基于智能电网调度系统的调度监控平台探析
基于人工智能的智能化智能电网调度系统设计

基于人工智能的智能化智能电网调度系统设计智能电网调度系统是指利用人工智能技术来优化电网调度工作的一种智能化系统。
通过智能化的数据采集、处理和分析,智能电网调度系统可以实时监控电网状态,预测负荷需求,优化运行方案,确保电网系统的稳定性和安全性。
本文将详细介绍基于人工智能的智能电网调度系统的设计原理和关键技术。
首先,智能电网调度系统的设计需要充分利用人工智能技术中的数据挖掘和机器学习算法。
系统通过收集、清洗和整理实时的电网数据,如电压、频率、负荷等信息,并进行数据挖掘,以挖掘隐藏在数据中的规律和关联性。
同时,系统还可以利用机器学习算法对历史数据进行训练和建模,根据生成的模型来预测未来的电网状态和负荷需求。
通过这些智能化的算法,系统可以更加准确地预测电网的运行情况,为调度人员提供决策支持。
其次,智能电网调度系统的设计还需要合理利用智能化的控制和优化算法。
系统可以根据预测的电网状态和负荷需求,自动调整各个发电机组的输出功率,以及调节各个变电站的电压和频率。
在这个过程中,系统可以利用强化学习算法和最优化算法来寻找最佳的控制策略。
同时,系统还可以考虑各种约束条件,如电网的安全性和经济性等,以达到最优化的调度效果。
通过这些智能化的控制算法,系统可以自动化地优化电网的运行方案,提高电网的运行效率。
另外,智能电网调度系统的设计还需要考虑到实时性和可靠性。
系统需要能够实时地处理大量的实时数据,并根据实时数据来调整调度策略。
同时,系统还需要具备良好的容错能力,能够快速响应电网故障和突发事件,并采取相应的应对措施。
为了提高系统的实时性和可靠性,可以采用分布式计算和冗余数据存储的方式来设计系统架构。
此外,系统还需要具备自动化故障诊断和恢复的能力,以快速恢复电网的正常运行。
最后,智能电网调度系统的设计还需要考虑到安全性和隐私保护。
电网是国家重要的基础设施,其安全性是至关重要的。
智能电网调度系统需要采取各种安全措施来保护系统免受恶意攻击和非法入侵。
智能电网的智能优化与调度研究

智能电网的智能优化与调度研究智能电网是一种基于信息通信技术和电力系统集成的先进能源传输和分配网络。
它通过实时监测、广域通信、数据分析和智能控制等手段,实现电力系统的高效、可靠、安全和可持续运行。
智能电网的智能优化与调度是实现其高效运行的重要环节,本文将探讨与研究这一领域相关的技术与应用。
一、智能电网的优化问题智能电网作为复杂的电力系统,面临着诸多的优化问题。
其中包括经济性优化、可靠性优化、安全性优化等。
经济性优化是指在满足用户需求和电网安全稳定运行的前提下,最大化电网的经济效益。
可靠性优化是指在保障电网供电可靠性的前提下,通过智能化手段提高电网设备的利用率和运行效率。
安全性优化是指通过智能化监测和预测,提前发现潜在的电网安全隐患,并采取措施防止事故的发生。
二、智能优化技术为了解决智能电网的优化问题,研究人员提出了多种智能优化技术。
以下是其中几种常见的技术:1. 基于人工智能的优化技术人工智能是智能电网优化的核心技术之一。
通过机器学习、数据挖掘、深度学习等技术手段,可以对大量的历史数据进行分析,从而提取出电力系统的规律性和趋势性信息。
同时,人工智能还可以对电力系统进行建模和仿真,通过大规模计算,找寻最优解,从而实现电力系统的经济性和可靠性优化。
2. 基于大数据的优化技术随着电力系统的智能化程度不断提高,系统中产生的数据量也呈现爆发式增长。
利用这些大数据,可以对电力系统的各个环节进行全面监测和精细化分析,从而实现电力系统的智能优化。
例如,通过对用户用电行为进行分析,可以预测用电负荷的变化趋势,为电网调度员提供精准的调度建议。
3. 基于优化算法的优化技术传统的数学优化算法在智能电网的优化中也有着重要的应用。
