2015年第26届希望杯八年级培训题答案
2024年希望杯五年级竞赛数学试卷培训题含答案

2024年希望杯五年级竞赛数学试卷培训题 1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:. can be expressed by a product of and ;. is a square number;Find the digit number .已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选.. A.. B.. C.. D.. E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .一个物体从正面、右面和上面看到的都是,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁). 70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.85 .如图,阴影部分是一个圆环,条直线最多可以把这个阴影分成个部分.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】32 、【答案】33 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】64 、【答案】65 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】96 、【答案】97 、【答案】98 、【答案】99 、【答案】 100 、【答案】。
2024 IHC(希望杯) 2培训题二年级数学-答案版

2024 IHC 2培训题答案1.计算:1+3+4+6+7+9+10+12+14+18+21=________。
答案:1052.6+8+98+998=________。
答案:11103.计算:12+15+18+21+24+27+30+33=________。
答案:1804.计算:2005+2004-2003-2002+2001+2000-1999-1998+1997 +1996-…-7-6+5+4-3-2+1=________。
答案:20055.17比________的3倍多2。
答案:56.两个数的积是56,它们的和是15,这两个数是________。
答案:7和87.被减数比减数大28,差比减数小16,被减数是________。
答案:728.被减数、减数、差三个数相加的和是16,被减数是_______。
答案:89.如果△=10,○=9,□=6,下面第()道算式是正确的。
A.△+□-○=5 B.○-□+△=5 C.□-(△-○)=5答案:C10.○+○+○=18,○×△=48,△-○=________。
答案:211.23÷□=□……5中,除数和商可以是()。
A.除数是9,商是2B.除数是3,商是6C. 除数是2,商是9D. 除数是1,商是18答案:A12.25减去4,加上1,减去4,加上1,减去4,加上1,……运算________次后,结果为0。
答案:1513.某数加上5,再除以5,其结果等于5,这个数是________。
答案:2014.找规律填数:2,3,5,8,12,17,?,……=________。
答案:2315.根据规律填数:0,1,2,3,6,7,14,15,30,________。
答案:3116.一列数字按2,1,2,3,1,2,1,2,3,1,2,1,2,3,1,……的规律排列。
(1)前42个数字之和是多少?(2)前128个数字之和是多少?答案:(1)75 (2)23017.观察这个数表,并找出它的规律。
希望杯七年级数学竞赛试题及答案

第十八届”希望杯“全国数学邀请赛一、选择题(每小题4分,共40分)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。
1. 在2007(-1),3-1, -18(-1),18这四个有理数中,负数共有( ) (A )1个 (B )2个 (C )3个 (D )4个2.小明在作业本上画了4个角,它们的度数如图1所示,这些角中钝角有( )(A )1个 (B )2个 (C )3个 (D )4个 3.If the n-th prime number is 47, then n is( )(A )12 (B )13 (C )14 (D )15(英汉词典:the n-th prime number 第n 个质数)4.有理数a,b,c 在数轴上对应的点的位置如图2所示,给出下面四个命题:(A )abc <0 (B )a b b c a c -+-=- (C )(a-b)(b-c)(c-a)>0 (D )1a bc 〈-其中正确的命题有( )(A )4个 (B )3个 (C )2个 (D )1个 5.如图3,“人文奥运”这4个艺术字中,轴对称图形有( )(A )1个 (B )2个 (C )3个 (D )4个 6.已知p ,q ,r ,s 是互不相同的正整数,且满足p rq s=,则( ) (A )p r s q = (B )p s r q = (C ) p p r q q s +=+ (D )r r p s s q-≠-7.韩老师特制了4个同样的立方块,并将它们如图4(a )放置,然后又如图4(b )放置,则图4(b )中四个底面正方形中的点数之和为( )(A )11 (B )13 (C )14 (D )168.如图5,若AB//CD ,则∠B 、∠C 、∠E 三者之间的关系是( )(A )∠B+∠C+∠E=180º (B )∠B+∠E-∠C=180º (C )∠B+∠C-∠E=180º (D )∠C+∠E-∠B=180º9.以x 为未知数的方程2007x+2007a+2008a=0(a,b 为有理数,且b>0)有正整数解,则ab 是( )(A )负数 (B )非负数 (C )正数 (D )零 10.对任意四个有理数a ,b ,c ,d 定义新运算:a b c d=ad-bc ,已知241x x-=18,则x=( )(A )-1 (B )2 (C )3 (D )4 二、A 组填空题(每小题4分,共40分)11.小明已进行了20场比赛,其中赢的场数占95%,若以后小明一场都不输,则赢的场数恰好占96%,小明还需要进行 场比赛。
2015年全国初中数学联赛(初二组)初赛试题参考答案2.26

∵AP=PC,CM=ME, ∴PM∥ AE 且 PM=
∴PQ=PM, PQ⊥PM. ∴△MPQ 为等腰直角三角形. ∴PM=PQ=2.5. .…………………………………………………………………………….25 分
当 z=2 时,
y 0, x 0.
