2018年广西贵港市平南县中考数学一模试卷和答案

合集下载

最新-2018年中等学校招生贵港市统一考试数学参考答案

最新-2018年中等学校招生贵港市统一考试数学参考答案

2018年中等学校招生贵港市统一考试数学参考答案及评分标准一、填空题1.132.20x -=(只要正确就给分) 3.110 4.增大 5.一 6.6 7.6 8.23 9.12 10.8 二、选择题:11.C 12.B 13.A 14.C 15.B 16.A 17.D 18.D三、解答题:19.解:(1)原式21222=⨯-⨯ ·································································· 3分 21=- ········································································································· 4分 1= ·············································································································· 5分(2)22111a a +-+ 21(1)(1)(1)(1)a a a a a -=++-+- ·········································································· 3分 1(1)(1)a a a +=+- ······························································································ 4分 11a =- ········································································································ 5分 当3a =时,原式1111312a ===--. ······························································· 6分 (不化简,直接代入不得分)20.解:(1)丹顶鹤100 0.18 合计 2000(填表每空1分,共3分,填图正确2分) ························································ 5分(2)大熊猫. ······························································································ 7分(3)答案如:①禁止乱捕滥杀野生动物.②禁止人为破坏野生动物的生存环境.(答案只要合理都得2分) ·························································· 9分频数(学生人数) 1000 800 600 400200 金丝猴 大熊猫 藏羚羊 丹顶鹤 动物名称21.解:如图(只要画对其中两个,就给满分).22.解:(1)因为m y x =的图象经过点(12)A -,,(2)B n ,. 所以212m m n ⎧=⎪⎪-⎨⎪=⎪⎩, ······························································································· 2分 解得:21m n =-=-,. ················································································ 4分(2)由(1)得,点A B ,的坐标分别为(12)A -,,(21)B -,, 又因为一次函数y kx b =+,经过(12)A -,,(21)B -,, ········································ 5分所以221k b k b -+=⎧⎨+=-⎩, ··························································································· 7分 解得:11k b =-⎧⎨=⎩,. ····························································································· 8分 所以一次函数的表达式为:1y x =-+. ····························································· 9分23.解:(1)CBD A ∠=∠(或CDB CBA ∠=∠或CD BC BC AC =,或CD BC BD BC AC AB==等) ······························· 3分 (2)设CD x =,则2CA x =+. ····································································· 4分 若CBD CAB △∽△,且2AD =,3BC =,则CD BC BC AC= ··································································································· 5分 即323x x =+ ······························································································· 6分 所以2230x x +-= ························································································ 7分 所以1213x x ==-,. ···················································································· 8分 经检验,1213x x ==-,都是原方程的解,但23x =-不符合题意,应舍去.所以1CD x ==. ·························································································· 9分24.解:设打折前A 商品每件x 元,B 商品每件y 元,依题意得: ··························· 1分 (2) (3)(1)63108584x y x y +=⎧⎨+=⎩, ····························································································· 6分 解这个方程组得164x y =⎧⎨=⎩, ················································································· 8分 所以打折前买5件A 商品和5件B 商品共用51654100⨯+⨯=(元)所以100964-=(元) ·················································································· 9分 答:打折后买5件A 商品和5件B 商品比打折前少花了4元钱. ···························· 10分25.解:(1)连接OD . ················································································· 1分 AD 切O 于点D ,OD AD ∴⊥.90ADO ∴∠=, ·························································································· 2分 又30A ∠=,60AOD ∴∠=,1302BED BCD AOD ∴∠=∠=∠=. ······························································ 3分 (2)DCE △是等边三角形.理由如下: ··························································· 4分 BC 为O 的直径且DE AC ⊥.CE CD ∴=.CE CD ∴=. ······························································································· 5分 BC 是O 的直径,90BEC ∴∠=,30BED ∠=,60DEC ∴∠=,DCE ∴△是等边三角形. ················································································ 6分(3)O 的半径2R =. ∴直径4BC =······························································································· 7分 由(2)知在Rt BEC △中,sin 60CE BC =, ····························································································· 8分 sin 60CE BC ∴=342=⨯ ······································································································ 9分 23= ······································································································· 10分26.解:(1)因为A C ,两点的横坐标分别为1,4,所以点(10)A ,. ······················· 1分 又点A B ,关于对称轴4x =对称,点(70)B ,. ···················································· 2分 (2)因为二次函数27y ax bx =+-的图象经过点(10)A ,,(70)B ,.所以7049770a b a b +-=⎧⎨+-=⎩, ···················································································· 4分 解得:18a b =-⎧⎨=⎩, ····························································································· 6分 所以二次函数的表达式为287y x x =-+-. ······················································· 7分(3)假设抛物线上存在点()P x y ,,使得45BAP ∠= ········································· 8分 ①当点P 在x 轴上方时有1x y -=,2187x x x ∴-=-+-,即2760x x -+=.解得:6x =或1x =(不合题意舍去)所以,268675y =-+⨯-=. ∴点P 为(65),.···························································································· 9分 此时,130(71)51522ABP S =⨯-⨯==△ ···························································· 10分 ②当点P 在x 轴的下方时,有1x y -=-2187x x x ∴-=-+,解得:8x =或1x =(不合题意舍去)所以,288877y =-+⨯-=-. ∴点P 为(87)-,. ······················································································ 11分 此时,142(71)72122ABP S =⨯-⨯==△ ··························································· 12分。

广西贵港市中考数学试卷含答案解析

广西贵港市中考数学试卷含答案解析

A.1
B.2
C.3
D.4
二、填空题(本大题共 6 小题,每小题 3 分,共 18 分 13. (3.00 分)若分式 的值不存在,则 x 的值为 . . .
14. (3. (3.00 分) 已知一组数据 4, x, 5, y, 7, 9 的平均数为 6, 众数为 5, 则这组数据的中位数是
A.2.18×106
3. (3.00 分)下列运算正确的是( A.2a﹣a=1 B.2a+b=2ab
C. (a4)3=a7
4. (3.00 分)笔筒中有 10 支型号、颜色完全相同的铅笔,将它们逐一标上 1﹣10 的号码,若从笔 筒中任意抽出一支铅笔,则抽到编号是 3 的倍数的概率是( A. B. C. D. ) )
21. (6.00 分)如图,已知反比例函数 y= (x>0)的图象与一次函数 y=﹣ x+4 的图象交于 A 和
B(6,n)两点. (1)求 k 和 n 的值; (2)若点 C(x,y)也在反比例函数 y= (x>0)的图象上,求当 2≤x≤6 时,函数值 y 的取值 范围.
22. (8.00 分)为了增强学生的环保意识,某校组织了一次全校 2000 名学生都参加的“环保知识” 考试,考题共 10 题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析 统计,发现所抽查的考卷中答对题量最少为 6 题,并且绘制了如下两幅不完整的统计图.请根据
18. (3.00 分)如图,直线 l 为 y=
x,过点 A1(1,0)作 A1B1⊥x 轴,与直线 l 交于点 B1,以原
点 O 为圆心,OB1 长为半径画圆弧交 x 轴于点 A2;再作 A2B2⊥x 轴,交直线 l 于点 B2,以原点 O 为圆心, OB2 长为半径画圆弧交 x 轴于点 A3; ……, 按此作法进行下去, 则点 An 的坐标为 ( ) .

2018年贵港市中考数学试卷含答案解析

2018年贵港市中考数学试卷含答案解析

2018年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)﹣8的倒数是()A.8 B.﹣8 C.D.2.(3.00分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3.00分)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5 4.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.16.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣37.(3.00分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.(3.00分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.2411.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.512.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分13.(3.00分)若分式的值不存在,则x的值为.14.(3.00分)因式分解:ax2﹣a=.15.(3.00分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3.00分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B 顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l 交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x 轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10.00分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5.00分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6.00分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8.00分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11.00分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10.00分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l 的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.2018年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.2.(3.00分)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.3.(3.00分)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答.【解答】解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.4.(3.00分)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.【解答】解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.5.(3.00分)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.6.(3.00分)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3【分析】据根与系数的关系α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,故选:D.7.(3.00分)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.8.(3.00分)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【解答】解:A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.9.(3.00分)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.10.(3.00分)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出则S△ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF :S△ABC=1:9,设S△AEF=x,∵S=16,四边形BCFE∴=,解得:x=2,=18,∴S△ABC故选:B.11.(3.00分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.5【分析】作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形=AC•BD=AB•E′M求二级可得答案.ABCD【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S=AC•BD=AB•E′M得×6×6=3•E′M,菱形ABCD解得:E′M=2,即PE+PM的最小值是2,故选:C.12.(3.00分)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】①根据抛物线的解析式得出抛物线与x轴的交点A、B坐标,由抛物线的对称性即可判定;②求得⊙D的直径AB的长,得出其半径,由圆的面积公式即可判定,③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;④求得直线CM、直线CD的解析式通过它们的斜率进行判定.【解答】解:∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.二、填空题(本大题共6小题,每小题3分,共18分13.(3.00分)若分式的值不存在,则x的值为﹣1.【分析】直接利用分是有意义的条件得出x的值,进而得出答案.【解答】解:若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.14.(3.00分)因式分解:ax2﹣a=a(x+1)(x﹣1).【分析】首先提公因式a,再利用平方差进行二次分解即可.【解答】解:原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).15.(3.00分)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是 5.5.【分析】先判断出x,y中至少有一个是5,再用平均数求出x+y=11,即可得出结论.【解答】解:∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.16.(3.00分)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为70°.【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.17.(3.00分)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B 顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).【分析】由将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,可得△ABC≌△A′BC′,由题给图可知:S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′可得出阴影部分面积.【解答】解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.18.(3.00分)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l 交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x 轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为(2n﹣1,0).【分析】依据直线l为y=x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点A n的坐标为(2n﹣1,0).【解答】解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10.00分)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值,再计算加减可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.20.(5.00分)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.【解答】解:如图所示,△ABC为所求作21.(6.00分)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B 的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=6>0结合反比例函数的性质,即可求出:当2≤x≤6时,1≤y≤3.【解答】解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.22.(8.00分)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是50;在扇形统计图中,m=16,n=30,“答对8题”所对应扇形的圆心角为86.4度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.【分析】(1)先读图,根据图形中的信息逐个求出即可;(2)求出人数,再画出即可;(3)根据题意列出算式,再求出即可.【解答】解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.23.(8.00分)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?【分析】(1)设这批学生有x人,原计划租用45座客车y辆,根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)找出每个学生都有座位时需要租两种客车各多少量,由总租金=每辆车的租金×租车辆数分别求出租两种客车各需多少费用,比较后即可得出结论.【解答】解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.24.(8.00分)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.【分析】(1)如图1,作直径BE,半径OC,证明四边形ABDC是平行四边形,得∠A=∠D,由等腰三角形的性质得:∠CBD=∠D=∠A=∠OCE,可得∠EBD=90°,所以BD是⊙O的切线;(2)如图2,根据三角函数设EC=3x,EB=5x,则BC=4x根据AB=BC=10=4x,得x 的值,求得⊙O的半径为,作高线CG,根据等腰三角形三线合一得BG=DG,根据三角函数可得结论.【解答】(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.25.(11.00分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【解答】解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM=;最大②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).26.(10.00分)已知:A、B两点在直线l的同一侧,线段AO,BM均是直线l 的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【分析】(1)先证明四边形OCBM是平行四边形,由于∠BMO=90°,所以▱OCBM 是矩形,最后直角三角形斜边上的中线的性质即可证明四边形OCBM是正方形;(2)连接AP、OB,由于∠ABP=∠AOP=90°,所以A、B、O、P四点共圆,从而利用圆周角定理可证明∠APB=∠OBM,所以△APB∽△OBM,利用相似三角形的性质即可求出答案.(3)由于点P的位置不确定,故需要分情况进行讨论,共两种情况,第一种情况是点P在O的左侧时,第二种情况是点P在O的右侧时,然后利用四点共圆、相似三角形的判定与性质,勾股定理即可求出答案.【解答】解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=3。

广西贵港中考数学试卷(含解析)

广西贵港中考数学试卷(含解析)

广西贵港市2018年中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为A、B、C、D的四个选项,其中只有一个是正确的.B2.(3分)(2018•贵港)中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为()3.(3分)(2018•贵港)某市5月份连续五天的日最高气温(单位:℃)分别为:33,6.(3分)(2018•贵港)分式方程=的解是()8.(3分)(2018•贵港)若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣﹣9.(3分)(2018•贵港)如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO 的度数是()====AEO=×10.(3分)(2018•贵港)如图,在平面直角坐标系中,反比例函数y1=的图象与一次函数y2=kx=b的图象交于A、B两点.若y1<y2,则x的取值范围是()11.(3分)(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()BAB CM===10CM=ACCM==,的最小值为12.(3分)(2018•贵港)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2018•贵港)计算:﹣9+3=﹣6.14.(3分)(2018•贵港)如图所示,AB∥CD,∠D=27°,∠E=36°,则∠ABE的度数是63°.15.(3分)(2018•贵港)一组数据1,3,0,4的方差是 2.5.﹣))[的平均数为,则方差[)﹣﹣16.(3分)(2018•贵港)如图,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD.若AD=4,BC=6,则梯形ABCD的面积是25.=5=17.(3分)(2018•贵港)如图,在菱形ABCD中,AB=2,∠C=120°,以点C为圆心的与AB,AD分别相切于点G,H,与BC,CD分别相交于点E,F.若用扇形CEF作一个圆锥的侧面,则这个圆锥的高是2.,再由,求出底面半径=2×=3=2.18.(3分)(2018•贵港)已知点A1(a1,a2),A2(a2,a3),A3(a3,a4)…,A n (a n,a n+1)(n为正整数)都在一次函数y=x+3的图象上.若a1=2,则a2018=6041.三、解答题(本大题共8小题,满分66分,解答用写出文字说明,证明过程或演算步骤)19.(10分)(2018•贵港)(1)计算:﹣()﹣1+(π﹣)0﹣(﹣1)10;(2)已知|a+1|+(b﹣3)2=0,求代数式(﹣)÷的值.=÷×==.20.(5分)(2018•贵港)如图,在△ABC中,AB=BC,点点D在AB的延长线上.(1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作∠CBD的平分线BM;②作边BC上的中线AE,并延长AE交BM于点F.(2)由(1)得:BF与边AC的位置关系是BF∥AC.21.(6分)(2018•贵港)如图所示,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数y=﹣的图象在第二象限内交于点B,过点B作BD⊥x轴于点D,OD=2.(1)求直线AB的解读式;(2)若点P是线段BD上一点,且△PBC的面积等于3,求点P的坐标.﹣,=322.(8分)(2018•贵港)某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有1260名学生;(2)在图①中,“三等奖”随对应扇形的圆心角度数是108°;(3)将图②补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23.(7分)(2018•贵港)如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求BE2的值.)根据正方形的对角线等于边长的AE 出BH,然后利用勾股定理列式计算即可得解.,AB=2,﹣AE=AH=×﹣﹣),()424.(9分)(2018•贵港)在开展“美丽广西,清洁乡村”的活动中某乡镇计划购买A、B 两种树苗共100棵,已知A种树苗每棵30元,B种树苗每棵90元.(1)设购买A种树苗x棵,购买A、B两种树苗的总费用为y元,请你写出y与x之间的函数关系式(不要求写出自变量x的取值范围);(2)如果购买A、B两种树苗的总费用不超过7560元,且B种树苗的棵树不少于A种树苗棵树的3倍,那么有哪几种购买树苗的方案?(3)从节约开支的角度考虑,你认为采用哪种方案更合算?25.(10分)(2018•贵港)如图,AB是大半圆O的直径,AO是小半圆M的直径,点P 是大半圆O上一点,PA与小半圆M交于点C,过点C作CD⊥OP于点D.(1)求证:CD是小半圆M的切线;(2)若AB=8,点P在大半圆O上运动(点P不与A,B两点重合),设PD=x,CD2=y.①求y与x之间的函数关系式,并写出自变量x的取值范围;②当y=3时,求P,M两点之间的距离.∴.2OP=CD=CPD=,==,PH=2.PH=2,或.26.(11分)(2018•贵港)如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.(1)求该抛物线的解读式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C 四点为顶点的四边形是平行四边形时,求此时点P的坐标.﹣+﹣+2﹣×﹣),m=2﹣(﹣)=5;3),∴P的纵坐标为﹣×22+×2+2=2,33。