如线性规划、整数规划、二次规划等。
通过对电力系统的数学建模和求解,可以得到电力系统的最优方案。
同时,还可以结合启发式算法,提高求解速度和求解精度。
三、智能调度技术智能调度是智能电网中的一个重要环节,它涉及到电力系统中各个设备的协调运行和灵活调度。
基于智能电网的电力调度自动化与控制系统实现

基于智能电网的电力调度自动化与控制系统实现摘要:智能电力调度自动化广义上指的是,利用自动化控制系统对电网电力调度及测量等方面实现自动化、集成化和数字一体化的控制系统。
再通过现代计算机技术,实现电网电力调度统一、稳定、安全的运行。
随着我国用电量的大幅增加,对电网的运行要求越来越高,如何能够实现电网电力调度准确、高效和安全的运行,是当前必须思考的问题。
因此,无论是从经济的角度还是从环境保护的角度,实现电网电力调度的智能化是极其必要的。
对于智能电网的电力调度,可以通过虚拟专用网络实现各个调度中心之间的联系以及各个调度中心同电厂和电站之间的相互关联,从而实现电力系统在电力调度、生产、安全保护等方面的自动化控制。
关键词:电力调度;智能电网;自动化控制当前,调度自动化在技术、工程和标准方面均取得了巨大成就。
在技术方面,云计算、大数据、人工智能等信息与通信技术已经给调度自动化系统更新发展带来了新的基础条件,实际上这些年来调度领域已经进行了大量新技术的应用设计和验证。
在工程实践方面,智能电网调度技术支持系统已获得广泛应用,新能源接入和调控能力建设、电力通信网络和调度数据网建设等都得到加强。
在标准建设方面,调度自动化领域近年来新增了众多国标、行标和企标,同时在国际标准上也有新的进展。
1智能电网的基本特征1.1自愈性自愈性是智能电网系统的主要特性之一,也是十分突出的一项特征,是保证电网安全运行的前提条件。
在内部或是外部的诸多因素使电网产生损害时,相关人员只需要给予一定的干预,便能够隔离电力网络中存在问题的元件,而且不会影响系统的正常运行。
在局部网络无法正常运行或是电力元件出现异常运行状态时,智能电网系统能够自行完成数据收集与分析,并且尽快恢复电网的正常运作。
1.2兼容性智能电网的兼容性,主要是指能够与分布式的电网及微电网并网运行,合理利用太阳能、风能等清洁的可再生能源。
为满足电力用户的供电需求得以满足,必须要尽可能规避系统运行的冲突,保证系统的稳定运行。
电力行业智能电网调度与监控系统方案

电力行业智能电网调度与监控系统方案第1章项目背景与需求分析 (3)1.1 背景介绍 (3)1.2 需求分析 (3)1.2.1 电网调度自动化需求 (3)1.2.2 电网监控需求 (4)1.3 技术发展趋势 (4)第2章智能电网调度与监控系统设计原则 (4)2.1 设计理念 (5)2.2 设计目标 (5)2.3 设计原则 (5)2.3.1 开放性与标准化 (5)2.3.2 高效性与实时性 (5)2.3.3 安全性与可靠性 (5)2.3.4 可维护性与易用性 (5)2.3.5 智能化与自动化 (5)2.3.6 绿色环保 (5)2.3.7 经济性 (6)2.3.8 遵循法律法规 (6)第3章智能电网调度与监控系统架构设计 (6)3.1 系统架构概述 (6)3.2 硬件架构设计 (6)3.3 软件架构设计 (6)第4章数据采集与传输 (7)4.1 数据采集技术 (7)4.1.1 传感器技术 (7)4.1.2 远程终端单元(RTU)技术 (7)4.1.3 数据采集协议 (7)4.2 数据传输技术 (7)4.2.1 有线传输技术 (7)4.2.2 无线传输技术 (7)4.2.3 传输网络架构 (8)4.3 数据处理与分析 (8)4.3.1 数据预处理 (8)4.3.2 数据存储 (8)4.3.3 数据分析 (8)第5章电力系统状态估计与预测 (8)5.1 状态估计技术 (8)5.1.1 状态估计算法 (8)5.1.2 数据处理与滤波技术 (8)5.2 预测技术 (9)5.2.1 负荷预测 (9)5.2.2 风速与太阳能发电量预测 (9)5.3 在线监测与实时预警 (9)5.3.1 在线监测技术 (9)5.3.2 实时预警方法 (9)5.3.3 预警系统设计与实现 (9)第6章智能调度策略与算法 (9)6.1 调度策略概述 (9)6.1.1 调度策略基本概念 (10)6.1.2 调度策略分类 (10)6.1.3 调度策略在智能电网中的应用 (10)6.2 优化算法 (10)6.2.1 遗传算法 (10)6.2.2 粒子群优化算法 (10)6.2.3 模拟退火算法 (10)6.3 智能调度应用案例 (11)6.3.1 短期调度策略应用案例 (11)6.3.2 中期调度策略应用案例 (11)6.3.3 长期调度策略应用案例 (11)第7章电力市场运营与支持系统 (11)7.1 电力市场概述 (11)7.1.1 电力市场结构 (11)7.1.2 电力市场运行机制 (11)7.1.3 电力市场主体 (12)7.2 市场运营策略 (12)7.2.1 交易策略 (12)7.2.2 价格策略 (12)7.2.3 信用管理策略 (12)7.3 支持系统设计与实现 (12)7.3.1 交易与调度系统 (12)7.3.2 市场监管系统 (12)7.3.3 信用管理系统 (13)第8章信息安全与防护策略 (13)8.1 信息安全风险分析 (13)8.1.1 内部风险 (13)8.1.2 外部风险 (13)8.2 防护策略与技术 (13)8.2.1 物理安全 (14)8.2.2 网络安全 (14)8.2.3 数据安全 (14)8.2.4 应用安全 (14)8.3 安全管理制度与培训 (14)8.3.1 安全管理制度 (14)8.3.2 员工培训 (14)第9章系统集成与测试 (14)9.1 系统集成技术 (14)9.1.1 集成架构设计 (14)9.1.2 集成技术选型 (15)9.1.3 集成实施策略 (15)9.2 系统测试方法 (15)9.2.1 单元测试 (15)9.2.2 集成测试 (15)9.2.3 系统测试 (15)9.2.4 压力测试 (15)9.3 测试案例与结果分析 (15)9.3.1 功能测试 (15)9.3.2 功能测试 (16)9.3.3 安全测试 (16)9.3.4 兼容性测试 (16)9.3.5 压力测试 (16)第10章项目实施与效益分析 (16)10.1 项目实施策略 (16)10.1.1 技术路线选择 (16)10.1.2 组织与管理 (16)10.2 项目进度与质量管理 (16)10.2.1 项目进度安排 (16)10.2.2 质量管理措施 (16)10.3 效益分析 (16)10.3.1 经济效益 (17)10.3.2 社会效益 (17)10.3.3 环境效益 (17)第1章项目背景与需求分析1.1 背景介绍社会经济的快速发展,电力需求不断攀升,电网规模持续扩大,复杂性逐渐增强。
基于云计算的智能电网调度优化研究

基于云计算的智能电网调度优化研究智能电网调度优化研究基于云计算智能电网调度优化是实现电网运行高效性和可靠性的重要技术之一。
随着云计算技术的快速发展,将云计算与智能电网调度优化相结合,可以有效提高电力系统的调度效果和降低成本。
本文将着重探讨基于云计算的智能电网调度优化研究。
一、云计算技术在智能电网调度优化中的应用云计算是一种基于互联网的计算模式,可以通过虚拟化技术将计算资源、存储资源和应用程序等统一管理,在电网调度中具有以下优势:1. 弹性计算:云计算能够根据电网负荷的变化,动态调整计算资源的分配。
通过弹性计算,可以有效应对电力负荷峰值,提高电网调度的灵活性。
2. 数据存储与共享:智能电网调度需要处理大量的数据,包括电力负荷数据、电力市场数据等。