共计 10 组自然数解.选 B. 5.D 作高 AD.显然 AD= 2 .在 Rt△ABD 中,BD= AB 2 AD 2 2 .显然∠B≠90°.当∠B 为锐角时,如图(1) ,CD=BC-BD= 2 .∴AC= AD 2 CD 2 2 ;当∠B 为钝角时,如图(2) , CD=BC+BD= 3 2 ,∴AC= AD 2 CD 2 2 5 .综上 AC=2 或 2 5 .选 D.
3 x a 0, b a 即 是 x . 因 为 原 不 等 式 组 的 整 数 解 仅 为 1 , 2 , 3, 所 以 4 3 4x b 0
3
a b 4, 0 即 1 , 9 a 12, 0 b 4 .所以 a 可以取 9,10,11 共 3 个数, b 可以取 1,2,3,4 共 4 3 4
3
2
∴a>-2015. ………………………………………………………………….…..20 分 而原方程有一个正数解,但没有负数解,∴a<2015 成立,但 a>-2015 不成立.
∴a≤-2015. …………………………………………………………………….25 分
五、解答题
13.解: (1)AE=CD,且 AE⊥CD.理由如下:…………..………..………….…………5 分 连结 QM、CD、AE,延长 AE 交 CD 于点 N. 易证 Rt△ABE≌Rt△CBD. ………………………………………………………….…….10 分 ∴AE=CD, ∠EAB=∠DCB. ∴∠EAB+∠CDB=∠DCB+∠CDB=90°. ∴AN⊥CD,即 AE⊥CD. ……………………………………………….…………… .….15 分
2018年第十八届“希望杯”全国数学邀请赛初二培训题(含答案)

第十八届(2018年)“希望杯”全国数学邀请赛培训题“希望杯”命题委员会(未署名的题,均为命题委员会命题)初中二年级一、选择题(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后的圆括号内)1.有下面的四个叙述:①整式加整式还是整式;②整式减整式还是整式;③整式乘整式还是整式;④整式除整式还是整式.其中正确叙述的个数为().(A)4 (B)3 (C)2 (D)12.若x是有理数,分式1||2x-的值为正整数,则x的个数为()(A)2 (B)4 (C)6 (D)无数个3.将分式2aa b+中的a扩大2倍,6扩大4倍,而分式的值不变,则()(A)a=0 (B)b=0 (C)a=0,且b=0 (D)a=0或b=04.已知x与y+2成反比例,当x=1时,y=4,那么y=1时,x的值是()(A)0 (B)1 (C)2 (D)45.若实数a,b,c满足a2+b2≠0,a3+a2c-ab c+b2c+b3=0,则a+b+c的值是()(A)-1 (B)0 (C)1 (D)26.若实数a,b,c满足1a+1b+1c=1a b c++,则a+b,b+c,c+a中等于零的()(A)有且只有1个(B)至少有1个(C)最多有1个(D)不可能有2个7.设f=2x-3x-2,g=x-2,考察下面四个叙述:①f+g是整式;②f-g是整式;③f×g是整式;④当x≠2时,f÷g是整式.其中正确叙述的个数为()(A)4 (B)3 (C)2 (D)18.如果≠0成立,那么下列各式中正确的是()(A)a+b≥0 (B)a+b>0 (C)a+b≤0 (D)a+b<09.甲、乙两人从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图,根据图中提供的信息,•有下列叙述:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发了0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地.其中,符合图象的叙述有()个.(A)2 (B)3 (C)4 (D)5(第9题) (第10题) (第15题)10.已知直线y=2x+a与y=2a-x的图象的交点在如图所示的阴影长方形区域内(•含长方形边界),则a的取值范围是()(A)0≤a≤32(B)65≤a≤95(C)65≤a≤32(D)0≤a≤9511.甲车追超过前方的乙车,经过时间t后在A处追上,若甲、乙各提速a%,则()(A)甲车追上乙车所用的时间增加了a%; (B)甲车追上乙车所用的时间减少了a% (C)甲车仍在A处追上乙车; (D)甲车驶过A处后才追上乙车12.