高等桥梁设计理论——钢桥疲劳设计理论
桥梁疲劳

钢桥疲劳设计综述桥梁结构中的应力脉动主要是由活载及其引起的桥梁震动所造成的。
应力变动的幅度越大,即使平均应力小于屈服应力也会发生疲劳破坏。
铁路桥梁列车活载比较大,引起的震动也比较大,所以,铁路桥的疲劳问题更加突出。
公路桥中有些应力变化比较大的地方也要注意疲劳问题。
比如斜拉索如果经常发生风震也会发生疲劳问题。
造成疲劳破坏的原因有钢材的材料特性和局部拉应力的集中程度。
外因则是应力反复的循环特征和次数。
因此在计算结构进行疲劳研究时,需要对上述内因和外因做研究。
1.钢桥的疲劳特征钢桥的疲劳一般认为疲劳失效通常起始于高应力区,如几何突变处、受拉残余应力区和尖锐的不连续处(按裂纹处理)。
在循环应力作用下,疲劳裂纹始于此处,最终在剩余界面不能承受荷载峰值时构件失效。
疲劳裂纹的扩展近似沿最大主应力的垂直方向,其扩展速率成指数增长,早期增长较慢,占疲劳寿命的大部分。
由于这个原因,要较发现钢结构的裂纹则比较困难。
在设计钢桥时,比较容易发生疲劳裂纹的部位有:焊缝的根部或焊址、倒角、冲孔或钻孔、剪开边或锯开边、高接触压力下的表面、张紧索的根部、材料的不连续处或焊接缺陷、由于机械损伤而形成的刻痕或擦痕。
另外,在荷载具有较高动静比、荷载作用频繁、采用焊接、复杂接头的部位、环境的影响也会引起疲劳。
2.疲劳的分析处理方法疲劳的分析处理方法主要有以下四类:(1)无限寿命设计无限寿命设计方法的出发点是构件在设计应力下能够长期的安全使用。
对于等循环应力,即应力幅和平均应力不随时间变化的稳定交变应力状态,无限寿命设计方法的强度条件是构件的工作应力不小于等幅疲劳应力极限强度。
对于随时间变化的不稳定的交变应力状态,可按最大应力幅小于构件的疲劳应力极限进行设计。
无限寿命设计作为一种简化的设计方法,往往使设计的构件过于笨重。
为了充分利用材料的承载潜能,设计应力水平不断提高,疲劳设计方法也从无限寿命设计进入有限寿命设计阶段。
(2)安全寿命设计安全寿命设计是保证结构在一定使用期内不发生疲劳破坏,因此允许构件的工作应力超过疲劳极限。
高等桥梁结构理论课程讲义2014-01

Eads Bridge( Over the Mississippi at St. Louis, Missouri,1867-1874 )
Britannia Bridge
Britannia Bridge(改建后)
(三)桁架分析理论(钢材出现,1856年开始)
1847年美国工程师S. Whipple撰写了《桥梁建筑研究》,把桁架设计从经验 时代推进到科学时代,建议用铸铁做压杆,用锻铁做拉杆,形成金属桁架桥;
1857年德国工程师H.Gerber受木桁架的启发,建造了多腹杆格子桁架桥,后 来这种结构被推广到带挂孔的桁架体系;
尽管有限元软件功能强大,但近代桥梁工程师所创立的各种古典解析理论和 近似方法仍具有定性分析的意义,对于工程师在桥梁结构概念设计阶段进行估计 和把握体系力学性能、理解规范和分析病害等具有重要的意义。
(二)预应力混凝土技术
预应力概念在古代最初的应用是以绳索或铁箍缠绕桶板做水桶。直到1886年, 这一概念才应用到混凝土中。美国工程师P.H.Jackson独立地获得了在混凝土拱 内张紧钢拉杆做专用楼板的专利。1888年德国人C. E. W.Doehring获得了在楼板 受荷载前用施加预应力钢筋来加强的专利。
且牢固,申请专利。(混凝土结构的创始人!)1875年建造了世界上第一座跨 度为13.8m的钢筋混凝土人行桥(Chazelet Bridge)。The important point of Monier‘s idea was that it combined steel and concrete in such a way that the best qualities of each material were brought into play.
浅析铁路桥梁的钢结构抗疲劳设计

浅析铁路桥梁的钢结构抗疲劳设计摘要:钢结构具有轻质、高强,抗拉、抗压性能强等优势,因而在我国桥梁建设中应用十分广泛,桥梁是为满足交通功能的建筑物,现代桥梁钢结构由结构钢加上单元经焊(栓)连接组成为复杂的受力系统,有明确的承载安全和服役耐久性要求。
钢结构桥梁整体性能的好坏,与其整体设计密切相关。
本文从抗疲劳的设计角度,对桥梁钢结构展开设计提出若干抗疲劳设计的建议措施。
关键词:桥梁钢结构完整性设计损伤容限随着我国国民经济的高速发展,钢结构桥梁的建设与应用起着相当重要的作用。
我国铁路运营的桥梁,钢桥已经达到3800座以上,全长300 km以上。
钢结构桥梁的设计中,焊接应用越来越广泛。
钢桥疲劳断裂是结构失效的一种主要形式,由于疲劳失效的钢结构桥梁,越占失效结构的90%。
疲劳一般从应力集中开始,而焊接结构的疲劳又往往是从焊接接头处产生。
因此,焊接接头疲劳的设计是钢结构桥梁设计的关键技术。
本文着重从构造措施上对桥梁钢结构的抗疲劳设计提出建议。
一、钢结构抗疲劳概述钢材在持续反复荷载下,虽然在其名义应力远低于极限强度,甚至还低于屈服点时,也会发生破坏,这种“积劳成疾”的现象称为钢材的疲劳。
在疲劳破坏之前,钢材构件并不出现明显的变形或局部收缩,和脆性断裂一样,是突然破坏的。
所以对承受持续反复荷载的钢结构必须按其受载次数的多少来决定其强度和安全度。
疲劳的机理是钢材内部及其外表总有杂质和损伤(微观的)存在,在反复荷载下,这些薄弱点形成应力集中,开始产生塑性变形,继而应变硬化,于是在该处首先发生微裂(不是肉眼能见的)。
由于反复应力长期地继续下去,遂使这种微裂逐渐扩大,形成裂纹。
随着裂纹的发展,最后导致断裂。
从疲劳试样的断口上,可以发现裂断情况是一部分呈纤维状(曲线部分),一部分呈晶粒状组织。
纤维状部分,往往是由最外表一点起始,遂渐向内扩张,这一点便是疲劳裂纹的核心。
在试样长期运转下,这一裂口(核心)是一张一合的(受拉张开,受压闭合)。
公路钢结构桥梁的疲劳设计要点

公路钢结构桥梁的疲劳设计要点摘要:在公路桥梁整个设计阶段,结合桥涵设计指标的具体要求,要从实际情况入手,优化设计形式,执行有效的评价机制,发挥评价系统的最大化作用。
本次研究中以公路钢结构桥梁的疲劳设计为基础,对设计要点进行分析。
关键词:公路;钢结构桥梁;疲劳设计近些年来我国城镇化建设速度不断提升,公路里程不断增加,公路钢结构设计起到重要的作用,钢结构本身存在应力分布不均匀的现象,不同程度的疲劳程度存在差异,因此针对存在的各类安全隐患,必须做好抗疲劳设计。
一、影响公路钢结构桥梁疲劳性能的影响因素基于公路钢结构桥梁施工的具体要求,在后续利用阶段需要从现状入手,及时对影响因素进行分析,考虑到结构形式的具体要求,对其进行合理化应用。
以下将对影响公路钢结构桥梁疲劳性能的影响因素进行分析。
1.钢结构材料特征对于抗疲劳性能结构而言,在设计阶段要从已有特性入手,对各项性能和指标进行分析,避免出现严重的裂纹或者不良反应。
随着钢结构强度的不断增加,抗疲劳性能增强,但是不是所有材料强度都比较高,要对材料表面结构属性进行了解,最大程度提升其应用能力[1]。
2.外部因素基于现有检验指标的属性要求,考虑到变化因素的特殊性,要及时对结构属性因素进行对比。
如果存在昼夜温差大的现象,是和自然因素存在联系,因此需要及时对影响因素和评价指标进行分析,适当减少压力。
外部因素属于不可控制因素,实践表明,焊接常见的疲劳程度和应力幅度存在联系,需要结合强度和应力值指标对其进行完善设计。
3.内部因素很多结构内部因素直接对公路桥梁疲劳性能造成影响,由于疲劳形象出现变化,因此在结构设计过程中要对钢构件连接形式、公路桥梁结构以及构造细节等进行掌握,以现有焊接技术为标准,采用不同设计形式,能减少钢结构承载力,进而提升其应用优势。
二、公路钢结构桥梁抗疲劳计算1.全寿命周期设计考虑到现有设计形式的特殊要求,在利用阶段,必须综合对车辆荷载力进行分析。
桥梁应用过程中受到其他因素的影响,对施工、运营和维修管理等有严格的要求,在设计过程中,考虑到后期维护系统的可行性和代价等因素要求,需要对结构的替换周期进行分析,以现有的抗疲劳设计指标为例,对公路结构的抗疲劳工程采用分类设计形式,能最大程度减少造价,实现全寿命周期和设计理念的有效结合[2]。
钢梁混凝土桥梁的疲劳性能研究

钢梁混凝土桥梁的疲劳性能研究随着交通工具的不断发展和交通运输的日益繁忙,桥梁建设已经成为现代化城市发展的重要组成部分。
而桥梁建设中的关键问题之一就是如何确保桥梁的安全性和耐久性。
在桥梁的设计中,钢梁混凝土结构是常用的一种结构形式。
本文将围绕着钢梁混凝土桥梁的疲劳性能进行研究,对其相关内容进行探究。
一、疲劳性能的定义和影响因素疲劳性能是指材料或结构在交变载荷作用下表现出来的抵抗力。
任何一个结构体系,都会受到外部载荷的作用,并且在长期使用过程中不断受到反复的载荷作用,导致结构的疲劳损伤。
因此,疲劳性能是衡量一个结构体系寿命的重要指标之一。
影响钢梁混凝土桥梁疲劳性能的主要因素包括:材料的强度、承载能力、几何形状、工程施工质量等。
二、疲劳性能的试验研究为了研究钢梁混凝土桥梁的疲劳性能,一般需要进行试验研究。
其中,大样本试验是研究钢梁混凝土桥梁疲劳性能的常用方法。
大样本试验是指将钢梁混凝土桥梁的完整结构放置在特制试验台上,通过反复施加载荷来模拟实际工况下的载荷作用。
试验结果可以评估钢梁混凝土桥梁的耐久性和疲劳寿命。
另外,还可以使用小样本试验方法来研究钢梁混凝土桥梁的疲劳性能。
该方法利用试验材料进行破坏试验,通过测试结果来研究材料内部的断裂机制和疲劳破坏形态。
这种方法的优点是可以通过多次破坏试验来获得更多的数据,得到较准确的试验结果。
但是,其不足之处在于仅限于研究材料的疲劳性能,无法考虑结构复杂情况下的影响因素。
三、桥梁疲劳的修复和加固方法由于桥梁的使用过程中,往往会受到不同程度的疲劳损伤,因此,对于具有一定历史的桥梁来说,必须进行定期检测和修复。
桥梁的修复方法主要包括焊接、强化、防震等措施。
其中,钢板强化是提高桥梁疲劳寿命的常用技术。
通过在桥梁梁上设置加强板,可以提高钢梁混凝土桥梁的整体承载能力,改善其疲劳性能。
此外,对于新建桥梁来说,也可以采取预应力技术、金属脱氧和高强度钢筋等措施来加固桥梁的疲劳性能。
钢桥疲劳分析

Stress 0
Typical curve for concrete steel reinforcement
Rod
Stress range
2007.02
北京迈达斯技术有限公司
FEA MIDAS
Advanced Nonlinear and Detail Analysis
S-N 曲线
钢桥疲劳分析
Advanced Nonlinear and Detail Analysis
2. 分析步骤
钢桥疲劳分析
1) 首先做结构静力分析确定最大和最小应力的绝对值或者计算von Mises 应力,从而获得应力幅。 2) 当作用应力为变幅时,使用可将各应力幅组成起来的雨流计数法(Rain flow counting)和S-N曲 线计算。
Fatigue damage = 0.9 means: 1,000 load cycles can be applied before fatigue failure.
2007.02
北京迈达斯技术有限公司
FEA MIDAS
Advanced Nonlinear and Detail Analysis
钢桥疲劳分析
MIDAS IT
2007.02
北京迈达斯技术有限公司
FEA MIDAS
Advanced Nonlinear and Detail Analysis
5. 疲劳分析
钢桥疲劳分析
BS 5400中,对钢桥不同构造细节分为9个等级。在本案例中,主要分析U型肋与横隔板相接处的疲
劳效应。该部位为BS5400规范c细节分级。将对应等级参数从表格中选取带入S-N曲线方程式中, 得到该分级的疲劳曲线。
Advanced Nonlinear and Detail Analysis
钢桥的疲劳分析范文

钢桥的疲劳分析范文引言:钢桥是一种重要的交通基础设施,承担着车辆和行人的通行。
长期以来,由于交通流量的增加和重载车辆的增多,钢桥疲劳已成为桥梁设计和维护的重要问题。
本文将对钢桥的疲劳问题进行分析,探讨其原因、影响因素以及相应的解决方案。
一、疲劳问题的原因1.动力因素:钢桥在承受车辆荷载的同时还要面对自身的自重和震动荷载。
长期以来,车辆荷载和震动荷载的频繁作用会导致钢桥的材料疲劳,进而导致桥梁的损坏和断裂。
2.环境因素:钢桥承受了来自自然环境的多种因素的影响,如气候变化、温度差异和湿度等。
这些因素会导致桥梁材料的膨胀和收缩,从而产生内部应变,加速钢桥的疲劳破坏。
3.施工因素:钢桥的施工质量将直接影响其使用寿命和疲劳性能。
如果施工质量不达标,如焊接不牢固、连接部位强度不足等,将使钢桥易受疲劳破坏。
二、疲劳破坏的影响因素1.轴重:车辆荷载是引起桥梁疲劳破坏最主要的因素之一、大型重型车辆以及超限荷载的频繁通行将极大地加速钢桥的疲劳损伤。
2.荷载频率:荷载频率指的是钢桥受到车辆荷载的作用频率。
频繁通行以及车流量大的地区会导致高频率的荷载作用,进而加速疲劳破坏的发生。
3.震动荷载:震动荷载是指由于地震、强风和行人等外来因素引起的钢桥振动荷载。
频繁的震动荷载会对钢桥产生影响,从而影响其疲劳性能。
4.桥梁结构设计:桥梁的结构设计将直接影响其抗疲劳能力。
合理的结构设计可以减少桥梁的应力集中和疲劳问题的发生。
三、疲劳分析和解决方案1.疲劳分析方法:采用有限元方法对钢桥进行疲劳分析,模拟不同荷载条件下的桥梁应力分布。
通过数值计算和模拟试验,对桥梁的疲劳性能进行评估,找出潜在的疲劳破坏部位。
2.组织检测和监测:通过常规的检测方法,如无损检测和应力监测,定期对钢桥进行结构健康检测。
及时发现和修补疲劳破坏的部位,可以提高钢桥的抗疲劳性能。
3.结构优化:通过改进桥梁结构的材料和几何形状,降低桥梁的应力集中和疲劳问题的发生。
采用较短的跨度和更好的材料可以有效地提高桥梁的抗疲劳能力。
钢桥疲劳设计方法研究

钢桥疲劳设计方法研究陈惟珍1,D Ko steas 2(11同济大学桥梁工程系,上海200092;21慕尼黑工业大学,德国慕尼黑80333)摘 要:分析了引起钢桥疲劳的各种原因,并对目前国际上最新抗疲劳设计方法作了进一步讨论,对我国钢桥设计将起到一定的推动作用。
关键词:钢桥;疲劳;桥梁设计中图分类号:U 44114 文献标识码:A 文章编号:1003-4722(2000)02-0001-03收稿日期:2000-01-03基金项目:德国学术交流中心资助R estsicherheit und R estlebensdauer aelterer Stah lbruecken (A 96 00240)作者简介:陈惟珍(1962-),男,副研究员,1983年毕业于同济大学桥梁工程系,获学士学位,1986年获硕士学位,1999年毕业于德国慕尼黑工业大学,获工学博士学位,主要从事桥梁CAD 和疲劳断裂研究。
1 概 述结构抗疲劳设计的目的是保证在一定使用可靠水平下整个设计寿命内的结构承载能力,使得结构不会因疲劳而失效或修补。
承受车辆荷载的桥梁可能会因疲劳而遭到破坏,因此在设计中必须对疲劳加以验算[1]。
疲劳验算时要考虑下列因素:(1)精确预测整个设计寿命期间完整的荷载序列;(2)精确计算在此荷载下的结构弹性反应;(3)细节几何形状、制造方法和质量控制主要影响疲劳强度,甚至可能控制结构设计,并极大程度地影响着建造成本。
一般认为疲劳失效通常起始于高应力区,如几何突变处、受拉残余应力区和尖锐的不连续处(按裂纹处理)。
在循环应力作用下,疲劳裂纹起始于此处并逐步扩展。
最终失效发生在剩余截面不能承受荷载峰的情形时。
疲劳裂纹的扩展近似沿最大主应力的垂直方向,其扩展速率呈指数增长,早期增长较慢,占疲劳寿命的大部分。
由于这个原因,在结构中较早地对裂纹进行探测比较因难。
在钢桥设计时,下列可能的疲劳裂纹起始处要加以考虑:①焊缝的根部或焊趾;②倒角;③冲孔或钻孔;④剪开边或锯开边;⑤高接触压力下的表面;⑥张紧索的根部。