云计算提供了高效的数据存储和共享机制,可以方便地获取和处理这些数据,提高电网调度的效率。
3. 分布式计算:云计算可以将电网调度任务分解为多个子任务,分布在多个云服务器上并行处理。
通过分布式计算,可以快速完成大规模的电网调度优化问题,提高调度效果。
4. 安全性和可靠性:云计算提供多重备份机制,保证电网调度数据和计算结果的安全性和可靠性。
同时,云计算平台具备高度可用性,能够保证电网调度的连续性。
二、基于云计算的智能电网调度优化研究内容1. 数据挖掘与预测模型智能电网调度需要充分利用历史数据进行负荷预测、市场价格预测等。
基于云计算的智能电网调度优化研究可以利用数据挖掘技术构建相应的预测模型,提高电网调度的准确性。
2. 优化算法设计与实现智能电网调度优化是一个多目标、约束复杂的优化问题,需要设计高效的优化算法进行求解。
基于云计算的智能电网调度优化研究可以针对电能调度、电力市场交易等问题,设计合适的优化算法,并在云计算平台上实现。
3. 调度任务分解与并行计算云计算架构可以将电网调度任务分解为多个子任务,并行地进行计算。
基于云计算的智能电网调度优化研究可以探索合适的任务分解和数据划分策略,以及高效的任务调度算法,提高调度效率。
智能电网调度控制系统分析

智能电网调度控制系统分析摘要强化智能电网调度控制系统应用符合加快推动国内智能电网建设的宏观目标,且对于提升电网调度有效性、确保电网运行的可靠与安全意义重大。
本文以智能电网调度控制系统架构设计为切入点,简要分析其应用功能,然后重点对系统应用控制措施进行探讨。
关键词智能电网;调度控制系统;系统构成;控制措施电网系统是一项复杂的刚性系统,缺乏可重组性与动态柔性,影响了电网建设的智能化水平。
如果可以巧妙地引入和应用自动化控制技术,那么可以提升电网的动态柔性,增强配网调度控制有效性,同时也能助于推动国内智能电网建设发展。
而智能电网调度控制系统则是在此背景下所产生的一种智能化调控系统,具有很强实践应用价值和研究价值。
1 智能电网调度控制系统的架构设计1.1 体系架构设计为了实现电网调度控制的各项基本功能,确保可以实现“纵向贯通、横向集成”的目标,需要结合系统功能需求,将该系统划分成操作系统层、支撑平台层与应用功能层,其中操作系统层可以结合实际的硬件平台,灵活选用Windows 系统平台、Unix系统平台和Linux系统平台;支撑平台层主要是满足各种系统应用功能所提供的对应技术支撑,比如系统管理功能或图形界面处理功能等;应用功能层主要是提供监控、调度计划与管理、预警等功能。
1.2 应用功能架构设计智能电网调度控制系统是一套面向于电力企业电网调度业务的集约化系统。
该系统可以为用户提供用户权限设置功能、实时监控与预警功能、安全校核功能等基本功能。
以权限设置功能为例,用户要想进入控制系统中进行操作,那么必须要先输入正确的用户名及其对应密码。
待进入到操作系统后,方可执行调度计划、安全校核、调度管理、实时监控与预警等功能。
比如,其中的安全校核功能主要包括校正稳定裕度、校核静态安全、评估与稳定分析等,可以为智能电网的正常运行操作提供相应的数据支持;调度管理则主要负责评估电网综合分析情况,管理电网的实际运行情况以及开展专业调度管理。
基于人工智能的智能电网调度系统设计

基于人工智能的智能电网调度系统设计智能电网调度系统设计方案一、引言随着能源需求的不断增长和可再生能源的广泛应用,智能电网作为一种先进的电力系统形态,正逐渐受到国际社会的关注和重视。
在智能电网建设中,电网调度系统被认为是核心和关键技术之一,它通过综合运用人工智能技术,实现对电网运行状态和负荷需求的预测分析,并对电力资源进行高效分配与调度。
本文基于人工智能技术,提出了一种智能电网调度系统的设计方案。