某人用1000元钱购进一批货物,第二天售出,获利10%,•过几天后又以上次售出的价格的90%购进一批同样的货物,由于卖不出去,•两天后他将其按第二次购进价的九价再出售,这样他在两次交易中()(A)刚好盈亏平衡(B)盈利1元(C)盈利9元(D)亏损1.1元13.某足球赛,记分规律如下:胜一场积3分,平一场积1分,负一场积0分,A队经过12场比赛后,积19分,若队员出赛一场的出场费为500元/人,胜一场奖金1000元/人,•平一场奖金500元/人,那么A队队员在12场比赛后的最高收益可能是()(A)13500元/人(B)14000元/人(C)13000元/人(D)12500元/人14.小明和小刚用掷两枚骰子的方法来确定点P(x,y)在坐标系上的位置,他们规定:小明掷得的点数为x,小刚掷得的点数为y,•那么他们各掷一次所确定的点落在已知直线y=-2x+6上的概率为()(注:骰子是骨制的一个白色小正方体,它的六个面上分别刻有1个,2个,3个,4个,5个,6个红色小圆点,将其随意掷放于一个平面上,骰子必有一面向上,•这个面上红色圆点的个数就叫做点数).(A)16(B)112(C)118(D)1915.如图,晴朗的夏天,太阳当空,•一只小鸟以不变的速度水平地飞过一个斜坡上空,则小鸟在斜坡上的影子移动的速度()(A)越来越大(B)越来越小(C)不变(D)一定和小鸟的飞行速度一样大16.当5个整数从小到大排列时,中位数是4,如果这5个整数的惟一众数是6,则这5个整数的和最大是().(A)20 (B)21 (C)22 (D)2317.某市出租车的起步价为12元(行程在3公里以内),行程到达3公里之后,•每增加1公里需加付m元(不足1公里亦按1公里计价),•张老师坐这种出租车从学校到离学校n 公里的教育局开会,沿途未遇红灯,下车时付车费28元,则m与n的关系是m=()(注:[n]表示不大于n的最大整数,如[3,2]=3,[4]=4.)(A )16162828()()3()3[]3[]2[]3[]2B C D n n n n ------ 18.用200元钱买A 、B 、C 、D 四种商品共10件,若A 、B 、C 、D 的单价依次是13元,17元,22元,35元,则( )(A )A 、B 、C 、D 各买了2,3,4,1件 (B )A 、B 、C 、D 各买了4,2,2,2件(C )以上两种情况都可能 (D )以上三种情况都不可能19.如图,直线AE ∥BF ,点P 在AE 上方,点M 、N 分别在AE 、BF 上,若PC 平分∠MPN 交AE 、BF 于C 、D 两点,∠PCE=α,则∠1=∠2的大小为( )(A )α (B )2α (C )3α (D )4α(第19题) (第22题) (第25题)20.周长为30,各边长互不相等且都是整数的三角形的个数为( )(A )11 (B )12 (C )7 (D )821.如果△ABC 的垂心G (三条高的交点)在△ABC 的内部,并且在BC 边的中线AD 上,那么△ABC 一定是( )(A )直角三角形 (B )等腰三角形(C )等边三角形 (D )等腰直角三角形22.如图5,△ABC 中,∠A=60°,AC=16,S △ABC AB=( )(A )554(B )55 (C )45 (D )23.有下面四个判断性语句:①平行四边形的四个内角之和为360°;②有两个内角相等的四边形是平行四边形;③平行四边形的四个内角中有两对是相等的;④四个内角中有两对相等的四边形是平行四边形.(A)4 (B)3 (C)2 (D)124.对凸四边形ABCD,给出下列4个条件:①AB∥CD;②AD∥BC;③AB=CD;④∠BAD=∠DCB.现从以上4个条件中任选2个条件为一组,能推出四边形ABCD•为平行四边形的概率是()(A)13(B)12(C)23(D)5625.如图,以Rt△ABC的两直角边AB、BC为边,•在△ABC•外部作等边△ABE•和△BCF,EA、FC的延长线交于M点,则点B一定是△EMF的((A)垂心(B)重心(C)内心(D)外心26.Assume that in Fig. 7 ABCD is a square,and •point •E •is •on •theline BC,CE=AC.we connect A and E,AE intersects CD at point •F,•then •thedegree of ∠AFC is()(A)150°(B)125°(C)135°(D)112.5°(英汉词典:Fig.是figure(图、图形)的缩写;to cormect连接;to intersect…at相交于;degree度、度数)(第26题) (第27题) (第28题) (第30题)27.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连结DF,则∠CDF等于()(A)80°(B)70°(C)65°(D)60°28.如图,顺次连接凸四边形ABCD的中点,得到四边形EFGH.要使四边形EFGH•是正方形,应补充的条件是()(A)四边形ABCD是等腰梯形(B)四边形ABCD是平行四边形(C)四边形ABCD是菱形(D)AC=BD,且AC⊥BD29.将一把折扇逐渐打开,会发现打开部分的扇形面积随圆心角的变化而变化,•那么能正确描述这种变化的函数是()(A)正比例函数(B)反比例函数(C)一次函数y=kx+b(b≠0)(D)以上都不是30.如图是一间卧室地面瓷砖的图案,在这间卧室地下藏有一宝物,•则藏在白色瓷砖和灰色瓷砖下的可能性是()(A)藏在白色瓷砖下的可能性大(B)藏在灰色瓷砖下的可能性大(C)藏在两种瓷砖下的可能性一样大(D)藏在灰色瓷砖下与藏在白色瓷砖下的可能性之比是3:2二、填空题31.计算:20082+20072+20062-2008×2007-2007×2006-2006×2008=________.32.已知则x2007=2,则(x2006+x2005+x2004+…+x+1)(x-1)=__________.33.设a,b,c是实数,则能使(a+b+c)(1a+1b+1c)=1成立的条件是______或_______.(•写出两个满足条件即可)34.Ifm and n are positive integers satisfying m2+27mn+n2=729 and m+•n>mn,then the value of m+n is_________.(英汉词典:positive integer正整数;to satisfy满足;value值、数值)35.计算:(+2=________.36.已知A=20072007×20082008×20092009,B=(2007×2008×2009)2007200820093++,则A•与B•的大小关系是A_____B.(填“>”、“<”或“=”)37.设B =,则A_______B .(填“>”、“<”或“=”)38.39.If a and •b •are •constant .•and •the •set •of •solutions •of •theinequality ax+b>0 is x<13,then the set of solutions of the inequalityba<0 is________. (英汉词典:constant 常数;set 集合;solution 解、解答;inequality 不等式)40.一次智力测试有25道题,答对一题得4分,不答扣2分,答错扣4分,小明要想在这次智力测试中的得分不低于60分,他至少要答对________道题.41.设正数a ,b ,c ,x ,y 满足:a ≠c ,22222222221,x xy y x xy y a b c c b a++=++=1,则代数式222111a b c++的值为________. 42.若以x 为未知数的方程42ax x -+=3无解,则a=_______. 43.已知m 与n 使m m m n m n ++-的值等于-14,则n m的值是_________. 44.当x=2时,多项式75312a b c d x x x x ++++的值是3,那么当x=-2时,多项式的值是_______. 45.若实数a ,b 满足1a -1b -1a b +=0,则2222b a a b-的值等于________. (拟题:夏建平 江苏省江阴市要塞中学214432)46.如果以x ,y 为元的二元一次方程12ax y x ay +=⎧⎨+=⎩有解,那么a 不等于________.52.如图,△P1OA1,△P2A1A2是等腰直角三角形,点P1,P2在函数y=4x(x>0)的图象上,•斜边OA,AA都在x轴上,则点A的坐标是________.(第52题) (第53题) (第55题) 53.In the following traffic marks,the number of marks whose•figuresaxially-symmetric is___________.(英汉词典:traffic交通;•mark•标志;•number•个数;•figure•图形;•axially-symmetric(轴对称)54.仅将两个全等的非等腰的直角三角形的一条边重合,拼接成新的图形,•拼成的图形可能是下列各种图形中的一种或几种:①矩形;②菱形;③直角梯形;④平行四边形;⑤等腰三角形;⑥等腰梯形.则正确结论的序号是_______.(把所有正确的图形的序号都填上)55.如图所示,平行四边形ABCD中,过BD的中点O的直线交AB、CD于M、N,•交DA、BC 延长线于E、F,则图中有全等三角形________对.56.如图,在一个由4×4个小正方形组成的正方形网格中,•阴影部分面积与正方形ABCD 的面积比是_______;周长的比是________.(第56题) (第58题) (第59题) (第60题)57.在平面直角坐标系内点A 、B 的坐标分别为(-3,-2),(3,a ),点B 在第一象限,•且A 、B 两点间的距离为10,那么a 等于______.58.在建筑工地上,工人用如图所示的装置能将重物运往高处:•绳子绕过定滑轮,一端系着重物,在地面的工人手拿绳子的另一端,沿着垂直于滑轮轴的方向,向前走一段距离,重物便上升到定滑轮外,被高处的工人卸下,已知重物上升的距离是5米,则地面上的工人向前行走的距离为________米.59.图中的两个滑块A 、B 由一个连杆连接,可以在竖直和水平的滑道内滑动,•开始时,滑块A 距0点15厘米,滑块B 距0点20厘米,A 、B 的距离为25厘米,那么滑块B 滑到C 点时,滑块A 共滑动了_________厘米.60.如图,△ABC 的边AB 长为2,AB 边上的中线CD 长为1,AC 、BC,则△ABC 的面积为_________.61.a 、b 、c 是三角形的三边,它们满足ac 2+b 2c-b 3=abc ,若三角形的一个内角是120°,那么a :b :c=_______.62.设a ,b ,c 是△ABC 的三条边,满足c a b a b c b c a c a b <<+-+-+-,则三边中最长的边是________.63.如图,0是△ABC 外部一点,AO 交BC 于A 点,BO ,CO 的延长线分别交AC ,AB•的延长线于点B ,C ,则111AO BO CO AA BB CC ++的值为_________.(第63题) (第64题) (第65题) (第66题)64.如图,已知梯形ABCD中,AD∥BC,∠A=90°,E为CD的中点,BE=132,梯形ABCD•的面积为30,则AB+BC+DA的值为________.65.如图,边长为2的正方形ABCD中,若∠PAQ=45°,则△PCQ的周长是_____.66.如图,A,B两个平行四边形草坪有公共部分(阴影处),A,B•草坪面积之和为160m2,A的面积为120m2,B的面积为74m,则重叠部分的面积是_______m2.67.若凸4n+2边形AA…A(A为正整数)的每个内角都是30°的整数倍,且∠A=∠A=∠A=90°,则n的值是________.?68.服装店进了某款式的时装,开始按比进价提高30%的价格销售,但是无人问津,•于是决定打折降价销售.•如果要使利润率不低于10%,••那么打折的幅度不能低于_________.(保留两位有效数字)69.红光中学去年有120人参加“希望杯”全国数学邀请赛,•今年的参赛人数增加了50%,考场数比去年多了3个,而且平均每个考场安排的考生增加了2人,今年安排的考场有_________个.70.直角三角形三边长均为整数,其中一条直角边长为35,•则它的周长的最大值是________,最小值是_______.(拟题:刘朝晖广东省中山市第一中学初中部528400)71.生产某种产品,原需a小时,现在由于提高了工效,可以节约时间8%至15%,•若现在所需要的时间为b小时,则_______<b<______.(用关于a的表达式表示)72.1=12,2+3+4=32,3+4+5+6+7=52,……从中找出一般规律是________.73.一种商品的进价为90元,原售价定为m 元,售出一半之后,剩余的一半按8折出售,全部售出后共获利10%,则原售价定为m=________元.74.某学校八年级的数学竞赛小组进行了一次数学测验,如图所示是反映这次测验情况的频率分布直方图,那么该小组共有______人;70.5~90.5这一分数段的频率是______.(第74题) (第76题) (第77题) 75.用[a ,b]表示自然数a ,b 的最小公倍数,(a ,b )表示□,b 的最大公约数,若[•a ,b]=1085-(a ,b ),那么当a>b 时,a-b 的最小值是________. 76.如图,△ABC 中,∠C=90°,EC=13AC ,CD=13BC ,BE=8,AD=EC+CD=6,则S △BCD =______. (拟题:刘朝晖 广东省中山市第一中学初中部528400)77.如图,E 是平行四边形ABCD 的边CD 上任一点,AE 的延长线与BC 的延长线交于点F ,连结BE 、DF ,则S △BCE _______S △DEF .(填“>”、“<”或“=”) (拟题:李廷江 贵州省修文县第二中学550200)78.若4x 2+1+kx 是关于x 的完全平方式,则k 2-2k+2的值为________. (拟题:窦桐生 吉林省磐石市明城中学 132301) 79.解方程:20052007200820042004200620072003x x x x x x x x +++++=+++++得x=_________.(拟题:钟金子 福建省安溪恒兴中学362400) 三、解答题80.某班有语文、数学两个课外兴趣小组,•其中参加语文组的人数是全班人数的23,既参加语文组又参加数学组的人数是参加数学组人数的23,另外有4•位同学既不参加语文组,也不参加数学组,如果这4位同学参加语文组,•那么参加数学组与参加语文组的人数恰好相等,问全班有多少同学?既参加语文组又参加数学组的人数是多少?81.某工厂计划生产A、B两种产品,为取得最大生产利润,事先做了市场调查,根据厂内实际情况和市场需要得到有关数据如下表:现在工厂可以筹集到的资金用于原料及消耗的是300000元/月,用于工资支出的是110000元/月,问如何确定两种产品的月产量,可以使工厂得到的总利润达到最大?并求这个最大利润值.82.如图,从直线COD上一点O引两条射线OE,OF,使∠GOF=∠FOE=∠EOD=60°,•在射线OF,OG,OE上各取一点A,B,C,使∠CAB=60°,若OA=m,求△ABC面积的最大值.83.从2006年元旦起,公民的月工资、薪金个人所得税的起征点由原来的800•元调整为1600元,如果公民的月工资、薪金超过1600元,则税款按下表累加计算:根据上表,请:(1)写出所纳款税y(元)与该月收入x(元)之间的函数关系式;(2)作出所纳款税y(元)与该月收入x(元)之间的函数图象;(3)若李先生月薪金4000元,他应交纳的个人所得税是多少元?84.用红色刻度线将一根木棍分成135等份,•再用黑色刻度线将这根木棍分成40等份,沿两种刻度线将这一木棍锯成短木棍.问共有多少种不同长度的短木棍?85.100条线段的长度分别为1,2,3,…,99,100,从中取出一些线段,•要使取出的线段中的任意三条都能构成一个三角形,问最多能取出多少条线段?第十八届(2007年)“希望杯”全国数学邀请赛初二培训题(1~85题)答案.解析一、选择题1.①②③正确,④错误,如整式(x+2)除以整式(2x+1),得到21x +,它不是整式,故选(B ). 2.原分式即12||x -,要使该式的值为正整数,只须2-│x │的值为1,12,13,…,1n (n是正整数)即可,•所以x 的值有无数个,故选(D ) 3.将分式2a a b+中的a 扩大2倍,b 扩大4倍,得到424a a b +,由题意知424a a b +=2aa b +,所以a=0,或2a+2b=2a+4b ,•解得b=0,故选(D ). 4.由已知得x=2ky +,因为x=1时,y=4,所以1=42k +,解得k=6,则当y=1时,x=612+=2.故选(C ). 5.a 3+a 2c -a bc+b 2c+b 3=(a 3+b 3)+a 2c-a bc+b 2c=(a+6)(a 2-ab+b 2)+c (a 2-a b+b 2)=(a 2-ab+b 2)(•a+b+c )=0.因为a 2-a b+b 2=a 2-ab+b 2+24b -24b =(a -2b )2+34b 2≥0,因为题设a2+b2≠0,即a,b不同时为零,所以a2-ab+b2>0,从而只能是a+b+c=0,•故选(B).6.由已知1a+1b=1a b c++-1c=()(),()()a b a b a bc a b c ab c a b c-++-+=++++即,所以a+b=0或ab=-c(a+b+c).由ab=-c(a+b+c),得c2+c(a+b)+ab=0,即(c+a)(c+b)=0,所以c+a=0或c+b=0.因此,a+b=0或c+a=0或c+b=0,即三个式子中至少有1个成立,故选(B).另解验证法.当a+c=0且b+c=0时,得a=-c,b=-c,代入到原式左侧,得1a+1b+1c=1a.代入原式右侧得1a b c++=1a,所以a+b,b+c,c+a中有可能有2个式子同时为零,排除(A),(C),(D),故选(B).7.①②③正确.因式分解f,得f=2x2-3x-2=(2x+1)(x-2),f÷g=2x+1,即f÷g是整式,④正确,故选(A).8.令a=b=-1,则成立,所以排除(A)和(B).令a=-1,b=1,则D).当a<0,b<0时,a+b<0.当a<0,b>0时,因为≥0,所以a+b≤0.当a>0,b>0时,当a>0,b<0时,≠故选(C).9.①,②,③,④正确,⑤错误,故选(C).10.先求直线y=2x+a与y=2a-x的图象的交点.解方程组2,3253a x y x a y a xa y ⎧=⎪=+⎧⎪⎨⎨=-⎩⎪=⎪⎩得 因为,交点在长方形区域范围内,所以10325233a a ⎧≤≤⎪⎪⎨⎪≤≤⎪⎩解得65≤a ≤32,故选(C ). 11.设开始时甲、乙的速度分别为v 1、v 2,它们相距s ,则t=12sv v -,A 处到乙车出发点的距离为S=v 2t .若甲、乙各提速a%,则甲车追上乙车的时间为 t ′=12(1%)(1%)1%s ta v a v a =+-++ 此时乙车行驶的距离为S ′=(1+a%)v 2t′=v 2t =s . 故选(C ).12.以1000元购货,售出后获利10%,即获利100•元;•第二次以上次售出的价格的90%购进一批同样的货物,即花费1100元的90%,即990元购货,这次售出是按990•元的九折出售,亏损990元的10%,即亏损99元,两次交易合计盈利1元,故选(B ).13.设A 队胜x 场,平y 场,负z 场,则12319x y z x y ++=⎧⎨+=⎩由y=19-3x 代入①,得x+19-3x+z=12,7=2x-z ,所以z 是奇数. 当z=1,x=4,y=7时,收益为12×500+4×1000+7×500=13500(元); 当z=3,x=5,y=4时,收益为12×500+5×1000+4×500=13000(元); 当z=5,x=6,y=1时,收益为12×500+6×1000+1×500=12500(元).所以当A 队胜4场,平7场,负1场时,队员收益最高为13500元/人,故选(A ).14.两枚骰子确定的点P (x ,y )共有36种,能落在直线y=2x+6上的有2种,即x=1,y=4;x=2,y=2.所以P 能落在直线y=2x+6上的概率为213618=,故选(C ). 15.太阳光是平行光,如图所示,假设小鸟从A →B 和从B →C 的时间相同,•则AB=BC ,由平行线截线段成比例如A ′B ′=B ′C ′,所以小鸟在斜坡上的影子移动的速度不变.若=A ′B ′=AB ,则影子移动的速度将等于小鸟飞行的速度,•但这与太阳光照射角度有关,故选(C ).16.设这5个整数从小到大排列依次是a ,b ,c ,d ,e ,已知中位数是4,则c=4,•又这5个数的惟一众数是6,则d=e=6,a ≠b ,所以a<b<4.要使5个整数的和最大, 则应取a=•2,b=3.所以这5个整数可能的最大和是2+3+4+6+6=21.故选(B ). 17.由题意知 28-12=m ([n]+1-3),所以m=16[]2n -,故选(B ).18.设A 买了x 件,B 买了y 件,c 买了z 件,D 买了w 件,依题意有10,131********.x y z w x y z w +++=⎧⎨+++=⎩由②得13(x+y+z+w )+4y+9z+22w=200.将①代入上式,得4+9+22w ≤4y+9z+22w=70,所以22w ≤57,于是w ≤2,当w=1时,4y+9z=48.显然y 是3的倍数,z 是4的倍数,令y=3y ′,z=4z ′,则12y ′+36z ′=48, 所以y•′+3z ′=4,y ′=z ′=1,y=3,z=4,于是得到一组答案:x=2,y=3,z=4,w=1,当w=2时,4y+9z=26, 显然,z 是偶数.令z=2z ′,则4y+18z ′=26,即2y+9z ′=13,显然z ′是整数,所以z ′=1,y=2, 于是得到另一组答案:x=4,y=2,z=2,w=2,故选(C ).19.如图,由AE ