递归方程解的渐近阶的求法

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

递归方程解的渐近阶的求法

递归算法在最坏情况下的时间复杂性渐近阶的分析,都转化为求相应的一个递归方程的解的渐近阶。因此,求递归方程的解的渐近阶是对递归算法进行分析的关键步骤。

递归方程的形式多种多样,求其解的渐近阶的方法也多种多样。这里只介绍比较实用的五种方法。

1.代入法这个方法的基本步骤是先推测递归方程的显式解,然后用数学归纳法证明这

一推测的正确性。那么,显式解的渐近阶即为所求。

2.迭代法这个方法的基本步骤是通过反复迭代,将递归方程的右端变换成一个级数,

然后求级数的和,再估计和的渐近阶;或者,不求级数的和而直接估计级数的渐近阶,从而达到对递归方程解的渐近阶的估计。

3.套用公式法这个方法针对形如:T (n)=aT (n / b)+f (n) 的递归方程,给出三种情况下

方程解的渐近阶的三个相应估计公式供套用。

4.差分方程法有些递归方程可以看成一个差分方程,因而可以用解差分方程(初值问

题)的方法来解递归方程。然后对得到的解作渐近阶的估计。

5.母函数法这是一个有广泛适用性的方法。它不仅可以用来求解线性常系数高阶齐次

和非齐次的递归方程,而且可以用来求解线性变系数高阶齐次和非齐次的递归方程,甚至可以用来求解非线性递归方程。方法的基本思想是设定递归方程解的母函数,努力建立一个关于母函数的可解方程,将其解出,然后返回递归方程的解。

本章将逐一地介绍上述五种方法,并分别举例加以说明。

本来,递归方程都带有初始条件,为了简明起见,我们在下面的讨论中略去这些初始条件。

递归方程组解的渐进阶的求法——代入法

用这个办法既可估计上界也可估计下界。如前面所指出,方法的关键步骤在于预先对解答作出推测,然后用数学归纳法证明推测的正确性。

例如,我们要估计T(n)的上界,T(n)满足递归方程:

其中是地板(floors)函数的记号,表示不大于n的最大整数。

我们推测T(n)=O(n log n),即推测存在正的常数C和自然数n0,使得当n≥n0时有:

T(n)≤Cn log n

事实上,取n0=22=4,并取

那么,当n0≤n≤2n0时,成立。今归纳假设当2k-1n0≤n≤2k n0,k≥1时,成立。那么,当2k n0≤n≤2k+1n0时,我们有:

即仍然成立,于是对所有n≥n0,成立。可见我们的推测是正确的。因而得出结论:递归方程的解的渐近阶为O(n log n)。

这个方法的局限性在于它只适合容易推测出答案的递归方程或善于进行推测的高手。推测递归方程的正确解,没有一般的方法,得靠经验的积累和洞察力。我们在这里提三点建议:

(1) 如果一个递归方程类似于你从前见过的已知其解的方程,那么推测它有类似的解是合理的。作为例子,考虑递归方程:

右边项的变元中加了一个数17,使得方程看起来难于推测。但是它在形式上与很类似。实际上,当n充分大时

相差无几。因此可以推测与有类似的上界T(n)=O(n log n)。进一步,数学归纳将证明此推测是正确的。

(2)从较宽松的界开始推测,逐步逼近精确界。比如对于递归方程,要估计其解的渐近下界。由于明显地有T(n)≥n,我们可以从推测T(n)=Ω(n)开始,发现太松后,把推测的阶往上提,就可以得到T(n)=Ω(n log n)的精确估计。

(3)作变元的替换有时会使一个末知其解的递归方程变成类似于你曾见过的已知其解的方程,从而使得只要将变换后的方程的正确解的变元作逆变换,便可得到所需要的解。例如考虑递归方程:

看起来很复杂,因为右端变元中带根号。但是,如果作变元替换m=log n,即令n=2m,将其代入,则变成:

把m限制在正偶数集上,则又可改写为:

T(2m)=2T(2m/2)+m

若令S(m)=T(2m),则S(m)满足的递归方程:

S(m)=2S(m/2)+m,

与类似,因而有:

S(m)=O(m1og m),

进而得到T(n)=T(2m)=S(m)=O(m1og m)=O(log n loglog n)

上面的论证只能表明:当(充分大的)n是2的正偶次幂或换句话说是4的正整数次幂时才成立。进一步的分析表明对所有充分大的正整数n都成立,从而,递归方程解的渐近阶得到估计。

在使用代入法时,有三点要提醒:

(1)记号O不能滥用。比如,在估计解的上界时,有人可能会推测T(n)=O(n),即对于充分大的n,有T(n)≤Cn,其中C是确定的正的常数。他进一步运用数学归纳法,推出:

从而认为推测T(n)=O(n)是正确的。实际上,这个推测是错误的,原因是他滥用了记号O,错误地把(C+l)n与Cn等同起来。

(2)当对递归方程解的渐近阶的推测无可非议,但用数学归纳法去论证又通不过时,不妨在原有推测的基础上减去一个低阶项再试试。作为一个例子,考虑递归方程

其中是天花板(floors)函数的记号。我们推测解的渐近上界为O(n)。我们要设法证明对于适当选择的正常数C和自然数n0,当n≥n0时有T(n)≤Cn。把我们的推测代入递归方程,得到:

我们不能由此推断T(n)≤Cn,归纳法碰到障碍。原因在于的右端比Cn多出一个低阶常量。为了抵消这一低阶量,我们可在原推测中减去一个待定的低阶量b,即修改原来的推测为T(n)≤Cn-b。现在将它代人,得到:

只要b≥1,新的推测在归纳法中将得到通过。

(3)因为我们要估计的是递归方程解的渐近阶,所以不必要求所作的推测对递归方程的初始条件(如T(0)、T(1))成立,而只要对T(n)成立,其中n充分大。比如,我们推测的解T(n)≤Cn log n,而且已被证明是正确的,但是当n=l时,这个推测却不成立,因为(Cn log n)|n=1=0而T(l)>0。

递归方程组解的渐进阶的求法——迭代法

用这个方法估计递归方程解的渐近阶不要求推测解的渐近表达式,但要求较多的代数运算。方法的思想是迭代地展开递归方程的右端,使之成为一个非递归的和式,然后通过对和式的估计来达到对方程左端即方程的解的估计。

作为一个例子,考虑递归方程:

接连迭代二次可将右端项展开为:

由于对地板函数有恒等式:

相关文档
最新文档