焊点表面缺陷分析与工艺优化导热系数又比较大,所以熔核的冷却速度非常快。
另外,铝合金是非导磁材料,液态熔核区的流动速度非常小,熔核在凝固时极易形成缩孔、缩松和气孔。
虽然这些缺陷对接头强度影响不大,但对接头的疲劳性能却有显著影响。
(5)结合线伸入。
结合线伸入是点焊和缝焊某些高温合金和铝合金时特有的
缺陷,是指结合面伸入到熔核中的部分。
对于铝合金,主要是工件表面有强氧化物,焊接过程中通电时间短暂,导致结合面熔合不完整。
结合线伸入减小了熔核的有效直径,会降低强度,当伸入前端有裂纹时还会影响接头的动载强度和高温持久强度。
(6)熔核偏移。
熔核偏移在铝合金电阻点焊中也经常出现。
不同厚度和不同材料点焊时,熔核不以贴合面为对称,而向厚板或导电、导热性差的焊件中偏移,其结果使其在贴合面上的尺寸小于该熔核直径。
同时,也使其在薄件或导电、导热性好的焊件中焊透率小于规定数值,这均使焊点承载能力降低。
(7)电极寿命低。
由于电极与工件间的接触电阻较大,铝合金的热导率高,而铝合金点焊又是采用硬规范进行焊接,电极与工件间接触面上的温度较高,铝与铜之间存在着强烈的合金化倾向,因此铝合金点焊时铜合金电极的烧损非常严重。
铜铝合金化反应生成合金层的主要成分为CuA金属间化合物,其电阻率为铜的5倍左右。
在后续焊点的焊接过程中,合金层的存在,增大了电极与工件间的接触电阻,也增加了电极与工件间的产热量,电极表面不连续程度的增加也加剧了电极与工件间局部熔化和飞溅的产生,同时也加剧了铜铝合金化反应的程度。
上述因素使得铝合金点焊时电极的烧损速度增加,使用寿命缩短。
1.2.2电极烧损严重
由于电极与工件间的接触电阻较大,铝合金工件的热导率也较大,而铝合金点焊又是采用硬规范进行焊接,所以电极与工件间接触面上的温度较高。
由于铝与铜之间存在着强烈的合金化倾向,因此铝合金点焊时铜合金电极的烧损非常严重。
铜铝合金化反应生成合金层的主要成分为CuA1金属间化合物,其电阻率为铜的5倍左右。
由于合金层粘附在电极表面,在后续焊点的焊接过程中,合金层的存在增大了电极与工件间的接触电阻,也增加了电极与工件间的产热量。
在连续点焊过程中,电极表面小连续程度的增加也加剧了电极与工件间局部熔化和飞溅的产生,同时也加剧了铜铝合金化反应的程度。
上述因素使得铝合金点焊时电极的烧损速度大为增加,使用寿命缩短。
2A16铝合金电阻点焊焊点表面缺陷分析与工艺优化
1.2.3缺乏有效的焊接质量控制方法
铝合金的电阻率低,其阻温系数也比较小。
因为从室温到熔化温度电阻率的变化幅度仅为3倍左右,所以铝合金电阻点焊过程很难用焊接电参量的变化来描述,这给铝合金电阻点焊过程的闭环控制带来很大困难。
铝合金点焊的焊点质量不仅包括了熔核尺寸的波动,而且也包括飞溅和喷溅严重、焊点表面成形质量差及下件与电极易出现粘连等。
因此,铝合金点焊所面临的质量问题远比低碳钢复杂。
针对低碳钢点焊问题所提出的以保证熔核大小稳定为目标的各种控制方法并不适合于铝合金点焊,尤其是对工件电极的粘连问题和焊点表面成形质量差的问题更是无能为力。
能量是点焊过程的本质问题。
从理论上说,能量控制是点焊质量控制中的最为本质的方法。
能量控制的理论基础是点焊过程中的产热分析和能量分布分析,而点焊过程中的产热分析和能量分布分析是无法通过实验来进行的。
应该说,在目前能量控制的理论依据及如何实现能量控制还没得到很好的解决。