最新-广西贵港市2018届中考数学一模试卷含答案解析 精

最新-广西贵港市2018届中考数学一模试卷含答案解析 精

2018年广西贵港市中考数学一模试卷一、选择题:本大题共12小题,每小题3分,共36分.每小题都给出标号为A,B,C,D的四个选项,其中只有一个是正确的.1.﹣6的绝对值等于()A.﹣6 B.6 C.﹣D.2.据国家统计局公布,2018年我国国内生产总值约为676700亿元(人民币),请用科学记数法表示数据“676700亿”,结果是()A.6.767×105 B.6.676×1012C.6.676×1013D.6.676×10143.下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a64.正八边形的每个内角的度数是()A.144°B.140°C.135°D.120°5.下列一元二次方程中,有两个不相等实数根的方程是()A.x2+1=0 B.x2﹣3x+1=0 C.x2﹣2x+1=0 D.x2﹣x+1=06.若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2)B.(1,﹣2)C.(﹣2,0)D.(4,6)7.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于()A.B.C.D.8.下列命题中正确的是()A.对角线互相垂直的四边形是菱形B.菱形的周长等于两条对角线长之和的两倍C.对角线相等的平行四边形是菱形D.菱形的面积等于两条对角线长之积的一半9.如图,已知点A,B,C在⊙O上,且∠BAC=25°,则∠OCB的度数是()A.70°B.65°C.55°D.50°10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是()A.2B.8 C.2D.1011.二次函数y=ax2+bx+c的图象如图所示,则化简二次根式+的结果是()A.a+b B.﹣a﹣b C.2b﹣c D.﹣2b+c12.如图,在矩形ABCD中,点E是CD的中点,AE平分∠BED,PE⊥AE交BC于点P,连接PA,以下四个结论:①BE平分∠AEC;②PA⊥BE;③AD=AB;④PB=2PC.则正确的个数是()A.4个B.3个C.2个D.1个二、填空题:本大题共6小题,每小题3分,共18分13.函数y=中自变量x的取值范围是.14.计算:已知:a+b=3,ab=1,则a 2+b 2= .15.某班一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人.则本次测验的中位数是 .16.如图,已知直线a ∥b ,c ⊥d ,∠1=36°,则∠2的度数是 .17.已知某几何体的三视图如图所示(单位:cm ),则它的侧面展开图的面积是 cm 2.18.如图,边长为n (n 为正整数)的正方形OABC 的边OA 、OC 在坐标轴上,点A 1,A 2,…,A n﹣1为OA 的n 等分点,点B 1,B 2,B 3…,B n ﹣1为CB 的n 等分点,连接A 1B 1,A 2B 2,A 3B 3,…,A n ﹣1B n ﹣1,分别与曲线y=(x >0)相交于点C 1,C 2,C 3…,C n ﹣1.若B 6C 6=9A 6C 6,则n 的值是 .三、解答题:本大题共8小题,满分66分. 19.计算: (1)|﹣2|+(﹣)﹣1﹣(2018﹣π)0+2cos30°(2)先化简,再求值:(﹣)÷,其中x=﹣2.20.如图,在6×8的网格中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)在图中△ABC的内部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心为点O,位似比为1:2;(2)连接(1)中的AA′,则线段AA′的长度是.21.如图,已知反比例函数y1=(k≠0)的图象经过点(8,),直线y2=x+b与反比例函数图象相交于点A和点B(m,4).(1)求上述反比例函数和直线的解析式;(2)当y1<y2时,请直接写出x的取值范围.22.某中学开展“校园文化节“活动,对学生参加书法比赛的作品按A、B、C、D四个等级进行了评定.现随机抽取部分参赛学生书法作品的评定结果进行统计分析,并将分析结果绘制成如图扇形统计图(图①)和条形统计图(图②),根据所给信息完成下列问题:(1)本次抽取的样本的容量为;(2)在图①中,C级所对应的扇形圆心角度数是;(3)请在图②中将条形统计图补充完整;(4)已知该校本次活动学生参赛的书法作品共750件,请你估算参赛作品中A级和B级作品共多少件?23.某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,但总费用不超过5720元,这所学校最多购买了多少个B型号篮球?24.如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AC上,⊙O经过B,D 两点,交BC于点E.(1)求证:AC是⊙O的切线;(2)若AB=6,sin∠BAC=,求BE的长.25.如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).(1)求抛物线的解析式;(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.26.已知:△CDO≌△ABO,其中C与A,D与B对应,在△CDO绕点O旋转过程中,连接AC 和BD,设直线AC与BD的交点为P.(1)如图1,若△ABO是等边三角形,请探究并猜想:线段AC与BD的数量关系为,∠APB的度数为;(2)如图2,若△ABO是直角三角形,且∠AOB=90°,OA=2,OB=3,设线段AC=kBD,求证:AC⊥BD,并求出k的值;(3)如图3,若△ABO是锐角三角形,且∠AOB=65°,OA=2,OB=3,延长BO至点E,使OE=OB,连接DE,设线段AC=kBD.①直接写出k的值和∠APB的度数;②求AC2+(kDE)2的值.2018年广西贵港市中考数学一模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.每小题都给出标号为A,B,C,D的四个选项,其中只有一个是正确的.1.﹣6的绝对值等于()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣6|=6,故选:B.【点评】本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.据国家统计局公布,2018年我国国内生产总值约为676700亿元(人民币),请用科学记数法表示数据“676700亿”,结果是()A.6.767×105 B.6.676×1012C.6.676×1013D.6.676×1014【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:676700亿=67670000000000=6.767×1013,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A.﹣5(a﹣1)=﹣5a+1 B.a2+a2=a4C.3a3•2a2=6a6D.(﹣a2)3=﹣a6【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】根据乘法分配律;合并同类项系数相加字母及指数不变;系数乘系数,同底数幂的乘法底数不变指数相加;积的乘方等于乘方的积,可得答案.【解答】解:A、﹣5(a﹣1)=﹣5a+5,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、系数乘系数,同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.【点评】本题考查了单项式的乘法,熟记法则并根据法则计算是解题关键.4.正八边形的每个内角的度数是()A.144°B.140°C.135°D.120°【考点】多边形内角与外角.【分析】根据n边形的外角和为360°得到正八边形的每个外角的度数==45°,然后利用补角的定义即可得到正八边形的每个内角=180°﹣45°=135°.【解答】解:∵正八边形的外角和为360°,∴正八边形的每个外角的度数==45°,∴正八边形的每个内角=180°﹣45°=135°.故选C.【点评】本题考查了多边形内角与外角:n边形的内角和为(n﹣2)×180°;n边形的外角和为360°.5.下列一元二次方程中,有两个不相等实数根的方程是()A.x2+1=0 B.x2﹣3x+1=0 C.x2﹣2x+1=0 D.x2﹣x+1=0【考点】根的判别式.【分析】根据一元二次方程根的判别式,分别计算△的值,逐一进行判断即可.【解答】解:A、△=﹣4<0,方程没有实数根;B、△=9﹣4=5>0,方程有两个不相等的实数根;C、△=4﹣4=0,方程有两个相等实数根;D、△=1﹣4=﹣3<0,方程没有实数根.故选:B.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6.若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A.(0,﹣2)B.(1,﹣2)C.(﹣2,0)D.(4,6)【考点】坐标与图形变化-平移.【分析】根据点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,以此规律可得D的对应点的坐标.【解答】解:点A(﹣1,3)的对应点为C(2,2),可知横坐标由﹣1变为2,向右移动了3个单位,3变为2,表示向下移动了1个单位,于是B(﹣3,﹣1)的对应点D的横坐标为﹣3+3=0,点D的纵坐标为﹣1﹣1=﹣2,故D(0,﹣2).故选A.【点评】此题考查了坐标与图形的变化﹣﹣﹣﹣平移,根据A(﹣2,3)变为C(3,6)的规律,将点的变化转化为坐标的变化是解题的关键.7.将分别标有数字0,1,2,3的司长卡片背面朝上洗匀后,抽取一张作为十位上的数字,再抽取一张作为个位上的数字,每次抽取都不放回,则所得的两位数恰好是奇数的概率等于()A.B.C.D.【考点】列表法与树状图法.【分析】列举出符合题意的各种情况的个数,再根据概率公式解答即可.【解答】解:画树形图如下:由树形图可知所得的两位数恰好是奇数的概率=,故选C.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.下列命题中正确的是()A.对角线互相垂直的四边形是菱形B.菱形的周长等于两条对角线长之和的两倍C.对角线相等的平行四边形是菱形D.菱形的面积等于两条对角线长之积的一半【考点】命题与定理.【分析】利用菱形的判定方法、菱形的性质及菱形的面积计算方法进行判断后即可确定正确的选项.【解答】解:A、对角线互相垂直的平行四边形是菱形,故错误;B、菱形的周长等于两条对角线长之和的两倍,错误;C、对角线相等的平行四边形是矩形,故错误;D、菱形的面积等于两条对角线长之积的一半,正确,故选D.【点评】本题考查了命题与定理的知识,解题的关键是了解菱形的判定方法、菱形的性质及菱形的面积计算方法等基础知识,难度不大;9.如图,已知点A,B,C在⊙O上,且∠BAC=25°,则∠OCB的度数是()A.70°B.65°C.55°D.50°【考点】圆周角定理.【分析】首先连接OB,由圆周角定理可求得∠BOC的度数,然后由等腰三角形的性质,求得答案.【解答】解:连接OB,∵OB=OC,∠BOC=2∠BAC=2×25°=50°,∴∠OCB=∠OBC=(180°﹣50°)=65°.故选B.【点评】此题考查了圆周角定理以及等腰三角形的性质.注意准确作出辅助线是解此题的关键.10.如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P 在AB边上,连接PC,PM,则PC+PM的最小值是()A.2B.8 C.2D.10【考点】轴对称-最短路线问题.【分析】根据平面内线段最短,构建直角三角形,解直角三角形即可.【解答】解:如图,过点作CO⊥AB于O,延长BO到C',使OC'=OC,连接MC',交AB于P,此时PC'=PM+PC'=PM+PC的值最小,连接AC',∵CO⊥AB,AC=BC,∠ACB=90°,∴∠ACO=×90°=45°,∵CO=OC',CO⊥AB,∴AC'=CA=AM+MC=8,∴∠OC'A=∠OCA=45°,∴∠C'AC=90°,∴C'A⊥AC,∴MC′===2,∴PC+PM的最小值为2.故选C.【点评】考查了线路最短的问题,确定动点P为何位置时,使PC+PM的值最小是关键.11.二次函数y=ax2+bx+c的图象如图所示,则化简二次根式+的结果是()A.a+b B.﹣a﹣b C.2b﹣c D.﹣2b+c【考点】二次函数图象与系数的关系.【分析】根据二次函数的图象确定a,b,c的取值范围后再化简二次根式.【解答】解:由图知,二次函数y=ax2+bx+c的图象的开口向,a<0,与y轴交于y轴的正半轴,c>0,对称轴在二象限,﹣<0,a<0,则b<0,图象过点(1,0),因此a+b+c=0,a+c=﹣b>0,所以原式=a+c+b﹣c=a+b.故选A【点评】本题利用了二次函数的图象确定a,b,c的取值范围后再化简二次根式,注意二次根式的结果为非负数.12.如图,在矩形ABCD中,点E是CD的中点,AE平分∠BED,PE⊥AE交BC于点P,连接PA,以下四个结论:①BE平分∠AEC;②PA⊥BE;③AD=AB;④PB=2PC.则正确的个数是()A.4个B.3个C.2个D.1个【考点】四边形综合题.【分析】根据矩形的性质结合全等三角形的判定与性质得出△ADE≌△BCE(SAS),进而求出△ABE 是等边三角形,再求出△AEP≌△ABP(SSS),进而得出∠EAP=∠PAB=30°,分别的得出AD与AB,PB与PC的数量关系.【解答】解:∵在矩形ABCD中,点E是CD的中点,∴DE=EC,在△ADE和△BCE中∵,∴△ADE≌△BCE(SAS),∴AE=BE,∠DEA=∠CEB,∵AE平分∠BED,∴∠AED=∠AEB,∴∠AED=∠AEB=∠CEB=60°,故:①BE平分∠AEC,正确;可得△ABE是等边三角形,∴∠DAE=∠EBC=30°,∵PE⊥AE,∴∠DEA+∠CEP=90°,则∠CEP=30°,故∠PEB=∠EBP=30°,则EP=BP,在△AEP和△ABP中,∴△AEP≌△ABP(SSS),∴∠EAP=∠PAB=30°,又∵AE=AB,∴AP⊥BE,故②正确;∵∠DAE=30°,∴=tan30°=,∴3DE=AD,∴AD=DE,∴③AD=AB正确;∵∠CEP=30°,∴CP=EP,∵EP=BP,∴CP=BP,∴④PB=2PC正确.总上所述:正确的共有4个.故选:A.【点评】此题主要考查了四边形综合以及全等三角形的判定与性质以及等边三角形的判定与性质和等腰三角形的性质等知识,正确得出△AEP≌△ABP是解题关键.二、填空题:本大题共6小题,每小题3分,共18分13.函数y=中自变量x的取值范围是x≥﹣1且x≠1.【考点】函数自变量的取值范围.