二、系统设计方案1. 需求分析根据智能电网调度系统的功能和目标,需求分析是系统设计的首要任务。
需求分析的内容包括电力系统负荷需求预测、电网状态监测和分析、电力资源调度和优化等方面。
通过分析电力系统运行情况和负荷需求,系统可以根据实时数据预测未来负荷情况,为电力资源调度提供参考。
2. 数据采集与预处理为了支持智能电网调度系统的运作,需要采集和分析大量的电力系统数据,包括供电系统的实时状态、设备运行数据以及历史数据等。
针对不同数据类型和来源,设计合理的数据采集和存储方案,并配备数据预处理和清洗模块,提高数据的可用性和精确性。
3. 人工智能算法运用在智能电网调度系统中,人工智能算法起着重要的作用。
常见的人工智能算法包括神经网络、遗传算法、模糊逻辑等。
根据实际需求和系统特点,我们可以选择最适合的算法来对电力系统的负荷需求、电网状态等进行预测分析,并利用优化算法对电力资源进行调度和管理。
4. 调度决策模型建立为了实现智能电网调度的自动化和智能化,需要建立合理的调度决策模型。
基于人工智能算法和电力系统的特点,我们可以引入强化学习算法,利用历史数据和实时环境信息,训练智能体(Agent)进行决策和控制,以实现电力资源的最优调度和能效优化。
5. 用户界面设计智能电网调度系统作为一个支撑电力系统运行的核心系统,需要提供友好、直观的用户界面,方便用户进行操作和监控。
用户界面设计应考虑到用户的不同需求和权限,提供多种视图和功能,如电力系统拓扑图、负荷曲线图等,以便用户随时了解电网运行状态和负荷情况。
基于智能电网的电力调度优化研究

基于智能电网的电力调度优化研究随着人们对“绿色能源”的关注度不断提高,电力行业也在不断地发展、进步、创新。
在能源行业,电力的调度和优化就成为了全行业最关键的问题之一——如何在满足用户需求的情况下,尽量避免能源浪费,降低能源成本,确保电力行业可持续发展呢?基于智能电网的电力调度优化研究为我们提供了一种风格全新的解决方案。
一、智能电网的概念智能电网,又称为智能电力系统,是在现有电力系统的基础上,在集成多种新技术和新元素的基础上推出的新一代电力系统。
它利用先进的通信、计算、软件和控制技术,实现了电力系统的自学习、自适应、自愈合、自优化等自主智能运行。
智能电网不仅满足了人们对电力质量、供电可靠性和安全性的要求,同时还兼顾了能源的可持续性和环境保护。
它能够有效地节能减排、优化电网结构、提高电网效率、提高供电可靠性和电力质量。
二、智能电网的电力调度优化智能电网的一个主要特征就是它的智能化调度和优化。
合理的电力调度和优化可以有效地提高电网的效率和可靠性,提高能源利用效率,减少能源浪费和污染排放。
为了实现智能化的电力上网和调度优化,我们必须在电力系统中引入一些新型的技术和手段。
1、分布式能源的接入分布式能源是指在不同区域内分散布置的、独立的、可控的、可调度的能源来源,如光伏发电、小水电、风能发电等。
分布式能源的接入可以有效地减少传统能源消耗,提高能源利用效率,使能源更加清洁。
2、动态负荷预测与管理负荷预测是智能电网中的一个重要技术。
通过对负荷进行动态预测,可以合理规划供应方案、合理控制电网的负荷,从而提高了电网的运行效率和质量。
3、能量存储技术在智能电网中,能量存储技术可以有效地储存多余的电能或低谷时段的电能,以便高峰时段向用户供应电力。
这样可以有效地平衡电网负荷,减少高峰时段的能源浪费,提高能源利用效率。
4、智能配电网智能配电网是一个智能化的、集成传感器和数据处理技术的电网。
它可以实时监测电网的状态和负荷状况,并对电力调度和优化提供数据支持,从而最大限度地提高电网的效率和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于智能电网调度系统的调度监控平台探析
发表时间:2018-01-28T19:27:24.750Z 来源:《电力设备》2017年第28期作者:李娟吴涛员翠
[导读] 摘要:调度监控平台是智能电网调度系统的重要组成部分,在电网调度系统中发挥着监控、调整、预测等重要功能。
(陕西省电力公司榆林供电公司 719000)
摘要:调度监控平台是智能电网调度系统的重要组成部分,在电网调度系统中发挥着监控、调整、预测等重要功能。
本文结合智能电网,对智能电网调度系统中的调度监控平台进行了简要的分析。
关键词:智能电网;调度系统;调度监控平台
1 智能电网调度系统概述
在智能电网中,调度系统犹如它的中枢神经,也是保障电网能够安全、稳定、可靠、经济运行的重要支柱,还是电力系统控制中自动化程度最高的那部分内容。
近年来随着我国电网的不断发展,电网的运行管理与需求也在不断提高,这也对电力生产经营过程中的调度系统提出了更高的要求。
电力运行调度能够有效实现协调控制一体化、适应调整一体化、流程管理高效化、统筹计划精细化、信息通信网络等发展功能,最终在智能电网中形成自动化、信息化、互动化、分布式、一体化的智能调度决策中心。
智能调度主要是指在各种先进的现代化技术的大力支撑下,在电力企业中实现调度计划、建立模型、实现测量、进行数据分析、做出决策、有效控制与管理生产过程的整个过程。
最终将在智能电网中形成具有自动化、适应性强、前瞻性强、优化性强、柔性好、高度的敏锐性等为主要特征的智能化的电力调度。
2 智能调度的优势分析
2.1较强的可观测性
RTU、FTU等这些监测装置都是传统电网中设立的,但是,这些监测装置的设置并不能使相关人员及时了解处于电力系统另一端的用户的实施运行的信息。
智能调度则不同,它已经具备了高级智能量测系统,即:AMI,数据共享平台,在这些系统和平台的支撑下,在二测技术的帮助下,能够及时了解用户的用电信息,并以此为基础实现了对全网的需求侧状态的最精确大大估计。
可见,智能调度系统具有较强的可观测性。
这也帮助智能电网调度中心实现了对整个电网的精确调控。
2.2资源更加可控
发电资源是传统电力系统中的主要可控资源。
近年来随着各种可再生能源的大规模接入,在分布式发电的广泛应用环境下,很多发电环节出现了不可控的问题。
在智能电网中,可控的资源范围得到扩大,不再局限于发电资源,还包含了储能装置、负荷、电力电子技术基础上的可控输电设备等资源。
2.3运行调控性更加灵活便利
经济性、安全性、电能的质量是对传统电网的调度中衡量的主要目标和控制目标。
但是,智能电网调度系统则不通,它将多样化、复杂化特征作为控制的主要目标,电网在保证电力系统供电需求的同时,必须实现能耗的最低排放,保证环保的效果。
因此,电网在运行中必须根据实际情况做出调整。
2.4结构功能的开放性更高
电能主要是通过发电、输电、配电、用电等单向流动的程序实现对的,这是传统电网中设计的对电网的调控模式。
在设计时也是单纯地将已经具备同一工鞥的软件进行部署的;但是,智能电能这不同于传统的电网,它能够支持那些大接入的规模的、分布式的电源,这样就使得电网的调控模式变得更加复杂了,电网的不同功能模块之间的互操作性更高了,软件的可重用性功能也更高了,系统的开放性也更高了。
3 智能电网调度系统监控平台体系的构架
现代信息技术不断发展、网络技术的迅速普及、云时代和网络时代的到来,为智能电网中的调度系统监控平台提供了新的思路。
针对智能电网调度系统的基本特点、电力智能云信息平台应用的可行性,各电力企业应着手构建云计算基础上的智能电网调度系统。
平台中将云计算技术、数据服务总线等以系统结构化的方式将分散的数据资源、电网自动化等基础设施进行了整合,最终构建成一套可靠性高、实时性强、准确度高的智能电网调度云计算监控平台。
方便系统调度的管理人员能够对系统的组件的运行与使用进行实施监控、按需调整调度等,该平台还专门设立了一个统一的管理监控界面。
云计算平台以分布式数据服务总线为核心组件,还包括动态负载均衡及资源调配系统、分布式海量数据存储系统和集成计算引擎三大功能组件。
这些功能组件通过分布式数据服务总线构成虚拟层,实现控制信息与数据信息的交换、传输和整合,同时统一管理和调配底层的物理硬件,为各种应用程序被高效稳定地调用和访问提供了保障。
4 智能电网调度系统关键技术的实施
4.1调度数据集成化技术
综合多种数据能够支持电网调度的事故决策时需要利用到电网调度智能监控系统以及事故处理辅助决策系统,常见的几种数据有:①SCADA/EMS稳态数据;②保护数据;③信息管理系统数据,而综合数据的主要基础在于IEC61970系列标准,及松耦合方式下XML自描述的信息交换格式。
4.2智能调度控制技术
电网运行的安全得不到保障时,需要对其灵敏度进行分析,有效的调整电网运行,确保其稳定的运行。
而当事故发生时,则需要事先提示,当难以对机组端面存在的过载问题进行调节时,则需要适当的减少负荷。
4.3事故诊断与处理技术
事故诊断以及处理技术主要包含以下几点:①多重复杂故障诊断技术;②错误信息冗余技术;③恢复多目标事故技术。
而多重故障诊断技术关键点在于故障区域,通过分组技术展示出电网中动作的信息、保护动作的信息以及诊断故障的信息,同时关联并重组上述相关信息。
5 电网调度智能监控功能的实施
结合信息化技术及自动控制技术的作用,增强电网调度智能监控及防误技术的实际作用效果,优化电网调度智能监控及防误系统的服务功能,可以不断提升电网调度水平。
这些技术作用下可以使电网调度具备以下方面的功能:
5.1电网故障的实时诊断分析
结合网络拓扑结构,可以使电网信息侦听功能监控到幵关变位、潮流、电压突变等故障信息,并对相关信息进行甄别,以系统实时采集的幵关、保护动作信息和潮流扰动信息为基础,通过网络信息识别技术,对其中的人工操作、错误信息扰动等信息进行蹄选,剔除伪信息后,作为事故判断的依据,启动电网故障诊断功能,增强整个调度过程的安全性;
5.2做出科学的电网事故处理辅助决策
电网调度过程中智能监控及防误技术实际作用的充分发挥,将会增强电网调度的有效控制,最大降低各种电网事故的发生率,并结合电网调度的实际要求,优化电网事故处理辅助功能,确保故障诊断结果的准确性,使电网调度中过潮流、过电压因素能够得到有效地处理,优化智能化电网调度管理系统的服务功能;
5.3完善电网调度中在线事故处理机制
在可靠的智能监控及防误技术系统作用下,可以为电网调度员提供丰富的软件资源,促使各类故障发生时的实际范围大小能够在最短的时间内进行确定,加强电网潮流变化控制的同时,实现电网在线事故的有效处理,完善这些事故的处理机制。
与此同时,通过对电网调度智能监控及防误技术的合理运用,有利于构建出性能可靠的在线事故预案模块,增强电力设备故障模拟信息准确性的同时有利于缩短电网潮流处理时间,制定出切实有效的处理措施,减少电网事故的影响范围。
结语
智能电网调度系统作为当下经济发展的趋势,也是确保能源供给与安全的重要方面,随着科技发展,它为智能电网提供了很好的条件。
因此,在实践工作中,应当加强对信息化技术及其它专业技术手段的深入理解,不断完善电网调度智能监控体系,消除电网调度中可能存在的安全隐患,确保电力系统能够公共长期处于稳定高效的工作状态。
参考文献
[1]温旭霞.浅谈智能电网中电网调度技术的研究[J].科技风,2013(15).
[2]张宇,张壮,刘嘉明.智能电网调度技术支持系统在调度电网管理的应用[J].中国科技博览,2015.
[3]金芬兰,王昊,范广民,等.智能电网调度控制系统的变电站集中监控功能设计[J].电力系统自动化,2015.
作者简介
李娟(1984.9-),女,陕西渭南人,东北电力大学电气工程及其自动化专业学士,单位:陕西省电力公司榆林供电公司。