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由y=,得x+1≥0且x﹣1≠0.解得x≥﹣1且x≠1,故答案为:x≥﹣1且x≠1.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零,得出不等式组是解题关键.14.计算:已知:a+b=3,ab=1,则a2+b2=7.【考点】完全平方公式.【专题】计算题.【分析】将所求式子利用完全平方公式变形后,把a+b与ab的值代入即可求出值.【解答】解:∵a+b=3,ab=1,∴a2+b2=(a+b)2﹣2ab=32﹣2=9﹣2=7.故答案为:7【点评】此题考查了完全平方公式的运用,熟练掌握完全平方公式是解本题的关键.15.某班一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人.则本次测验的中位数是7.5.【考点】中位数.【专题】应用题.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:这组数据已经排序,共有4+7+14+18+5+2=50人,所以应取中间第25、26个数,即8和7的平均数,则本次测验的中位数是(8+7)÷2=7.5(分).故填7.5.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数即为所求.如果是偶数个则找中间两位数的平均数.16.如图,已知直线a∥b,c⊥d,∠1=36°,则∠2的度数是126°.【考点】平行线的性质.【分析】根据两直线平行,同位角相等求出∠3,然后根据直角三角形两锐角互余求出∠4,再根据邻角互补求解即可.【解答】解:∵直线a∥b,∠1=36°,∴∠3=∠1=36°,∵c⊥d,∴∠4=90°﹣∠3=90°﹣36°=54°,∴∠2=180°﹣∠4=180°﹣54°=126°.故答案为:126°.【点评】本题考查了平行线的性质,平角的定义,是基础题,熟记性质是解题的关键.17.已知某几何体的三视图如图所示(单位:cm),则它的侧面展开图的面积是15πcm2.【考点】圆锥的计算;由三视图判断几何体.【分析】首先根据几何体的三视图判断该几何体为圆锥,然后根据尺寸求得侧面积即可.【解答】解:观察三视图发现该几何体为圆锥,其底面半径为6,高为4,故圆锥的母线长为=5,所以圆锥的侧面积为πrl=π×3×5=15πcm 2, 故答案为:15π.【点评】本题考查了圆锥的计算及由三视图判断几何题的知识,解题的关键是能够确定该几何体的形状并熟知圆锥的侧面积的计算公式,难度不大.18.如图,边长为n (n 为正整数)的正方形OABC 的边OA 、OC 在坐标轴上,点A 1,A 2,…,A n﹣1为OA 的n 等分点,点B 1,B 2,B 3…,B n ﹣1为CB 的n 等分点,连接A 1B 1,A 2B 2,A 3B 3,…,A n ﹣1B n ﹣1,分别与曲线y=(x >0)相交于点C 1,C 2,C 3…,C n ﹣1.若B 6C 6=9A 6C 6,则n 的值是 20 .【考点】反比例函数图象上点的坐标特征. 【专题】规律型.【分析】先根据正方形OABC 的边长为n ,点A 1,A 2,…,A n ﹣1为OA 的n 等分点,点B 1,B 2,…,B n ﹣1为CB 的n 等分点可知OA 6=n ,A 15B 15=15,再根据B 6C 6=9A 6C 6表示出C 6的坐标,代入反比例函数的解析式求出n 的值.【解答】解:∵正方形OABC 的边长为n ,点A 1,A 2,…,A n ﹣1为OA 的n 等分点,点B 1,B 2,…,B n ﹣1为CB 的n 等分点, ∴OA 6=6,A 6B 6=n , ∵B 6C 6=9A 6C 6, ∴C 6(6,), ∵点C 6在曲线y=(x >0)上,∴6×=n ﹣8,解得n=20.故答案为:20.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上k=xy为定值是解答此题的关键.三、解答题:本大题共8小题,满分66分.19.计算:(1)|﹣2|+(﹣)﹣1﹣(2018﹣π)0+2cos30°(2)先化简,再求值:(﹣)÷,其中x=﹣2.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质、特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=2﹣﹣3﹣1+2×=﹣﹣2+=﹣2;(2)原式=•=•=,当x=﹣2时,原式==﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,在6×8的网格中,每个小正方形的边长均为1,点O和△ABC的顶点均为小正方形的顶点.(1)在图中△ABC的内部作△A′B′C′,使△A′B′C′和△ABC位似,且位似中心为点O,位似比为1:2;(2)连接(1)中的AA′,则线段AA′的长度是.【考点】作图-位似变换.【专题】作图题.【分析】(1)利用OA,利用网格特点,分别画出OA、OB、OC的中点A′、B′、C′,则△A′B′C′满足条件;(2)利用勾股定理计算出OA的长,然后利用点A′为OA的中点可得到线段AA′的长度.【解答】解:(1)如图,△A′B′C′为所作;(2)OA==2,∵OA′:OA=1:2,∴点A′为OA的中点,∴AA′=.故答案为.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.21.如图,已知反比例函数y1=(k≠0)的图象经过点(8,),直线y2=x+b与反比例函数图象相交于点A和点B(m,4).(1)求上述反比例函数和直线的解析式;(2)当y1<y2时,请直接写出x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)分别把点A(8,﹣)、B(m,4)代入反比例函数y1=,可以得到k和m的值,再把B点坐标代入y2即可解决问题.(2)当y1<y2时,根据反比例函数图象在下面即可写出x的范围.【解答】解:(1)∵反比例函数y1=(k≠0)的图象经过点A(8,﹣),∴﹣=,∴k=﹣4,∴反比例函数解析式为y1=﹣.∵点B(m,4)在反比例函数解析式为y1=﹣上,∴4=﹣,∴m=﹣1,又B(﹣1,4)在y2=x+b上,∴4=﹣1+b,∴b=5,∴直线的解析式为y2=x+5.(2)由图象可知,当y1<y2时x的取值范围﹣4<x<﹣1或x>0.【点评】本题考查反比例函数与一次函数有关知识,灵活掌握待定系数法求函数解析式,注意第二个问题容易漏解,考虑问题要全面,属于中考常考题型.22.某中学开展“校园文化节“活动,对学生参加书法比赛的作品按A、B、C、D四个等级进行了评定.现随机抽取部分参赛学生书法作品的评定结果进行统计分析,并将分析结果绘制成如图扇形统计图(图①)和条形统计图(图②),根据所给信息完成下列问题:(1)本次抽取的样本的容量为120;(2)在图①中,C级所对应的扇形圆心角度数是108°;(3)请在图②中将条形统计图补充完整;(4)已知该校本次活动学生参赛的书法作品共750件,请你估算参赛作品中A级和B级作品共多少件?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据A级人数为24人,以及在扇形图中所占比例为20%,24÷20%即可得出抽取的样本的容量;(2)用360°乘以C级所占的百分比即可得出答案;(3)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36人,即可得出B级人数,补全条形图即可;(4)先求出A级和B级作品在样本中所占的百分比,再乘以总的作品,即可得出答案.【解答】解:(1)∵A级人数为24人,在扇形图中所占比例为20%,∴这次抽取的样本的容量为:24÷20%=120;故答案为:120;(2)C级所对应的扇形圆心角度数是360°×30%=108°;故答案为:108°;(3)根据C级在扇形图中所占比例为30%,得出C级人数为:120×30%=36(人),则B级人数为:120﹣36﹣24﹣12=48(人),如图所示:(4)∵A级和B级作品在样本中所占比例为:(24+48)÷120×100%=60%,∴该校这次活动共收到参赛作品750份,参赛作品达到B级以上有750×60%=450份.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,但总费用不超过5720元,这所学校最多购买了多少个B型号篮球?【考点】一元一次不等式的应用;二元一次方程组的应用.(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,就有3x+2y=310和2x+5y=500,【分析】由这两个方程构成方程组求出其解即可;(2)设最多买m个B型号篮球m个,则买A型号篮球球(96﹣m)个,根据总费用不超过5720元,建立不等式求出其解即可.【解答】解:(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,根据题意得,解得:∴一个足球50元、一个篮球80元;(2)设最多买m个B型号篮球m个,则买A型号篮球球(96﹣m)个,根据题意得:80m+50(96﹣m)≤5720,解得:m≤30,∵m为整数,∴m最大取30.∴最多购买了30个B型号篮球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.24.如图,在Rt△ABC中,∠ACB=90°,BD是∠ABC的平分线,点O在AC上,⊙O经过B,D 两点,交BC于点E.(1)求证:AC是⊙O的切线;(2)若AB=6,sin∠BAC=,求BE的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)连接DO,由等腰三角形的性质和角平分线的定义得出∠1=∠3,证出DO∥BC,由平行线的性质得出∠ADO=90°,即可得出结论;(2)设⊙O的半径为R,由三角函数求出BC,由平行线得出△AOD∽△ABC,得出对应边成比例,求出半径OD,过O作OF⊥BC于F,则BE=2BF,如图所示:则OF∥AC,由平行线的性质得出∠BOF=∠BAC,由三角函数求出BF,即可得出结果.【解答】(1)证明:连接DO,如图1所示∵BD是∠ABC的平分线,∴∠1=∠2,∵OB=OD,∴∠2=∠3,∴∠1=∠3,∴DO∥BC,∵∠C=90°,∴∠ADO=90°,即AC⊥OD,∴AC是⊙O的切线.(2)解:设⊙O的半径为R,在Rt△ABC中,∠ACB=90°,sin∠BAC==,∴BC=×6=4,由(1)知,OD∥BC,∴△AOD∽△ABC,∴,∴,解得:R=2.4,过O作OF⊥BC于F,如图所示:则BE=2BF,OF∥AC,∴∠BOF=∠BAC,∴=sin∠BOF=,∴BF=×2.4=1.6,∴BE=2BF=3.2.【点评】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、垂径定理等知识;本题综合性强,有一定难度,特别是(2)中,需要证明相似三角形求出半径才能得出结果.25.如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).(1)求抛物线的解析式;(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.【考点】二次函数综合题.【分析】(1)根据题意得出B点坐标,再利用待定系数法求出抛物线解析式;(2)首先表示出P,E点坐标,再利用PE=PD﹣ED,结合二次函数最值求法进而求出PE的最大值;(3)根据题意可得:PB=BC,则﹣x2+4x=3,进而求出Q点的横坐标,再利用直线上点的坐标性质得出答案.【解答】解:(1)∵BC⊥x轴,垂足为点C(4,0),且点B在直线y=x+1上,∴点B的坐标为:(4,3),∵抛物线y=ax2+bx+1经过点(2,6)和点B(4,3),∴,解得:,故抛物线的解析式为:y=﹣x2+x+1;(2)如图所示:设动点P的坐标为;(x,﹣x2+x+1),则点E的坐标为:(x,x+1),∵PD⊥x轴于点D,且点P在x轴上,∴PE=PD﹣ED=(﹣x2+x+1)﹣(x+1)=﹣x2+4x=﹣(x﹣2)2+4,则当x=2时,PE的最大值为:4;(3)∵PC与BE互相平分,∴PB=BC,∴﹣x2+4x=3,即x2﹣4x+3=0,解得:x1=1,x2=3,∵点Q分别时PC,BE的中点,且点Q在直线y=x+1,∴①当x=1时,点Q的横坐标为:,∴点Q的坐标为:(,),②当x=3时,点Q的横坐标为:,∴点Q的坐标为:(,),综上所述,点Q的坐标为:(,),(,).【点评】此题主要考查了二次函数最值求法以及待定系数法求二次函数解析式以及一次函数图象上点的坐标性质等知识,正确表示出PE的长再结合二次函数最值求法是解题关键.26.已知:△CDO≌△ABO,其中C与A,D与B对应,在△CDO绕点O旋转过程中,连接AC 和BD,设直线AC与BD的交点为P.(1)如图1,若△ABO是等边三角形,请探究并猜想:线段AC与BD的数量关系为AC=BD,∠APB的度数为60°;(2)如图2,若△ABO是直角三角形,且∠AOB=90°,OA=2,OB=3,设线段AC=kBD,求证:AC⊥BD,并求出k的值;(3)如图3,若△ABO是锐角三角形,且∠AOB=65°,OA=2,OB=3,延长BO至点E,使OE=OB,连接DE,设线段AC=kBD.①直接写出k的值和∠APB的度数;②求AC2+(kDE)2的值.【考点】相似形综合题.【分析】(1)根据全等三角形的性质得到AO=BO=OD=OC,∠AOB=∠COD=60°,根据全等三角形的性质得到∠OAC=∠OBD,推出A,B,O,D四点共圆,根据圆周角定理即可得到结论;(2)根据全等三角形的性质得到OC=OA,OD=OB,∠AOB=∠COD,由相似三角形的性质得到∠OAC=∠OBD根据余角的性质得到AD⊥BD根据相似三角形的性质得到k=;(3)①根据全等三角形的性质得到OC=OA,OD=OB,∠AOB=∠COD,根据相似三角形的性质得到k=;②由已知得到O是BE的中点,根据全等三角形的性质得到OD=OB=BE,由圆周角定理得到∠BDE=90°根据勾股定理即可得到结论.【解答】解:(1)∵△CDO≌△ABO,△ABO是等边三角形,∴AO=BO=OD=OC,∠AOB=∠COD=60°,∴∠AOC=∠BOD,在△AOC与△BOD中,,∴△AOC≌△BOD,∴AC=BD,∠OAC=∠OBD,∴A,B,O,D四点共圆,∴∠APB=∠AOB=60°,故答案为:AC=BD,60°;(2)∵△CDO≌△ABO,∴OC=OA,OD=OB,∠AOB=∠COD,∴∠AOC=∠BOD,∴,∴△AOC∽△BOD,∴∠OAC=∠OBD,∵∠AOB=90°,∴∠OBD+∠ABP+∠OAB=90°,∴∠OAC+∠ABP+∠OAB=90°,∴∠APB=90°,∴AD⊥BD,∵△AOC∽△BOD,∴,∵AC=kBD,∴k=;(3)①∵△CDO≌△ABO,∴OC=OA,OD=OB,∠AOB=∠COD,∴∠AOC=∠BOD,∴,。

2018年广西贵港市中考数学试卷

2018年广西贵港市中考数学试卷

2018年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)(2018•贵港)﹣8的倒数是()A.8 B.﹣8 C.D.2.(3.00分)(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3.00分)(2018•贵港)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3.00分)(2018•贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3.00分)(2018•贵港)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.16.(3.00分)(2018•贵港)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣37.(3.00分)(2018•贵港)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.(3.00分)(2018•贵港)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3.00分)(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB 的度数是()A.24°B.28°C.33°D.48°10.(3.00分)(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,=()则S△ABCA.16 B.18 C.20 D.2411.(3.00分)(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.512.(3.00分)(2018•贵港)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B 两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小题,每小题3分,共18分13.(3.00分)(2018•贵港)若分式的值不存在,则x的值为.14.(3.00分)(2018•贵港)因式分解:ax2﹣a=.15.(3.00分)(2018•贵港)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是.16.(3.00分)(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为.17.(3.00分)(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为(结果保留π).18.(3.00分)(2018•贵港)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x 轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为().三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10.00分)(2018•贵港)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.20.(5.00分)(2018•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.21.(6.00分)(2018•贵港)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.22.(8.00分)(2018•贵港)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;在扇形统计图中,m=,n=,“答对8题”所对应扇形的圆心角为度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.23.(8.00分)(2018•贵港)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?24.(8.00分)(2018•贵港)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.25.(11.00分)(2018•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC 交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.26.(10.00分)(2018•贵港)已知:A、B两点在直线l的同一侧,线段AO,BM 均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.2018年广西贵港市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3.00分)(2018•贵港)﹣8的倒数是()A.8 B.﹣8 C.D.【分析】根据倒数的定义作答.【解答】解:﹣8的倒数是﹣.故选:D.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3.00分)(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×105【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,n的值取决于原数变成a时,小数点移动的位数,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数据2180000用科学记数法表示为2.18×106.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3.00分)(2018•贵港)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a5【分析】根据合并同类项,幂的乘方与积的乘方,同底数幂的乘法的计算法则解答.【解答】解:A、2a﹣a=a,故本选项错误;B、2a与b不是同类项,不能合并,故本选项错误;C、(a4)3=a12,故本选项错误;D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确.故选:D.【点评】考查了合并同类项,幂的乘方与积的乘方,同底数幂的乘法,属于基础题,熟记计算法则即可解答.4.(3.00分)(2018•贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.【分析】由标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,利用概率公式计算可得.【解答】解:∵在标有1﹣10的号码的10支铅笔中,标号为3的倍数的有3、6、9这3种情况,∴抽到编号是3的倍数的概率是,故选:C.【点评】本题主要考查概率公式的应用,解题的关键是掌握随机事件A的概率P (A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3.00分)(2018•贵港)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.1【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【解答】解:∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选:D.【点评】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.6.(3.00分)(2018•贵港)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣3【分析】据根与系数的关系α+β=﹣1,αβ=﹣2,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.【解答】解:∵α,β是方程x2+x﹣2=0的两个实数根,∴α+β=﹣1,αβ=﹣2,∴α+β﹣αβ=﹣1﹣2=﹣3,故选:D.【点评】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键.7.(3.00分)(2018•贵港)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥3【分析】利用不等式组取解集的方法,根据不等式组无解求出a的范围即可.【解答】解:∵不等式组无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选:A.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.8.(3.00分)(2018•贵港)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【解答】解:A、=()2当a<0不成立,假命题;B、位似图形在位似比为1时全等,假命题;C、正多边形都是轴对称图形,真命题;D、圆锥的主视图一定是等腰三角形,假命题;故选:C.【点评】本题考查的是命题的真假判断,掌握二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念是解题的关键.9.(3.00分)(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB 的度数是()A.24°B.28°C.33°D.48°【分析】首先利用圆周角定理可得∠COB的度数,再根据等边对等角可得∠OCB=∠OBC,进而可得答案.【解答】解:∵∠A=66°,∴∠COB=132°,∵CO=BO,∴∠OCB=∠OBC=(180°﹣132°)=24°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3.00分)(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.24【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出则S △ABC的值.【解答】解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF :S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴=,解得:x=2,∴S=18,△ABC故选:B.【点评】本题考查了相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方,题型较好,但是一道比较容易出错的题目.11.(3.00分)(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4.5【分析】作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,由PE+PM=PE′+PM=E′M知点P、M即为使PE+PM取得最小值的点,利用S菱形=AC•BD=AB•E′M求二级可得答案.ABCD【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S=AC•BD=AB•E′M得×6×6=3•E′M,菱形ABCD解得:E′M=2,即PE+PM的最小值是2,故选:C.【点评】本题主要考查轴对称﹣最短路线问题,解题的关键是掌握菱形的性质和轴对称的性质.12.(3.00分)(2018•贵港)如图,抛物线y=(x+2)(x﹣8)与x轴交于A,B 两点,与y轴交于点C,顶点为M,以AB为直径作⊙D.下列结论:①抛物线的对称轴是直线x=3;②⊙D的面积为16π;③抛物线上存在点E,使四边形ACED为平行四边形;④直线CM与⊙D相切.其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】①根据抛物线的解析式得出抛物线与x轴的交点A、B坐标,由抛物线的对称性即可判定;②求得⊙D的直径AB的长,得出其半径,由圆的面积公式即可判定,③过点C作CE∥AB,交抛物线于E,如果CE=AD,则根据一组等边平行且相等的四边形是平行四边形即可判定;④求得直线CM、直线CD的解析式通过它们的斜率进行判定.【解答】解:∵在y=(x+2)(x﹣8)中,当y=0时,x=﹣2或x=8,∴点A(﹣2,0)、B(8,0),∴抛物线的对称轴为x==3,故①正确;∵⊙D的直径为8﹣(﹣2)=10,即半径为5,∴⊙D的面积为25π,故②错误;在y=(x+2)(x﹣8)=x2﹣x﹣4中,当x=0时y=﹣4,∴点C(0,﹣4),当y=﹣4时,x2﹣x﹣4=﹣4,解得:x1=0、x2=6,所以点E(6,﹣4),则CE=6,∵AD=3﹣(﹣2)=5,∴AD≠CE,∴四边形ACED不是平行四边形,故③错误;∵y=x2﹣x﹣4=(x﹣3)2﹣,∴点M(3,﹣),设直线CM解析式为y=kx+b,将点C(0,﹣4)、M(3,﹣)代入,得:,解得:,所以直线CM解析式为y=﹣x﹣4;设直线CD解析式为y=mx+n,将点C(0,﹣4)、D(3,0)代入,得:,解得:,所以直线CD解析式为y=x﹣4,由﹣×=﹣1知CM⊥CD于点C,∴直线CM与⊙D相切,故④正确;故选:B.【点评】本题考查了二次函数的综合问题,解题的关键是掌握抛物线的顶点坐标的求法和对称轴,平行四边形的判定,点是在圆上还是在圆外的判定,切线的判定等.二、填空题(本大题共6小题,每小题3分,共18分13.(3.00分)(2018•贵港)若分式的值不存在,则x的值为﹣1.【分析】直接利用分是有意义的条件得出x的值,进而得出答案.【解答】解:若分式的值不存在,则x+1=0,解得:x=﹣1,故答案为:﹣1.【点评】此题主要考查了分式有意义的条件,正确把握分式有意义的条件:分式有意义的条件是分母不等于零是解题关键.14.(3.00分)(2018•贵港)因式分解:ax2﹣a=a(x+1)(x﹣1).【分析】首先提公因式a,再利用平方差进行二次分解即可.【解答】解:原式=a(x2﹣1)=a(x+1)(x﹣1).故答案为:a(x+1)(x﹣1).【点评】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.15.(3.00分)(2018•贵港)已知一组数据4,x,5,y,7,9的平均数为6,众数为5,则这组数据的中位数是 5.5.【分析】先判断出x,y中至少有一个是5,再用平均数求出x+y=11,即可得出结论.【解答】解:∵一组数据4,x,5,y,7,9的众数为5,∴x,y中至少有一个是5,∵一组数据4,x,5,y,7,9的平均数为6,∴(4+x+5+y+7+9)=6,∴x+y=11,∴x,y中一个是5,另一个是6,∴这组数为4,5,5,6,7,9,∴这组数据的中位数是(5+6)=5.5,故答案为:5.5.【点评】本题考查了众数、平均数和中位数的知识,解答本题的关键是掌握各个知识点的概念.16.(3.00分)(2018•贵港)如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为70°.【分析】设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,依据∠EFC=∠EFC',即可得到180°﹣α=40°+α,进而得出∠BEF的度数.【解答】解:∵∠C'=∠C=90°,∠DMB'=∠C'MF=50°,∴∠C'FM=40°,设∠BEF=α,则∠EFC=180°﹣α,∠DFE=∠BEF=α,∠C'FE=40°+α,由折叠可得,∠EFC=∠EFC',∴180°﹣α=40°+α,∴α=70°,∴∠BEF=70°,故答案为:70°.【点评】本题主要考查了平行线的性质以及折叠问题,解题时注意:两直线平行,内错角相等,同旁内角互补.17.(3.00分)(2018•贵港)如图,在Rt△ABC中,∠ACB=90°,AB=4,BC=2,将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,则图中阴影部分的面积为4π(结果保留π).【分析】由将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,可得△ABC≌△A′BC′,由题给图可知:S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′可得出阴影部分面积.【解答】解:∵△ABC中,∠ACB=90°,AB=4,BC=2,∴∠BAC=30°,∠ABC=60°,AC=2.∵将△ABC绕点B顺时针方向旋转到△A′BC′的位置,此时点A′恰好在CB的延长线上,∴△ABC≌△A′BC′,∴∠ABA′=120°=∠CBC′,∴S阴影=S扇形ABA′+S△A′BC﹣S扇形CBC′﹣S△A′BC′=S扇形ABA′﹣S扇形CBC′=﹣=﹣=4π.故答案为4π.【点评】本题主要考查了图形的旋转,不规则图形的面积计算,扇形的面积,发现阴影部分面积的计算方法是解题的关键.18.(3.00分)(2018•贵港)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x 轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;……,按此作法进行下去,则点A n的坐标为(2n﹣1,0).【分析】依据直线l为y=x,点A1(1,0),A1B1⊥x轴,可得A2(2,0),同理可得,A3(4,0),A4(8,0),…,依据规律可得点A n的坐标为(2n﹣1,0).【解答】解:∵直线l为y=x,点A1(1,0),A1B1⊥x轴,∴当x=1时,y=,即B1(1,),∴tan∠A1OB1=,∴∠A1OB1=60°,∠A1B1O=30°,∴OB1=2OA1=2,∵以原点O为圆心,OB1长为半径画圆弧交x轴于点A2,∴A2(2,0),同理可得,A3(4,0),A4(8,0),…,∴点A n的坐标为(2n﹣1,0),故答案为:2n﹣1,0.【点评】本题主要考查了一次函数图象上点的坐标特征,解题时注意:直线上任意一点的坐标都满足函数关系式y=kx+b.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤)19.(10.00分)(2018•贵港)(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°;(2)解分式方程:+1=.【分析】(1)先计算绝对值、零指数幂、负整数指数幂、代入三角函数值,再计算加减可得;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=5﹣3﹣1﹣+=1;(2)方程两边都乘以(x+2)(x﹣2),得:4+(x+2)(x﹣2)=x+2,整理,得:x2﹣x﹣2=0,解得:x1=﹣1,x2=2,检验:当x=﹣1时,(x+2)(x﹣2)=﹣3≠0,当x=2时,(x+2)(x﹣2)=0,所以分式方程的解为x=﹣1.【点评】此题考查了实数的运算与解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.(5.00分)(2018•贵港)尺规作图(只保留作图痕迹,不要求写出作法).如图,已知∠α和线段a,求作△ABC,使∠A=∠α,∠C=90°,AB=a.【分析】根据作一个角等于已知角,线段截取以及垂线的尺规作法即可求出答案.【解答】解:如图所示,△ABC为所求作【点评】本题考查尺规作图,解题的关键是熟练运用尺规作图的基本方法,本题属于中等题型.21.(6.00分)(2018•贵港)如图,已知反比例函数y=(x>0)的图象与一次函数y=﹣x+4的图象交于A和B(6,n)两点.(1)求k和n的值;(2)若点C(x,y)也在反比例函数y=(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.【分析】(1)利用一次函数图象上点的坐标特征可求出n值,进而可得出点B的坐标,再利用反比例函数图象上点的坐标特征即可求出k值;(2)由k=6>0结合反比例函数的性质,即可求出:当2≤x≤6时,1≤y≤3.【解答】解:(1)当x=6时,n=﹣×6+4=1,∴点B的坐标为(6,1).∵反比例函数y=过点B(6,1),∴k=6×1=6.(2)∵k=6>0,∴当x>0时,y随x值增大而减小,∴当2≤x≤6时,1≤y≤3.【点评】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征以及反比例函数的性质,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,求出n、k的值;(2)利用一次函数的性质找出当x>0时,y随x值增大而减小.22.(8.00分)(2018•贵港)为了增强学生的环保意识,某校组织了一次全校2000名学生都参加的“环保知识”考试,考题共10题.考试结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是50;在扇形统计图中,m=16,n=30,“答对8题”所对应扇形的圆心角为86.4度;(2)将条形统计图补充完整;(3)请根据以上调查结果,估算出该校答对不少于8题的学生人数.【分析】(1)先读图,根据图形中的信息逐个求出即可;(2)求出人数,再画出即可;(3)根据题意列出算式,再求出即可.【解答】解:(1)5÷10%=50(人),本次抽查的样本容量是50,=0.16=16%,1﹣10%﹣16%﹣24%﹣20%=30%,即m=16,n=30,360°×=86.4°,故答案为:50,16,30,86.4;(2);(3)2000×(24%+20%+30%)=1480(人),答:该校答对不少于8题的学生人数是1480人.【点评】本题考查了条形统计图,总体、样本、个体、样本容量等知识点,能根据图形得出正确信息是解此题的关键.23.(8.00分)(2018•贵港)某中学组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?【分析】(1)设这批学生有x人,原计划租用45座客车y辆,根据“原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)找出每个学生都有座位时需要租两种客车各多少量,由总租金=每辆车的租金×租车辆数分别求出租两种客车各需多少费用,比较后即可得出结论.【解答】解:(1)设这批学生有x人,原计划租用45座客车y辆,根据题意得:,解得:.答:这批学生有240人,原计划租用45座客车5辆.(2)∵要使每位学生都有座位,∴租45座客车需要5+1=6辆,租60座客车需要5﹣1=4辆.220×6=1320(元),300×4=1200(元),∵1320>1200,∴若租用同一种客车,租4辆60座客车划算.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)求出租两种客车各需多少费用.24.(8.00分)(2018•贵港)如图,已知⊙O是△ABC的外接圆,且AB=BC=CD,AB∥CD,连接BD.(1)求证:BD是⊙O的切线;(2)若AB=10,cos∠BAC=,求BD的长及⊙O的半径.【分析】(1)如图1,作直径BE,半径OC,证明四边形ABDC是平行四边形,得∠A=∠D,由等腰三角形的性质得:∠CBD=∠D=∠A=∠OCE,可得∠EBD=90°,所以BD是⊙O的切线;(2)如图2,根据三角函数设EC=3x,EB=5x,则BC=4x根据AB=BC=10=4x,得x 的值,求得⊙O的半径为,作高线CG,根据等腰三角形三线合一得BG=DG,根据三角函数可得结论.【解答】(1)证明:如图1,作直径BE,交⊙O于E,连接EC、OC,则∠BCE=90°,∴∠OCE+∠OCB=90°,∵AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴∠A=∠D,∵OE=OC,∴∠E=∠OCE,∵BC=CD,∴∠CBD=∠D,∵∠A=∠E,∴∠CBD=∠D=∠A=∠OCE,∵OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠CBD=90°,即∠EBD=90°,∴BD是⊙O的切线;(2)如图2,∵cos∠BAC=cos∠E=,设EC=3x,EB=5x,则BC=4x,∵AB=BC=10=4x,x=,∴EB=5x=,∴⊙O的半径为,过C作CG⊥BD于G,∵BC=CD=10,∴BG=DG,Rt△CGD中,cos∠D=cos∠BAC=,∴,∴DG=6,∴BD=12.【点评】本题考查了圆周角定理、三角函数以及切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可,在圆的有关计算中,常根据三角函数的比设未知数,列方程解决问题.25.(11.00分)(2018•贵港)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC 交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.【解答】解:(1)将A,B,C代入函数解析式,得,解得,这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析是为y=kx+b,将B,C的坐标代入函数解析式,得,解得,BC的解析是为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,当n=时,PM=;最大②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣(不符合题意,舍),n3=,n2﹣2n﹣3=2﹣2﹣3=﹣2﹣1,P(,﹣2﹣1).当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合题意,舍),n2=﹣7(不符合题意,舍),n3=1,n2﹣2n﹣3=1﹣2﹣3=﹣4,P(1,﹣4);综上所述:P(1,﹣4)或(,﹣2﹣1).【点评】本题考查了二次函数综合题,解(1)的关键是利用待定系数法求函数解析式,解(2)①的关键是利用平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标得出二次函数,又利用了二次函数的性质;解(2)②的关键是利用等腰三角形的定义得出关于n的方程,要分类讨论,以防遗漏.26.(10.00分)(2018•贵港)已知:A、B两点在直线l的同一侧,线段AO,BM 均是直线l的垂线段,且BM在AO的右边,AO=2BM,将BM沿直线l向右平移,在平移过程中,始终保持∠ABP=90°不变,BP边与直线l相交于点P.(1)当P与O重合时(如图2所示),设点C是AO的中点,连接BC.求证:四边形OCBM是正方形;(2)请利用如图1所示的情形,求证:=;(3)若AO=2,且当MO=2PO时,请直接写出AB和PB的长.【分析】(1)先证明四边形OCBM是平行四边形,由于∠BMO=90°,所以▱OCBM 是矩形,最后直角三角形斜边上的中线的性质即可证明四边形OCBM是正方形;(2)连接AP、OB,由于∠ABP=∠AOP=90°,所以A、B、O、P四点共圆,从而利用圆周角定理可证明∠APB=∠OBM,所以△APB∽△OBM,利用相似三角形的性质即可求出答案.(3)由于点P的位置不确定,故需要分情况进行讨论,共两种情况,第一种情况是点P在O的左侧时,第二种情况是点P在O的右侧时,然后利用四点共圆、相似三角形的判定与性质,勾股定理即可求出答案.【解答】解:(1)∵2BM=AO,2CO=AO∴BM=CO,∵AO∥BM,∴四边形OCBM是平行四边形,∵∠BMO=90°,∴▱OCBM是矩形,∵∠ABP=90°,C是AO的中点,∴OC=BC,∴矩形OCBM是正方形.(2)连接AP、OB,∵∠ABP=∠AOP=90°,∴A、B、O、P四点共圆,由圆周角定理可知:∠APB=∠AOB,∵AO∥BM,∴∠AOB=∠OBM,∴∠APB=∠OBM,∴△APB∽△OBM,∴(3)当点P在O的左侧时,如图所示,过点B作BD⊥AO于点D,易证△PEO∽△BED,∴易证:四边形DBMO是矩形,∴BD=MO,OD=BM∴MO=2PO=BD,∴,∵AO=2BM=2,∴BM=,∴OE=,DE=,易证△ADB∽△ABE,∴AB2=AD•AE,∵AD=DO=DM=,∴AE=AD+DE=∴AB=,由勾股定理可知:BE=,易证:△PEO∽△PBM,∴=,∴PB=当点P在O的右侧时,如图所示,过点B作BD⊥OA于点D,∵MO=2PO,∴点P是OM的中点,设PM=x,BD=2x,∵∠AOM=∠ABP=90°,∴A、O、P、B四点共圆,∴四边形AOPB是圆内接四边形,∴∠BPM=∠A,∴△ABD∽△PBM,∴,又易证四边形ODBM是矩形,AO=2BM,∴AD=BM=,∴=,解得:x=,∴BD=2x=2由勾股定理可知:AB=3,BM=3【点评】本题考查相似三角形的综合问题,涉及勾股定理,相似三角形的性质与判定,圆周角定理,矩形的判定与性质,解方程等知识,综合程度较高,需要学生灵活运用所学知识.。

2018年广西贵港市中考数学试卷

2018年广西贵港市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)每小题四个选项中只有一项是正确的.1.(3分)(2018•贵港)﹣8的倒数是()A.8 B.﹣8 C.D.2.(3分)(2018•贵港)一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1053.(3分)(2018•贵港)下列运算正确的是()A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7D.(﹣a)2•(﹣a)3=﹣a54.(3分)(2018•贵港)笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1﹣10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是()A.B.C.D.5.(3分)(2018•贵港)若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.16.(3分)(2018•贵港)已知α,β是一元二次方程x2+x﹣2=0的两个实数根,则α+β﹣αβ的值是()A.3 B.1 C.﹣1 D.﹣37.(3分)(2018•贵港)若关于x的不等式组无解,则a的取值范围是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥38.(3分)(2018•贵港)下列命题中真命题是()A.=()2一定成立B.位似图形不可能全等C.正多边形都是轴对称图形D.圆锥的主视图一定是等边三角形9.(3分)(2018•贵港)如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB 的度数是()A.24°B.28°C.33°D.48°10.(3分)(2018•贵港)如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16, =()则S△ABCA.16 B.18 C.20 D.2411.(3分)(2018•贵港)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.2 D.4。

贵港市平南县中考数学一模试卷含答案解析

广西贵港市平南县中考数学一模试卷一、选择题:本大题共12小题,每小题3分,共36分,每小题都给出标号为A、B、C、D的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑.1.﹣5的绝对值是()A.B. C.+5 D.﹣52.下列各式是最简二次根式的是()A. B. C.D.3.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦4.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,则b+c的值是()A.﹣10 B.10 C.﹣6 D.﹣15.使式子有意义的x的取值范围是()A.x≥﹣1 B.﹣1≤x≤2 C.x≤2 D.﹣1<x<26.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.3 B.5 C.8 D.107.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2﹣3x=0.A.①②③ B.①④C.②④D.②8.已知⊙O的半径是一元二次方程x2﹣6x+9=0的解,且点O到直线AB的距离为2,则⊙O与直线AB的位置关系为()A.相交 B.相切 C.相离 D.无法确定9.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.60°B.50°C.30°D.20°10.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.2011.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°12.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,每小题3分,共18分.13.分解因式:x3y﹣xy3=.14.据《平南报》报道,平南工业园三利刀厂计划79000000元,数字79000000用科学记数法表示为.15.已知数据:3,4,3,5,7,则这组数据的众数和中位数分别是.16.如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B 在旋转过程中所经过的路线的长是cm.(结果保留π)17.在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是cm.18.如图,已知双曲线,,点P为双曲线上的一点,且PA⊥x 轴于点A,PB⊥y轴于点B,PA、PB分别依次交双曲线于D、C两点,则△PCD的面积为.三、解答题:本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤.19.(1)0×﹣()﹣1﹣|﹣3|+2cos45°(2)先化简,再求值:,其中x=.20.自从12月4日公布“八项规定”以来,我市某中学积极开展“厉行勤俭节约,反对铺张浪费”的活动.为此,校学生会在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.学生会根据统计结果绘制了如下统计表和统计图,根据所提供的信息回答下列问题:选项频数频率A 30 MB n 0.2C 5 0.1D 5 0.1(1)这次被抽查的学生有多少人?(2)求表中m,n的值,并补全条形统计图;(3)该中学有学生2200名,请估计这餐晚饭有剩饭的学生人数,按平均每人剩10克米饭计算,这餐晚饭将浪费多少千克米饭?21.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE 交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.22.某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?23.如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(x>O)的图象相交于B、C两点.(1)若B(1,2),求k1•k2的值;(2)若AB=BC,则k1•k2的值是否为定值?若是,请求出该定值;若不是,请说明理由.24.如图,⊙O的半径OC与直径AB垂直,点P在OB上,CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.(1)求证:ED是⊙O的切线;(2)当P为OE的中点,且OC=2时,求图中阴影部分的面积.25.如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x 轴于点A、D,交y轴于点C.已知A(3,0),D(﹣1,0),C(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)设△AOC沿x轴正方向平移1个单位长度(0<t≤3)时,△AOC与△ABC重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围;(3)当0<t≤时,求s的最大值.26.如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.广西贵港市平南县中考数学一模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,每小题都给出标号为A、B、C、D的四个选项,其中只有一个是正确的,请考生用2B铅笔在答题卡上将选定的答案标号涂黑.1.﹣5的绝对值是()A.B. C.+5 D.﹣5【考点】绝对值.【专题】计算题.【分析】根据绝对值的意义直接判断即可.【解答】解:|﹣5|=5.故选C.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.2.下列各式是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:=2,被开方数含能开得尽方的因数,不是最简二次根式,A不正确;是最简二次根式,B正确;=x,被开方数含能开得尽方的因数,不是最简二次根式,C不正确;被开方数含分母,不是最简二次根式,D不正确.故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是()A.的B.中C.国D.梦【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“们”与“中”是相对面,“我”与“梦”是相对面,“的”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,则b+c的值是()A.﹣10 B.10 C.﹣6 D.﹣1【考点】根与系数的关系.【分析】根据根与系数的关系得到﹣2+4=﹣b,﹣2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.【解答】解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,∴根据根与系数的关系,可得﹣2+4=﹣b,﹣2×4=c,解得b=﹣2,c=﹣8∴b+c=﹣10.故选:A.【点评】此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.5.使式子有意义的x的取值范围是()A.x≥﹣1 B.﹣1≤x≤2 C.x≤2 D.﹣1<x<2【考点】二次根式有意义的条件.【专题】压轴题.【分析】因为二次根式的被开方数是非负数,所以x+1≥0,2﹣x≥0,据此可以求得x的取值范围.【解答】解:根据题意,得,解得,﹣1≤x≤2;故选B.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是,则n的值为()A.3 B.5 C.8 D.10【考点】概率公式.【分析】根据红球的概率结合概率公式列出关于n的方程,求出n的值即可.【解答】解:∵摸到红球的概率为,∴P(摸到黄球)=1﹣=,∴=,解得n=8.故选:C.【点评】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.下列命题的逆命题一定成立的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则|a|=|b|;④若x=3,则x2﹣3x=0.A.①②③ B.①④C.②④D.②【考点】命题与定理.【专题】计算题.【分析】求出各命题的逆命题,判断真假即可.【解答】解:①对顶角相等,逆命题为:相等的角为对顶角,错误;②同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,正确;③若a=b,则|a|=|b|,逆命题为:若|a|=|b|,则a=b,错误;④若x=3,则x2﹣3x=0,逆命题为:若x2﹣3x=0,则x=3,错误.故选D.【点评】此题考查了命题与定理,熟练掌握逆命题的求法是解本题的关键.8.已知⊙O的半径是一元二次方程x2﹣6x+9=0的解,且点O到直线AB的距离为2,则⊙O与直线AB的位置关系为()A.相交 B.相切 C.相离 D.无法确定【考点】直线与圆的位置关系;解一元二次方程-配方法.【分析】首先求出方程的根,再利用半径长度,由点O到直线AB的距离为d,若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离,从而得出答案【解答】解:∵x2﹣6x+9=0,∴(x﹣3)=0,解得:x1=x2=3,∵⊙O的半径是一元二次方程x2﹣6x+9=0的解,∴r=3,∵点O到直线AB距离是2,∴d<r,∴直线AB与圆相交.故选A.【点评】此题考查的是圆与直线的关系,即圆心到直线的距离大于圆心距,直线与圆相离;小于圆心距,直线与圆相交;等于圆心距,则直线与圆相切,求出圆的半径是解本题关键.9.如图,在菱形ABCD中,∠BAD=100°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()A.60°B.50°C.30°D.20°【考点】菱形的性质.【分析】先根据菱形的性质求出∠BAF的度数,进而可得出∠ABC的度数,由线段垂直平分线的性质得出AF=BF,故可得出∠ABF的度数,根据全等三角形的判定定理得出△ADF≌△ABF,进而可得出结论.【解答】解:连接BF.∵菱形ABCD中,∠BAD=100°,∴∠DAC=∠BAC=50°,∠ADC=∠ABC=180°﹣100°=80°.∵EF是线段AB的垂直平分线,∴AF=BF,∴∠CAB=∠ABF=50°.在△ADF与△ABF中,∵,∴△ADF≌△ABF(SAS),∴∠DAF=∠ABF=50°,∴∠CDF=∠ADC﹣∠ADF=80°﹣50°=30°.故选C.【点评】本题考查的是菱形的性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.10.如图,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则△ABC的面积是()A.10 B.16 C.18 D.20【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】本题难点在于应找到面积不变的开始与结束,得到BC,CD的具体值.【解答】解:动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变.函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5.∴△ABC的面积为=×4×5=10.故选A.【点评】解决本题应首先看清横轴和纵轴表示的量.11.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42°B.28°C.21°D.20°【考点】圆的认识;等腰三角形的性质.【专题】计算题.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【专题】代数几何综合题;压轴题;数形结合.【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:本大题共6小题,每小题3分,共18分.13.分解因式:x3y﹣xy3=xy(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.【解答】解:x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.据《平南报》报道,平南工业园三利刀厂计划79000000元,数字79000000用科学记数法表示为7.9×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:79000000=7.9×106,故答案为:7.9×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.已知数据:3,4,3,5,7,则这组数据的众数和中位数分别是3,4.【考点】众数;中位数.【分析】根据众数、中位数的定义求解即可.【解答】解:这组数据按顺序排列为:3,3,4,5,7,故众数为:3,中位数为:4,故答案为:3,4.【点评】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.16.如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B 在旋转过程中所经过的路线的长是πcm.(结果保留π)【考点】旋转的性质;弧长的计算.【分析】让三角形的顶点B、C都绕点A逆时针旋转90°后得到对应点,顺次连接即可.旋转过程中点B所经过的路线是一段弧,根据弧长公式计算即可.【解答】解:如图所示:点B在旋转过程中所经过的路线的长是:=π(cm).故答案为:π.【点评】本题主要考查了旋转变换图形的方法及利用直角坐标系解决问题的能力.17.在⊙O中,AB是⊙O的直径,AB=8cm,==,M是AB上一动点,CM+DM的最小值是8cm.【考点】轴对称-最短路线问题;勾股定理;垂径定理.【分析】作点C关于AB的对称点C′,连接C′D与AB相交于点M,根据轴对称确定最短路线问题,点M为CM+DM的最小值时的位置,根据垂径定理可得=,然后求出C′D为直径,从而得解.【解答】解:如图,作点C关于AB的对称点C′,连接C′D与AB相交于点M,此时,点M为CM+DM的最小值时的位置,由垂径定理,=,∴=,∵==,AB为直径,∴C′D为直径,∴CM+DM的最小值是8cm.故答案为:8.【点评】本题考查了轴对称确定最短路线问题,垂径定理,熟记定理并作出图形,判断出CM+DM 的最小值等于圆的直径的长度是解题的关键.18.如图,已知双曲线,,点P为双曲线上的一点,且PA⊥x 轴于点A,PB⊥y轴于点B,PA、PB分别依次交双曲线于D、C两点,则△PCD的面积为.【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】根据BC×BO=1,BP×BO=4,得出BC=BP,再利用AO×AD=1,AO×AP=4,得出AD=AP,进而求出PB×PA=CP×DP=,即可得出答案.【解答】解:作CE⊥AO于E,DF⊥CE于F,∵双曲线,,且PA⊥x轴于点A,PB⊥y轴于点B,PA、PB分别依次交双曲线于D、C两点,∴矩形BCEO的面积为:xy=1,∵BC×BO=1,BP×BO=4,∴BC=BP,∵AO×AD=1,AO×AP=4,∴AD=AP,∵PA•PB=4,∴PB×PA=PA•PB=CP×DP=×4=,∴△PCD的面积为:.故答案为:.【点评】此题主要考查了反比例函数系数k的几何意义,根据已知得出PB×PA=CP×DP=是解决问题的关键.三、解答题:本大题共8小题,共66分,解答应写出文字说明、证明过程或演算步骤.19.(1)0×﹣()﹣1﹣|﹣3|+2cos45°(2)先化简,再求值:,其中x=.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)先根据零指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据有理数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再代入x的值代入进行计算即可.【解答】解:(1)原式=1×2﹣2﹣3+2×=2﹣2﹣3+=﹣2;(2)原式=÷[]==•=,当x﹣1时,原式=【点评】本题考查的是分式的化简求值,零指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值计算,熟知分式混合运算的法则是解答此题的关键.20.自从12月4日公布“八项规定”以来,我市某中学积极开展“厉行勤俭节约,反对铺张浪费”的活动.为此,校学生会在全校范围内随机抽取了若干名学生就某日晚饭浪费饭菜情况进行调查,调查内容分为四种:A.饭和菜全部吃完;B.有剩饭但菜吃完;C.饭吃完但菜有剩;D.饭和菜都有剩.学生会根据统计结果绘制了如下统计表和统计图,根据所提供的信息回答下列问题:选项频数频率A 30 MB n 0.2C 5 0.1D 5 0.1(1)这次被抽查的学生有多少人?(2)求表中m,n的值,并补全条形统计图;(3)该中学有学生2200名,请估计这餐晚饭有剩饭的学生人数,按平均每人剩10克米饭计算,这餐晚饭将浪费多少千克米饭?【考点】条形统计图;用样本估计总体;频数(率)分布表.【分析】(1)用C的人数除以相对应的频率就是总学生数;(2)A的频率M=频数÷样本容量,B的频数n=样本容量×频率;(3)先求出这餐晚饭有剩饭的学生人数为:2200×(0.2+0.1)=600(人),再用人数乘每人平均剩10克米饭,把结果化为千克.【解答】解:(1)这次被抽查的学生数=5÷0.1=50(人);答:这次被抽查的学生有50人.(2)m=30÷50=0.6;n=50×0.2=10;条形统计图如下:(3)这餐晚饭有剩饭的学生人数为:2200×(0.2+0.1)=660(人),660×10=6600(克)=6.6(千克).答:这餐晚饭将浪费6.6千克米饭.【点评】本题主要考查了条形图的有关知识,在解题时要注意灵活应用条形图列出式子得出结论是本题的关键.21.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE 交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.【考点】正方形的性质;全等三角形的判定与性质.【专题】探究型.【分析】AE=EF.根据正方形的性质推出AB=BC,∠BAD=∠HAD=∠DCE=90°,推出∠HAE=∠CEF,根据△HEB是以∠B为直角的等腰直角三角形,得到BH=BE,∠H=45°,HA=EC,根据CF平分∠DCE 推出∠HAE=∠CEF,根据ASA证△HAE≌△CEF即可得到答案.【解答】线段AE与EF的数量关系为:AE=EF.证明:∵四边形ABCD是正方形,∴AB=BC,∠BAD=∠HAD=∠DCE=90°,又∵EF⊥AE,∴∠AEF=90°,∵AD∥BC∴∠DAE=∠AEB(两直线平行,内错角相等)∴∠HAE=∠HAD+∠DAE=∠AEF+∠BEA=∠CEF,又∵△HEB是以∠B为直角的等腰直角三角形,∴BH=BE,∠H=45°,HA=BH﹣BA=BE﹣BC=EC,又∵CF平分∠DCE,∴∠FCE=45°=∠EHA,在△HAE和△CEF中∴△HAE≌△CEF(ASA),∴AE=EF.【点评】此题考查线段相等的证明方法,可以通过全等三角形来证明.要判定两个三角形全等,先根据已知条件或求证的结论确定三角形,再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.某学校为开展“阳光体育”活动,计划拿出不超过3000元的资金购买一批篮球、羽毛球拍和乒乓球拍,已知篮球、羽毛球拍和乒乓球拍的单价比为8:3:2,且其单价和为130元.(1)请问篮球、羽毛球拍和乒乓球拍的单价分别是多少元?(2)若要求购买篮球、羽毛球拍和乒乓球拍的总数量是80个(副),羽毛球拍的数量是篮球数量的4倍,且购买乒乓球拍的数量不超过15副,请问有几种购买方案?【考点】一元一次不等式的应用;一元一次方程的应用.【专题】经济问题.【分析】(1)设单价比中的每一份为x,表示出其单价,根据单价和可求得x,进而求得相应单价即可;(2)关系式为:乒乓球拍的数量≤15,总价≤3000,把相关数值代入求得合适的整数解的个数即可.【解答】解:(1)设篮球的单价为8x,则羽毛球拍的单价为3x,乒乓球拍的单价为2x.8x+3x+2x=130,解得x=10,∴8x=80;3x=30;2x=20,答:篮球的单价为80元,羽毛球拍的单价为30元,乒乓球拍的单价为20元;(2)设篮球的数量为y,则羽毛球拍的个数为4y,乒乓球拍的数量为80﹣5y.,解得13≤y≤14,∴y=13或14,答:有2种购买方案,篮球、羽毛球拍和乒乓球拍的数量分别为:13,52,15或14,56,10.【点评】考查一元一次方程及二元一次不等式组的应用;得到所需关系式是解决本题的关键.23.如图,一次函数y=k1x+b的图象过点A(0,3),且与反比例函数(x>O)的图象相交于B、C两点.(1)若B(1,2),求k1•k2的值;(2)若AB=BC,则k1•k2的值是否为定值?若是,请求出该定值;若不是,请说明理由.【考点】反比例函数综合题.【专题】综合题.【分析】(1)分别利用待定系数法求函数解析式求出一次函数解析式与反比例函数解析式,然后代入k1•k2进行计算即可得解;(2)设出两函数解析式,联立方程组并整理成关于x的一元二次方程,根据AB=BC可知点C的横坐标是点B的横坐标的2倍,再利用根与系数的关系整理得到关于k1、k2的关系式,整理即可得解.【解答】解:(1)∵A(0,3),B(1,2)在一次函数y=k1x+b的图象上,∴,解得;∵B(1,2)在反比例函数图象上,∴=2,解得k2=2,所以,k1•k2=(﹣1)×2=﹣2;(2)k1•k2=﹣2,是定值.理由如下:∵一次函数的图象过点A(0,3),∴设一次函数解析式为y=k1x+3,反比例函数解析式为y=,∴k1x+3=,整理得k1x2+3x﹣k2=0,∴x1+x2=﹣,x1•x2=﹣∵AB=BC,∴点C的横坐标是点B的横坐标的2倍,不妨设x2=2x1,∴x1+x2=3x1=﹣,x1•x2=2x12=﹣,∴﹣=(﹣)2,整理得,k1•k2=﹣2,是定值.【点评】本题是对反比例函数的综合考查,主要利用了待定系数法求函数解析式,根与系数的关系,(2)中根据AB=BC,得到点B、C的坐标的关系从而转化为一元二次方程的根与系数的关系是解题的关键.24.如图,⊙O的半径OC与直径AB垂直,点P在OB上,CP的延长线交⊙O于点D,在OB的延长线上取点E,使ED=EP.(1)求证:ED是⊙O的切线;(2)当P为OE的中点,且OC=2时,求图中阴影部分的面积.【考点】切线的判定;扇形面积的计算.【分析】(1)首先连接OD,ED=EP,易证得∠APD=∠ADP,又由⊙O的半径OC与直径AB垂直,可证得OD⊥ED,即可判定ED是⊙O的切线;(2)由S 阴影=S △ODE ﹣S 扇形,即可求得答案.【解答】(1)证明:连接OD ,∵OD 是圆的半径,∴OD=OC .∴∠CDO=∠DCO .∵OC ⊥AB ,∴∠COP=90°,∵在Rt △OPC 中,∠CPO+∠PCO=90°,∵ED=EP ,∴∠EDP=∠EPD=∠CPO ,∴∠EDO=∠EDP+∠CDO=∠CPO+∠DCO=90°.∴ED ⊥OD ,即ED 是圆的切线;(2)解:∵P 为OE 的中点,ED=EP ,且由(1)知△ODE 为Rt △,∴PE=PD=ED ,∴∠E=60°,∵OD=OC=2,∴ED==,∴S 阴影=S △ODE ﹣S 扇形=×2×﹣=.【点评】此题考查了切线的判定以及扇形面积的求解.注意准确作出辅助线是解此题的关键.25.如图甲,四边形OABC 的边OA 、OC 分别在x 轴、y 轴的正半轴上,顶点在B 点的抛物线交x 轴于点A 、D ,交y 轴于点C .已知A (3,0),D (﹣1,0),C (0,3).(1)求抛物线的解析式及顶点B的坐标;(2)设△AOC沿x轴正方向平移1个单位长度(0<t≤3)时,△AOC与△ABC重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围;(3)当0<t≤时,求s的最大值.【考点】二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x﹣3)(x+1),然后将点C的坐标代入求得a的值即可,然后利用配方法可求得点B的坐标;(2)过点C作射线CF∥x轴交AB于点F,先求得直线AB的解析式,然后求得点F的坐标,当0<x<时,如图1所示,依据S=S△MND﹣S△GNA﹣S△HAD可求得S与t的函数关系式,当<x≤3,如图2所示:由S=S△IVA,从而可求得S与t的函数关系式;(3)利用配方法求得函数的最大值即可.【解答】解:(1)设抛物线解析式为y=a(x﹣3)(x+1).∵将C(0,3)代入得:﹣3a=3,解得:a=﹣1.∴y=﹣x2+2x+3.∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴B(1,4).(2)设直线AB的解析式为y=kx+b.∵将A(3,0),B(1,4)代入y=kx+b得,解得∴y=﹣2x+6.过点C作射线CF∥x轴交AB于点F.∵将y=3代入直线AB的解析式得:﹣2x+6=3,得x=,∴F(,3).当0<t≤时,如图1所示.设△AOC平移到△DNM的位置,MD交AB于点H,MN交AE于点G.则ON=AP=t,过点H作LK⊥x轴于点K,交CF于点L.由△AHP∽△FHM,得,即.解得HK=2t.∴S=S△MND﹣S△GNA﹣S△HAD=×3×3﹣(3﹣t)2﹣t×2t=﹣t2+3t…②当<t≤3时,如图2所示:设△AOC平移到△PQR的位置,RQ交AB于点I,交AC于点V.∵直线AC的解析式为:y=﹣x+3,直线AB的解析式为:y=﹣2x+6∴V(t,t+3),I(t,﹣2t+6)∴IV=﹣2t+6﹣(﹣t+3)=﹣t+3,AQ=3﹣t.∴S=S△IVA=AQ点IV=(3﹣t)2=t2﹣3t+(<t≤3).综上所述:S=.(3)当0<x≤时,S=﹣t2+3t=﹣(t﹣1)2+当t=1时,S最大=.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、配方法求二次函数的顶点坐标以及二次函数的最大值、相似三角形的性质和判定,求得KH的长(用含t的式子表示)是解题的关键.26.如图1,在平行四边形ABCD中,AE⊥BC于点E,E恰为BC的中点,tanB=2.(1)求证:AD=AE;(2)如图2,点P在线段BE上,作EF⊥DP于点F,连接AF,求证:;(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作EF垂直直线DP,垂足为点F,连接AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题;探究型.【分析】(1)首先根据∠B的正切值知:AE=2BE,而E是BC的中点,结合平行四边形的对边相等即可得证.(2)此题要通过构造全等三角形来求解;作GA⊥AF,交BD于G,通过证△AFE≌△AGD,来得到△AFG是等腰直角三角形且EF=GD,由此得证.(3)辅助线作法和解法同(2),只不过结论有所不同而已.【解答】(1)证明:∵tanB=2,∴AE=2BE;∵E是BC中点,∴BC=2BE,即AE=BC;又∵四边形ABCD是平行四边形,则AD=BC=AE;。

广西贵港市平南县中考数学一模试卷(含解析)

2中考数学一模试卷、选择题(共12小题,每小题3分,满分36 分) 1.-'相反数的是()3A. 兰B.-上 C .-£ D2 23 32•世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有 0.000000076克,0.000000076克用科学记数法表示为(“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C. “同位角相等”这一事件是不可能事件A. -8- 97.6 X 10 B . 0.76 X 10 C. 87.6 X 10 D.90.76 X 103. F 列各式计算正确的是(A. (a+b ) 2=a 2+b 2B. a?a 2=a 3C.8 2 4a 十 a =a D. 2 3 5a +a =a4. F 列命题为真命题的是( A. 有公共顶点的两个角是对顶角 B. 多项式x 2 - 4x 因式分解的结果是 x (x 2- 4) C. , 2a+a=a D . 元二次方程 x 2 - x+2=0无实数根 5. F 列各式从左到右的变形中,为因式分解的是(A. 2 2x (a - b ) =ax - bx B . x - 1+y = (x - 1)( x+1)2+yC. 2y - 1= (y+1)( y - 1) D. ax+by+c=x (a+b ) +c 如图,观察图形,找出规律,确定第四个图形是( 6. (1) 7. F 列说法中正确的是( A. 掷两枚质地均匀的硬币, )“两枚硬币都是正面朝上”这一事件发生的概率为B.D. “钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件&如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则/ 1的度数是()9. 如图,半圆的圆心为Q直径AB的长为12, C为半圆上一点,/ CAB=30,爺的长是()10. 已知点P (a+1, 2a-3)关于x轴的对称点在第一象限,则a的取值范围是()3 3 3A. a< —1B.- 1v a v —C.— v a v 1D. a > —2 2 211. 如图1 ,在等边△ ABC中,点E、D分别是AC BC边的中点,点P为AB边上的一个动点,连接PE PD, PC DE设AP=x图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2 所示,则这条线段可能是图1中的()A. 线段DEB.线段PDC.线段PCD.线段PE12. 如图,在矩形ABCD中 ,D. 4 nAB=3, BC=2点E为AD中点,点F为BC边上任一点,过点F 分别作EB EC的垂线,垂足分别为点G, H,则FG+FH%()A. B — C - - D -.-二、填空题(本大题共有6小题,每小题3分,共18分)13. 函数y= 中,自变量x的取值范围是y x-114. 若a、3是方程x?+2x - 2017=0的两个实数根,则a 2+3 a + 3的值为15. _______________________________________________________________ 如图,OD是O O的半径,弦AB丄OD于E,若/ 0=70,则/ A+Z C _______________________ 度.16. 如图,P是Rt △ ABC的斜边BC上异于B C的一点,过点P作直线截厶ABC使截得的三角形与厶ABC相似,满足这样条件的直线共有______ 条.17. 不论m取任何实数,抛物线y= (x - m)2+m- 1 (x为自变量)的顶点都在一条直线上,则这条直线的函数解析式是______ .18. 如图,正方形ABCB中,AB=1, AB与直线I的夹角为30°,延长CB交直线l于点A, 作正方形ABC1B,延长C1B2交直线I于点A2,作正方形A2B2GR,延长C2B3交直线l于点A3, 作正方形A3B3C3B4,…,依此规律,贝U A2016A2017= .三、解答题(本大题共有 8小题,共66分) 19.( 10分)(1)计算:| 一 -2|+2015 °-( )+3tan3020. ( 6分)已知 BD 平分/ ABF,且交AE 于点D.(1 )求作:/ BAE 的平分线AP (要求:尺规作图,保留作图痕迹,不写作法); (2)设AP 交BD 于点O,交BF 于点C,当AC 丄BD 时,AD 与 BC 的位置和数量关系是21. ( 6分)已知直线y=kx+b 与x 轴、y 轴分别交于A 、B 两点,与反比例函数交于一象限 内的 P (, n ), Q (4, m )两点,且 tan / BOP=:2 16(1 )求反比例函数和直线的函数表达式;(2)解不等式组:并将不等式组的解集在所给数轴上表示出来.r跳绳数/个818590939598100人数128115(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是 ____ 个,中位数是____ 个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.23. (8分)某工厂对零件进行检测,弓I进了检测机器•已知一台检测机的工作效率相当于一名检测员的20倍•若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.(1 )求一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过7小时检测完成3450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?24. (8分)如图,△ ABC中,E是AC上一点,且AE=AB / EBC^/ BAG 以AB为直径的Lti-O O交AC于点D,交EB于点F.(1)求证:BC与O O相切;(2)若AB=8 sin / EBC=,,求AC的长.ABCD中, AO=1Q AB=8分别以OG OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3, 10)、E (0, 6),抛物线y=ax2+bx+c经过O, D, C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C 出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q C为顶点的三角形与△ ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC 是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.4h :BE\(:r■26.( 10分)在四边形ABCD中,对角线AC BD相交于点O,设锐角/ AOB a,将△ DOC按逆时针方向旋转得到△ D OC (0°<旋转角v 90°)连接AC、BD , AC与BD相交于点M(1 )当四边形ABCD为矩形时,如图1.求证:△ AOC BOD .(2)当四边形ABCD为平行四边形时,设AC=kBD如图2.①猜想此时△ AOC与厶BOD有何关系,证明你的猜想;②探究AC与BD的数量关系以及/ AME与a的大小关系,并给予证明.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1. (2017?平南县一模)- f相反数的是()A B. - C. - '' D .''2 23 3【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:-相反数的是:.3 3故选D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0•学生易与倒数混淆.2. (2017?平南县一模)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()—8 —9 8 9A. 7.6 X 10B. 0.76 X 10C. 7.6 X 10D. 0.76 X 10【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 a X 10 —n,与较大数的科学记数法不同的是其所使用的是负指数幕,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6 X 10 —8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a X 10 —n,其中1W|a| v 10, n为由原数左边起第一个不为零的数字前面的0的个数所决定.3. (2014?山尾)下列各式计算正确的是()A.(a+b)2=a2+b2B. a?a2=a3C. a8+ a2=a4D. a2+a3=a5【考点】同底数幕的除法;合并同类项;同底数幕的乘法;完全平方公式.【分析】A原式利用完全平方公式展开得到结果,即可做出判断;B原式利用同底数幕的乘法法则计算得到结果,即可做出判断;C原式利用同底数幕的除法法则计算得到结果,即可做出判断;D原式不能合并,错误.【解答】解:A、原式=a2+b2+2ab,故A选项错误;B原式=a3,故B选项正确;C原式=a6,故C选项错误;D原式不能合并,故D选项错误,故选:B【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.4.( 2016?铜仁市)下列命题为真命题的是( )A. 有公共顶点的两个角是对顶角B. 多项式x2- 4x因式分解的结果是x (x2- 4)2C. a+a=aD. —元二次方程x2- x+2=0无实数根【考点】命题与定理.【分析】分别利用对顶角的定义以及分解因式、合并同类项法则、根的判别式分析得出答案. 【解答】解:A、有公共顶点的两个角不一定是对顶角,故此选项错误;B多项式x2- 4x因式分解的结果是x (x+2)( x - 2),故此选项错误;C a+a=2a,故此选项错误;D —元二次方程x2- x+2=0, b2- 4ac= - 7v 0,故此方程无实数根,正确.故选:D.【点评】此题主要考查了命题与定理,正确把握相关定义是解题关键.5. ( 2017?平南县一模)下列各式从左到右的变形中,为因式分解的是( )2 2 2A. x( a- b) =ax- bx B . x2- 1+y2=( x- 1)( x+1) +y22C. y2- 1=( y+1)( y- 1)D. ax+by+c=x ( a+b) +c考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B没把一个多项式转化成几个整式积,故B错误;C把一个多项式转化成几个整式积,故C正确;D没把一个多项式转化成几个整式积,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积是解题关键.6. (2017?平南县一模)如图,观察图形,找出规律,确定第四个图形是(【分析】根据(1)(2)(3)可以看出图形每次逆时针方向旋转90°,按此规律不难作出判断.【解答】解:观察图形,发现(1)(2)(3)每次逆时针方向旋转90°,依次规律第四个图形应为C.故选:C.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的题目一般是从所给的图形、数据以及运算方法进行分析,从特殊到一般,从而总结出一般性的规律.7. (2015?包头)下列说法中正确的是()A掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B. “对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C. “同位角相等”这一事件是不可能事件D. “钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件【考点】随机事件;列表法与树状图法.D.【分析】根据概率的意义,可判断A;根据必然事件,可判断B、D;根据随机事件,可判断C.【解答】解:A、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为一,故A错误;4B “对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件,故B正确;C同位角相等是随机事件,故C错误;D “钝角三角形三条高所在直线的交点在三角形外部”这一事件是必然事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件. 不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.& (2013?盘锦)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则/ 1的度数是()A. 30°B. 20°C. 15°D. 14°【考点】平行线的性质.【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出/ 2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,/ 2=30°,/ 仁/ 3-Z 2=45°- 30°=15°.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.9. (2016?遵义)如图,半圆的圆心为0,直径AB的长为12, C为半圆上一点,/ CAB=30 , 的长是()【考点】弧长的计算.【分析】如图,连接0C利用圆周角定理和邻补角的定义求得/ AOC勺度数,然后利用弧长公式进行解答即可.【解答】解:如图,连接0C•••/ CAB=30 ,•••/ BOC=Z CAB=60 ,•••/ AOC=120 .又直径AB的长为12,•半径0A=6•-的长是:120^ n x &=4 n .ISO故选:D.【点评】本题考查了弧长的计算,圆周角定理.根据题意求得/10. (2012?深圳)已知点P (a+1, 2a - 3)关于x轴的对称点在第一象限,则a的取值范围是()3 3 3A. a<- 1B.- 1 < a v——C.---------- v a v 1D. a > ——2 2 2A. 12 n B . 6 n C. 5 n D. 4 nAOC的度数是解题的关键.【考点】 关于x 轴、y 轴对称的点的坐标;一元一次不等式组的应用.【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的 点的坐标的特点列出不等式组求解即可.【解答】 解:•••点P (a+1, 2a -3)关于x 轴的对称点在第一象限, •••点P 在第四象限,.f a+l>0® 」2旷3<焰,解不等式①得,a >- 1,3解不等式②得,a v ._,所以,不等式组的解集是-1v a < .£故选:B.【点评】本题考查了关于x 轴、y 轴对称点的坐标,以及各象限内点的坐标的特点,判断出 点P 在第四象限是解题的关键.11. (2017?平南县一模)如图 1,在等边厶ABC 中,点E 、D 分别是AC, BC 边的中点,点 P PD, PC, DE 设AP=x,图1中某条线段的长为 y ,若表示先设等边三角形的边长为 1个单位长度,再根据等边三角形的性质确定各线段取最小值时x 的范围,最后结合函数图象得到结论.为AB 边上的一个动点,连接 PE, A.线段 DE B .线段 PD C. 线段PC D.线段PE【考点】 动点问题的函数图象.【分析】 y 与x 的函数关系的图象大致如图【解答】解:设等边三角形边长为1,则0< x w 1,如图1,分别过点E、C、D作AB的垂线,垂足分别为F、G H, 根据等边三角形的性质可知,当x=—时,线段PE有最小值;4当x=时,线段PC有最小值;2当X—时,线段PD有最小值;4•••点E、D分别是AC BC边的中点•••线段DE的长为定值一‘2根据图2可知,当x=时,函数有最小值,故这条线段为PE.4故选(D)【点评】本题主要考查的是动点问题的函数图象,灵活运用等边三角形的性质和二次函数图象的对称性是解题的关键. 解题时需要深刻理解动点的函数图象,了解图象中关键点所代表的实际意义.12. (2017?平南县一模)如图,在矩形ABCD中, AB=3, BC=2,点E为AD中点,点F为BC边上任一点,过点F分别作EB EC的垂线,垂足分别为点G, H,则FG+FH^()A.亍B.匚孑二C.亍UD.冷「【考点】矩形的性质.【分析】连接EF,由矩形的性质得出AB=CD=3 AD=BC=2 / A=Z D=90,由勾股定理求出BE由SAS证明△ ABE^A DCE得出BE=CE^_,再由△ BCE的面积=△ BEF的面积+△ CEF 的面积,即可得出结果.【解答】解:连接EF,如图所示:•••四边形ABCD是矩形,••• AB=CD=3 AD=BC=2 / A=Z D=90 ,•••点E为AD中点,• AE=DE=1•BE= 珂!:,在厶ABE和厶DCE中,・ZA二ND ,,AB=DC•△ABE^A DCE( SAS ,•BE=CE=—,•/△ BCE的面积=△ BEF的面积+△ CEF的面积,BC X AB= BEX FG+ CE X FH,2 2 2即BE ( FG+FH =BC X AB,即(FG+FH =2X 3,【点评】本题考查了矩形的性质、全等三角形的判定与性质、熟练掌握矩形的性质,证明三角形全等是解决问题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)313. ----------------------------------------------------- (2017?平南县一模)函数y=. 中,自变量x的取值范围是 --------------------------------- x> 1解得:FG+FH」;勾股定理、三角形面积的计算; 故选:D.7 x-1【考点】函数自变量的取值范围.【分析】从两个角度考虑:分式的分母不为0 ;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:X- 1 > 0,解得x> 1.故答案为:X > 1.【点评】本题考查了函数式有意义的X的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数. 易错易混点:学生易对二次根式的非负性和分母不等于0混淆.14. (2017?平南县一模)若a、B是方程X2+2X - 2017=0的两个实数根,则a 2+3 a + 3的值为2015 .【考点】根与系数的关系.【分析】根据一兀二次方程的解的定义,以及根与系数之间的关系,即可得到 a 2+2 a2017=0, 2a + 3 = - 2,根据a +3 a + 3=a +2 a + a + 3即可求解.【解答】解:T a , 3是方程X2+2X-2017=0的两个实数根,• I a +2 a-2017=0, a + 3 = - 2.• I a 2+2 a=2017,• I a 2+3 a2+ 3 = a +2 a + a + 3 =2017 - 2=2015.故答案是2015.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是种经常使用的解题方法•也考查了一元二次方程的解的定义.15. (2017?平南县一模)如图,OD是O O的半径,弦AB丄OD 于E,若/ 0=70,则/ A+ZC= 55 度.【考点】垂径定理.【分析】如图,连接0B利用等腰厶OAB勺性质可以求得/ ABO的度数;结合垂径定理、圆周角定理来求/ C的度数,易得/ A+Z C的值.【解答】解:如图,连接0B•/ OA=OB•••Z A=Z ABO又••• OD是O O 的半径,弦AB丄OD于E,Z O=70 ,•- = ,/ AOB=140,•Z C= Z AOD=35 , Z A=Z ABO=20 ,2•Z A+Z C=55 .故答案是:55.D【点评】本题考查了垂径定理. 解此类题目要注意将圆的问题转化成三角形的问题再进行计算.16. (2017?平南县一模)如图,P是Rt△ ABC的斜边BC上异于B、C的一点,过点P作直线截△ ABC使截得的三角形与△ ABC相似,满足这样条件的直线共有3条.【考点】相似三角形的判定.【分析】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【解答】解:由于厶ABC是直角三角形,过P点作直线截△ ABC则截得的三角形与△ ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt △ ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故答案为:3.【点评】本题主要考查三角形相似判定定理及其运用. 解题时运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.17. (2017?平南县一模)不论m取任何实数,抛物线y(x- m 2+m- 1 (x为自变量)的顶点都在一条直线上,则这条直线的函数解析式是y=x - 1 .【考点】待定系数法求二次函数解析式.【分析】根据抛物线的顶点式可得顶点坐标,即'',①-②得:x-y=1,可知答|y=ir-l ②案.【解答】解:T抛物线y= (x - m)2+m- 1的顶点坐标为(m, m- 1),即…|y=in-l ②①-②,得:x - y=1,即y=x - 1,故答案为:y=x - 1.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.18. (2017?平南县一模)如图,正方形ABCB中,AB=1, AB与直线I的夹角为30°,延长CB交直线I于点A,作正方形ABCB2,延长CB2交直线I于点A,作正方形ABGB s,延长008C2B3交直线I于点A3,作正方形A3B3Q B4,…,依此规律,贝U A2016A2017= 2X 3 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由四边形ABCB 是正方形,得到 AB=AB , AB// CB ,于是得到 AB// AC ,根据平行线 的性质得到/ CAA=30°,解直角三角形得到 AB i =扼,AA=2,同理:AA=2 (灵)2,几几=2 (-)3,找出规律AA +i =2(二)n ,答案即可求出. 【解答】 解:•••四边形 ABCB 是正方形, ••• AB=AB , AB// CB , ••• AB// AC,•••/ CAA=30 , --A i B i =, AA=2, •- A i B 2=A i B =, •- A i A 2=2、f ,同理:AA=2 ( ~) 2, AA 4=2 (;汀)3,•- A n A n+i =2 ( * .;:),•- A 20i6A 2017=2 ( 「) 2°16=2 X 31°°〔故答案为:2 X 31008.【点评】本题考查了正方形的性质,含 30°直角三角形的性质,平行线的性质的综合应用, 求出后一个正方形的边长是前一个正方形的边长的—倍是解题的关键.三、解答题(本大题共有 8小题,共66分)19. ( 10 分)(2017?平南县一模)(1)计算:| 一 -2|+2015 °-( . ) +3tan30U 1(2)解不等式组:(5*亠6<2(*+3)3x 5t ,并将不等式组的解集在所给数轴上表示出来.1 44【考点】解一元一次不等式组;实数的运算;零指数幕;在数轴上表示不等式的解集;特殊角的三角函数值.【分析】(1)根据绝对值、零指数幕、负整数指数幕、特殊角的三角函数值分别求出每部分的值,再代入求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=2 - +1 - 3+3 :- 3=0;f5z-6<2(x+3)®(2) ■ .解不等式①得:x W 4,解不等式②得:x V 2,原不等式组的解集为X V 2,不等式组的解集在数轴上表示如下:_ . •.匚 - ■-.【点评】本题考查了绝对值、零指数幕、负整数指数幕、特殊角的三角函数值、解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能求出每部分的值是解( 1)的关键, 能求出不等式组的解集是(2)的关键.20. 已知BD平分/ ABF,且交AE于点D.(1 )求作:/ BAE的平分线AP (要求:尺规作图,保留作图痕迹,不写作法);(2 )设AP交BD于点O,交BF于点C,当AdL BD时,AD与BC的位置和数量关系是平行【考点】作图一基本作图.【分析】(1)根据角平分线的作法作出/ BAE的平分线AP即可;(2)根据ASA证明厶AB3A CBO得出AO=CO AB=CB再根据ASA证明△ ABO^^ ADO得出BO=DO由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形即可得.【解答】解:(1)如图所示:DB C(2 )在厶ABO^ CBO中,r ZABO=ZCBOPB二OB ,ZA0B^ZC0B-90c•••△ABO^A CBO( ASA ,••• AO=CQ AB=CB在厶ABO" ADO中,r Z0AB=Z0AD••• PA6 ,ZA0B^ZA0D-90c•△ABO^A ADO( ASA ,•BO=DO•/ AO=CO BO=DO•四边形ABCD是平行四边形,•/ AB=CB•平行四边形ABCD是菱形,•AD与BC的位置和数量关系是:平行且相等,故答案为:平行且相等.【点评】此题主要考查了角平分线的作法以及菱形的判定和全等三角形的判定与性质,熟练掌握菱形的判定是解题关键.21. 已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(p n), Q (4, m 两点,且tan / BOP=—:16(1 )求反比例函数和直线的函数表达式;(2 )求厶OPQ勺面积.【分析】(1 )过P作PC丄y轴于C,由P (― , n),得到oc=n PC=_,根据三角函数的1—1 1—1定义得到P( = , 8),于是得到反比例函数的解析式为&, Q( 4, 1),解方程组即可得到直线的函数表达式为y= - 2x+9;(2 )过Q作O[丄y轴于D,于是得到S"o=S四边形PCD=..【解答】解:(1 )过P作PCL y轴于C,•- P ( = , n),2OC=n PC=,2■/ tan / BOP=",16••• n=8 ,•-P ( ,:, 8),设反比例函数的解析式为沪,*• a=4 ,4•••反比例函数的解析式为y=-\•••Q(4 , 1),F1把P (专,8) , Q( 4 , 1)代入y=kx+b 中得/ 2 ,l=4k+b9亠2「飞二9,•直线的函数表达式为y= - 2x+9;(2)过Q 作ODL y 轴于D, 则 S A PO =S 四边形PCD =(+4)X( 8 - 1)2 2【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征, 利用待定系数法求反比例函数和一次函数的解析式, 正切函数的定义,难度适中,利用数形结合是解题的关键.22. 某中学初三(1)班共有40名同学,在一次 30秒跳绳测试中他们的成绩统计如下表: 跳绳数/个 81 8590 93 9598 100 人数128115(1) 将表中空缺的数据填写完整,并补全频数分布直方图; (2) 这个班同学这次跳绳成绩的众数是 95个,中位数是95个;【分析】(1)首先根据直方图得到 95.5 - 100.5小组共有13人,由统计表知道跳100个的 有5人,从而求得跳98个的人数; (2 )根据众数和中位数的定义填空即可;(3)若跳满90个可得满分,学校初三年级共有 720人,试估计该中学初三年级还有多少人跳绳不能得满分.中位数;众数.(3 )用样本估计总体即可.【解答】解:(1)根据直方图得到95.5 - 100.5小组共有13人,由统计表知道跳100个的有5人,•••跳98个的有13 -5=8人,跳90 个的有40 - 1 - 2 - 8 - 11 - 8 - 5=5 人,故统计表为:(3)估计该中学初三年级不能得满分的有720 X丄二=54人.40【点评】本题考查了频数分布表及频率分布直方图的知识,解题的关键是读懂题意并读懂两个统计图,难度中等.23. 某工厂对零件进行检测,引进了检测机器.已知一台检测机的工作效率相当于一名检测员的20倍•若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.(1 )求一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过7小时检测完成3450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)首先设一名检测员每小时检测零件x个,则一台零件检测机每小时检测零件20x个,根据题意可得等量关系:15名检测员检测900个零件所用的时间-检测机检测900个零件所用的时间=3,根据等量关系列出方程,再解即可;(2)设该厂再调配a台检测机才能完成任务,由题意得不等关系:2台检测机和30名检测员工作7小时检测的零件数+a台检测机工作4小时检测的零件数〉3450个零件,根据不等关系列出不等式,再解即可.【解答】解:(1 )设一名检测员每小时检测零件x个,由题意得:900 _ 900 =3:•「,解得:x=5,经检验:x=5是分式方程的解,20x=20X 5=100,答:一台零件检测机每小时检测零件100个;(2)设该厂再调配a台检测机才能完成任务,由题意得:(2X 100+30X 5)X 7+100a X( 7 - 3) > 3450,解得:a>2.5 ,•/ a为正整数,a的最小值为3,答:该厂至少再调配3台检测机才能完成任务.【点评】此题主要考查了分式方程和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系或不等关系,设出未知数,列出方程和不等式.24. 如图,△ ABC中,E是AC上一点,且AE=AB / EBC= / BAC,以AB为直径的O O交AC 于点D,交EB于点F.(1)求证:BC与O O相切;(2 )若AB=8 sin / EBC= ,,求AC的长.【考点】切线的判定;相似三角形的判定与性质.431【分析】(1)首先连接AF,由AB 为直径,根据圆周角定理,可得/ AFB=90 ,又由AE=AB / EBC 」/ BAC 根据等腰三角形的性质,可得/BAF=Z EBQ 继而证得BC 与O O 相切;2(2)首先过E 作EGL BC 于点G,由三角函数的性质, 可求得BF 的长,易证得△ CE3A CAB 然后由相似三角形的对应边成比例,求得答案. 【解答】(1)证明:连接AF. •/ AB 为直径,•••/ AFB=90 .•/ AE=AB• △ ABE 为等腰三角形.BAF= Z BAC EBC= Z BACBAF=Z EBCFAB+Z FBA=Z EBC+Z FEA=90° . • Z ABC=90 . 即AB 丄BC • BC 与O O 相切.(2)解:过E 作EGL BC 于点G vZ BAF=Z EBC • sin Z BAF=sin Z EBC=.4在厶 AFB 中,Z AFB=90 , •/ AB=8,• BF=AB?sinZ BAF=8X —=2,4• BE=2BF=4在厶 EGB 中,Z EGB=90 ,• EG=BE?sir Z EBC=4^ —=1, •/ EG 丄 BC, AB 丄 BC, • EG// AB,明理由.• ‘ ■: • •CA'AB• ! _ …下+ :-, • CE=,7••• AC=AE+CE=8【点评】此题考查了切线的判定、相似三角形的判定与性质、 质以及三角函数等知识. 此题难度适中,注意掌握辅助线的作法, 注意掌握数形结合思想的 应用.25. ( 11分)(2017?平南县一模)如图,在矩形 ABCD 中, AO=1Q AB=8分别以 OC OA 所在的直线为x 轴,y 轴建立平面直角坐标系, 点D( 3, 10)、E( 0, 6),抛物线y=ax 2+bx+c 经过O, D, C 三点. (1) 求抛物线的解析式;(2) 一动点P 从点E 出发,沿EC 以每秒2个单位长的速度向点 C 运动,同时动点 Q 从点C 出发,沿CO 以每秒1个单位长的速度向点 O 运动,当点P 运动到点C 时,两点同时停止运 动.设运动时间为t 秒,当t 为何值时,以P 、Q C 为顶点的三角形与△ ADE 相似? (3)点N 在抛物线对称轴上,点M 在抛物线上,是否存在这样的点 M 与点N,使四边形MENC 是平行四边形?若存在,请直接写出点 M 与点N 的坐标(不写求解过程);若不存在,请说圆周角定理、等腰三角形的性 BB。

精品解析:广西贵港市港南区2018年中考数学一模试卷(解析版)

2018年广西贵港市港南区中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分.)1. (3分)倒数是它本身的数是()A. 1B. ﹣1C. 1或﹣1D. 0【答案】C【解析】倒数是它本身的数是1或﹣1,0没有倒数.故选:C.2. (3分)为了了解我县4000名初中生的身高情况,从中抽取了400名学生测量身高,在这个问题中,样本是()A. 4000B. 4000名C. 400名学生的身高情况D. 400名学生【答案】C【解析】样本是:400名学生的身高情况.故选:C.3. (3分)下列因式分解错误的是()A. 2x(x﹣2)+(2﹣x)=(x﹣2)(2x+1)B. x2+2x+1=(x+1)2C. x2y﹣xy2=xy(x﹣y)D. x2﹣y2=(x+y)(x﹣y)【答案】A【解析】A、原式=(x﹣2)(2x﹣1),错误;B、原式=(x+1)2,正确;C、原式=xy(x﹣y),正确;D、原式=(x+y)(x﹣y),正确,故选:A.4. (3分)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】试题解析:∵x2≥0,∴x2+1≥1,∴点P(-2,x2+1)在第二象限.故选B.考点:1.点的坐标;2.非负数的性质:偶次方.5. (3分)估计+1的值在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C∴,故选:C.6. (3分)如图,是由若干个相同的小立方体搭成的几何体的俯视图和左视图.则小立方体的个数可能是()A. 5或6B. 5或7C. 4或5或6D. 5或6或7【答案】D【解析】试题分析:结合俯视图和左视图可画出三种立方体组合图形,前一排有3个立方体,后一排左侧有1个立方体,前一排的上面可以摆放1个或2个或3个立方体,所以立方体的个数为5或6或7个,故选D.考点:物体的三视图.视频7. (3分)下列命题中,假命题的是()A. 直角三角形斜边上的高等于斜边的一半B. 圆既是轴对称图形,又是中心对称图形C. 一组邻边相等的矩形是正方形D. 菱形对角线互相垂直平分【答案】A【解析】A. ∵直角三角形斜边上的中线等于斜边的一半,故A是假命题;B. ∵圆既是轴对称图形,又是中心对称图形,故B是真命题;C. ∵一组邻边相等的矩形是正方形,故C是真命题;D. ∵菱形对角线互相垂直平分,故D是真命题;故选:A.8. (3分)如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A. B. C. D.【答案】B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=,可得BC=.故选:B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.9. (3分)已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A. AB2=AC•BCB. BC2=AC•BCC. AC=BCD. BC=AB【答案】D【解析】∵点C是线段AB的黄金分割点且AC>BC,∴,即AC2=BC•AB,故A、B错误;∴AC==AB,故C错误;∴BC===AB,故D正确;故选:D.点睛:本题主要考查黄金分割,黄金分割的定义是:“把一条线段分割为两部分,使较大部分与全长的比值等于较小部分与较大的比值,则这个比值即为黄金分割。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年广西贵港市平南县中考数学一模试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.2.(3分)一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B.86.4×103C.8.64×104D.0.864×1053.(3分)若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为()A.8 B.10 C.8或10 D.6或124.(3分)下列命题中,属于真命题的是()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.同位角相等C.对角线互相垂直的四边形是菱形D.若a=b,则=5.(3分)一组数据5、a、4、3、2的平均数是3,则这组数据的方差为()A.0 B.C.2 D.106.(3分)若点M(﹣3,m)、N(﹣4,n)都在反比例函数y=(k≠0)图象上,则m和n的大小关系是()A.m<n B.m>N C.m=n D.不能确定7.(3分)如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM的取值范围是()A.3≤OM≤5 B.3≤OM<5 C.4≤OM≤5 D.4≤OM<58.(3分)关于x的一元二次方程x2﹣ax+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定9.(3分)如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°10.(3分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.11.(3分)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数至少为()A.5 B.6 C.7 D.812.(3分)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE=60°.其中正确的结论个数为()A.5 B.4 C.3 D.2二、填空题(本大题共6小题,每题3分,满分18分)13.(3分)计算:2a×(﹣2b)=.14.(3分)分解因式:3a2﹣6a+3=.15.(3分)圆锥底面圆的半径为4cm,其侧面展开图的圆心角120°,则圆锥母线长为cm.16.(3分)将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为.17.(3分)如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC 三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE=.18.(3分)如图,在平面直角坐标系xoy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此规律,得到等腰直角三角形A2018OB2018,则点A2018的坐标为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:﹣22+|2sin60°|+()﹣1+π0;(2)解方程:﹣=120.(5分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与∠B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若∠A=30°,AB=2,则△ABD的面积为.21.(6分)如图,在平面直角坐标系中,一次函数y=nx+2的图象与反比例函数y=在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.(3)请直接写出nx≤﹣2的解集.22.(8分)某校对九年级(1)班全体学生进行体育测试,测试成绩分为优秀、良好、合格和不合格四个等级,根据测试成绩绘制的不完整统计图表如下:九年级(1)班体育成绩频数分布表:根据统计图表给出的信息,解答下列问题:(1)九年级(1)班共有多少名学生?(2)体育成绩为优秀的频数是,合格的频数为;(3)若对该班体育成绩达到优秀程度的3个男生和2个女生中随机抽取2人参加学校体育竞赛,恰好抽到1个男生和1个女生的概率是.23.(8分)某海尔专卖店春节期间,销售10台Ⅰ型号洗衣机和20台Ⅱ型号洗衣机的利润为4000元,销售20台Ⅰ型号洗衣机和10台Ⅱ型号洗衣机的利润为3500元.(1)求每台Ⅰ型号洗衣机和Ⅱ型号洗衣机的销售利润;(2)该商店计划一次购进两种型号的洗衣机共100台,其中Ⅱ型号洗衣机的进货量不超过Ⅰ型号洗衣机的进货量的2倍,问当购进Ⅰ型号洗衣机多少台时,销售这100台洗衣机的利润最大?最大利润是多少?24.(8分)如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.25.(11分)如图,已知抛物线y=ax2+bx+3过等腰Rt△BOC的两顶点B、C,且与x轴交于点A(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,求BN的长度;(3)P为线段BC上方的抛物线上的一个动点,P到直线BC的距离是否存在最大值?若存在,请求出这个最大值的大小以及此时点P的坐标;若不存在,请说明理由.26.(10分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)2018年广西贵港市平南县中考数学一模试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.(3分)﹣3的倒数是()A.﹣3 B.3 C.﹣ D.【解答】解:﹣3的倒数是﹣.故选:C.2.(3分)一天时间为86400秒,用科学记数法表示这一数字是()A.864×102B.86.4×103C.8.64×104D.0.864×105【解答】解:86400=8.64×104.故选:C.3.(3分)若一个等腰三角形的两边长分别为2和4,则这个等腰三角形的周长是为()A.8 B.10 C.8或10 D.6或12【解答】解:当2为底时,其它两边都为4,2、4、4可以构成三角形,周长为10;当2为腰时,其它两边为2和4,因为2+2=4,所以不能构成三角形,故舍去.∴答案只有10.故选:B.4.(3分)下列命题中,属于真命题的是()A.平分弦的直径垂直于弦,并且平分弦所对的两条弧B.同位角相等C.对角线互相垂直的四边形是菱形D.若a=b,则=【解答】解:A、平分弦的直径垂直于弦,并且平分弦所对的两条弧,当所平分的弦是直径时不满足,错误;B、两直线平行,同位角相等,错误;B、对角线平分互相垂直的四边形是菱形,错误;D、若a=b,则=,正确;故选:D.5.(3分)一组数据5、a、4、3、2的平均数是3,则这组数据的方差为()A.0 B.C.2 D.10【解答】解:根据题意得:a=3×5﹣(5+4+3+2)=1,方差=[(5﹣3)2+(4﹣3)2+(3﹣3)2+(2﹣3)2+(1﹣3)2]=2.故选:C.6.(3分)若点M(﹣3,m)、N(﹣4,n)都在反比例函数y=(k≠0)图象上,则m和n的大小关系是()A.m<n B.m>N C.m=n D.不能确定【解答】解:∵k2>0(k≠0),∴反比例函数y=(k≠0)图象在一、三象限,y随x的增大而减小,∵M(﹣3,m)、N(﹣4,n)都在反比例函数y=(k≠0)图象上,且﹣3>﹣4,∴m<n,故选:A.7.(3分)如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A,B)上移动,则OM的取值范围是()A.3≤OM≤5 B.3≤OM<5 C.4≤OM≤5 D.4≤OM<5【解答】解:当M与A或B重合时,达到最大值,即圆的半径5;当OM⊥AB时,为最小值==3.故OM的取值范围是:3≤OM≤5.故选:A.8.(3分)关于x的一元二次方程x2﹣ax+=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【解答】解:∵△=(﹣a)2﹣4×1×=(a﹣1)2+1>0,∴关于x的一元二次方程x2﹣ax+=0有两个不相等的实数根.故选:A.9.(3分)如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A.10°B.20°C.30°D.40°【解答】解:∵四边形CDEF为矩形,∴EF∥DC,∴∠AGE=∠1=50°,∵∠AGE为△AGF的外角,且∠A=30°,∴∠AFE=∠AGE﹣∠A=20°.故选:B.10.(3分)在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是()A. B.C.D.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选:D.11.(3分)如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数至少为()A.5 B.6 C.7 D.8【解答】解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数至少为6个.故选:B.12.(3分)如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①∠ADE=∠DBF;②△DAE≌△BDG;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE=60°.其中正确的结论个数为()A.5 B.4 C.3 D.2【解答】解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,∴∠ADE=∠DBF,故本选项正确;②∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;③过点F作FP∥AE交DE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:2AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①②③⑤,共4个,故选:B.二、填空题(本大题共6小题,每题3分,满分18分)13.(3分)计算:2a×(﹣2b)=﹣4ab.【解答】解:2a×(﹣2b)=﹣4ab,故答案为:﹣4ab14.(3分)分解因式:3a2﹣6a+3=3(a﹣1)2.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.15.(3分)圆锥底面圆的半径为4cm,其侧面展开图的圆心角120°,则圆锥母线长为12cm.【解答】解:圆锥的底面周长=2×π×4=8π,∴侧面展开图的弧长为8π,则圆锥母线长==12(cm),故答案为:12.16.(3分)将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为y=﹣(x﹣2)2+4.【解答】解:抛物线y=﹣x2+1的顶点坐标为(0,1),再把点(0,1)向右平移2个单位长度,再向上平移3个单位长度所得点的坐标为(2,4),所以平移后抛物线的解析式为y=﹣(x﹣2)2+4.故答案是:y=﹣(x﹣2)2+4.17.(3分)如图,△ABC和△FPQ均是等边三角形,点D、E、F分别是△ABC三边的中点,点P在AB边上,连接EF、QE.若AB=6,PB=1,则QE=2.【解答】解:连结FD,如,∵△ABC为等边三角形,∴AC=AB=6,∠A=60°,∵点D、E、F分别是等边△ABC三边的中点,AB=6,PB=1,∴AD=BD=AF=3,DP=DB﹣PB=3﹣1=2,EF为△ABC的中位线,∴EF∥AB,EF=AB=3,△ADF为等边三角形,∴∠FDA=60°,∴∠1+∠3=60°,∵△PQF为等边三角形,∴∠2+∠3=60°,FP=FQ,∴∠1=∠2,∵在△FDP和△FEQ中,∴△FDP≌△FEQ(SAS),∴DP=QE,∵DP=2,∴QE=2.故答案为:2.18.(3分)如图,在平面直角坐标系xoy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰直角三角形A2OB2,且A2O=2A1O,…,依此规律,得到等腰直角三角形A2018OB2018,则点A2018的坐标为(﹣22018,0)..【解答】解:∵△AOB是等腰直角三角形,OA=1,∴AB=OA=1,由题意A1(0,﹣2),A2(﹣22,0),A3(0,23),由此可知点A2018在x轴的负半轴上,∴点A2018(﹣22018,0).三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:﹣22+|2sin60°|+()﹣1+π0;(2)解方程:﹣=1【解答】解:(1)原式=﹣4+|2×|+2+1=﹣4++3=﹣1+;(2)两边都乘以(x+2)(x﹣2),得:16+(x﹣1)(x+2)=(x+2)(x﹣2),解得:x=﹣10,检验:x=﹣10时,(x+2)(x﹣2)=96≠0,所以分式方程的解为x=﹣10.20.(5分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与∠B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若∠A=30°,AB=2,则△ABD的面积为.【解答】解:(1)如图,点D为所作;(2)∵∠CAB=30°,∴∠ABC=60°,∵BD为角平分线,∴∠ABD=30°,∵DA⊥AB,∴∠DAB=90°,在Rt△ABD中,AD=AB=,∴△ABD的面积=×2×=.故答案为.21.(6分)如图,在平面直角坐标系中,一次函数y=nx+2的图象与反比例函数y=在第一象限内的图象交于点A,与x轴交于点B,线段OA=5,C为x轴正半轴上一点,且sin∠AOC=.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.(3)请直接写出nx≤﹣2的解集.【解答】解:(1)过A点作AD⊥x轴于点D,∵sin∠AOC==,OA=5,∴AD=4,在Rt△AOD中,由勾股定理得:DO=3,∵点A在第一象限,∴点A的坐标为(3,4),将A的坐标为(3,4)代入y=,得m=3×4=12,∴该反比例函数的解析式为y=,将A的坐标为(3,4)代入y=nx+2得:n=,∴一次函数的解析式是y=x+2;(2)在y=x+2中,令y=0,则x=﹣3,∴点B的坐标是(﹣3,0),∴OB=3,又AD=4,=OB•AD=×3×4=6,∴S△AOB∴△AOB的面积为6;(3)依题意,得,解得或,所以A(3,4),B(﹣6,﹣2),根据图示知,当x<﹣6或0<x<3时,nx≤﹣2.故nx≤﹣2的解集是:x<﹣6或0<x<3.22.(8分)某校对九年级(1)班全体学生进行体育测试,测试成绩分为优秀、良好、合格和不合格四个等级,根据测试成绩绘制的不完整统计图表如下:九年级(1)班体育成绩频数分布表:根据统计图表给出的信息,解答下列问题:(1)九年级(1)班共有多少名学生?(2)体育成绩为优秀的频数是2,合格的频数为26;(3)若对该班体育成绩达到优秀程度的3个男生和2个女生中随机抽取2人参加学校体育竞赛,恰好抽到1个男生和1个女生的概率是.【解答】解:(1)13÷26%=50,所以九年级(1)班共有50名学生;(2)50×52%=26,即合格的频数为26,所以优秀的频数为50﹣13﹣9﹣26=2;(3)画树状图为:共有20种等可能的结果数,其中恰好抽到1个男生和1个女生的结果数为12,所以恰好抽到1个男生和1个女生的概率==.故答案为2,26;.23.(8分)某海尔专卖店春节期间,销售10台Ⅰ型号洗衣机和20台Ⅱ型号洗衣机的利润为4000元,销售20台Ⅰ型号洗衣机和10台Ⅱ型号洗衣机的利润为3500元.(1)求每台Ⅰ型号洗衣机和Ⅱ型号洗衣机的销售利润;(2)该商店计划一次购进两种型号的洗衣机共100台,其中Ⅱ型号洗衣机的进货量不超过Ⅰ型号洗衣机的进货量的2倍,问当购进Ⅰ型号洗衣机多少台时,销售这100台洗衣机的利润最大?最大利润是多少?【解答】解:(1)设每台I型电脑销售利润为x元,每台II型电脑的销售利润为y元,根据题意得,解得.答:每台I型电脑销售利润为100元,每台II型电脑的销售利润为150元;(2)设购进I型电脑x台,这100台电脑的销售总利润为w元,据题意得,w=100x+150(100﹣x),即w=﹣50x+15000,100﹣x≤2x,解得x≥33,∵w=﹣50x+15000,∴w随x的增大而减小,∵x为正整数,∴当x=34时,w取最大值,最大利润w=﹣50×34+15000=13300,则100﹣x=66,即商店购进34台I型电脑的销售利润最大,最大利润为13300元.24.(8分)如图,⊙O是△ABC的外接圆,点E为△ABC内切圆的圆心,连接AE的延长线交BC于点F,交⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DAC.(1)求证:直线DM是⊙O的切线;(2)若DF=2,且AF=4,求BD和DE的长.【解答】(1)证明:如图所示,连接OD,∵点E是△ABC的内心,∴∠BAD=∠CAD,∴,∴OD⊥BC,又∵∠BDM=∠DAC,∠DAC=∠DBC,∴∠BDM=∠DBC,∴BC∥DM,∴OD⊥DM,又∵OD为⊙O半径,∴直线DM是⊙O的切线;(2)∵,∴∠DBF=∠DAB,又∵∠BDF=∠ADB(公共角),∴△DBF∽△DAB,∴,即DB2=DF•DA,∵DF=2,AF=4,∴DA=DF+AF=6∴DB2=DF•DA=12∴DB=DE=225.(11分)如图,已知抛物线y=ax2+bx+3过等腰Rt△BOC的两顶点B、C,且与x轴交于点A(﹣1,0).(1)求抛物线的解析式;(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,求BN的长度;(3)P为线段BC上方的抛物线上的一个动点,P到直线BC的距离是否存在最大值?若存在,请求出这个最大值的大小以及此时点P的坐标;若不存在,请说明理由.【解答】解:(1)令x=0,则y=3,∴C(0,3),∴OC=3,又∵Rt△BOC是等腰直角三角形,∴B(3,0),将A(﹣1,0),B(3,0)代入y=ax2+bx+3得,解得,∴y=﹣x2+2x+3.(2)抛物线的对称轴为直线x=﹣=1,由B(3,0),C(0,3),得直线BC解析式为:y=﹣x+3;∵对称轴x=1与直线BC:y=﹣x+3相交于点M,∴M为(1,2);可设BN的长为未知数.设N(t,0),当△MNB∽△ACB时,∴=,即=,解得t=0,当△MNB∽△CAB时,∴=⇒=,解得t=,所以BN的长为3或.(3)设经过P与直线BC平行的直线解析式为y=﹣x+n,联立得,﹣x+n=﹣x2+2x+3,x2﹣3x+n﹣3=0,△=9﹣4(n﹣3)=0,解得n=,∴P到直线BC的距离存在最大值时,经过P与直线BC平行的直线解析式为y=﹣x+,则x2﹣3x+=0,解得x=,y=﹣+=,∴点P的坐标为(,),则经过点P与直线BC垂直的直线解析式为y=x+t,则=+t,解得t=,故经过点P与直线BC垂直的直线解析式为y=x+,联立可得,解得,则P到直线BC的距离最大值为=.26.(10分)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【解答】(1)证明:∵四边形ABCD是正方形,∴∠DCF=90°,在Rt△FCD中,∵G为DF的中点,∴CG=FD,同理,在Rt△DEF中,EG=FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG(ASA),∴MG=NG;∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN,在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC,在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB 于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC ∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形,∵G为CM中点,∴EG=CG,EG⊥CG赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档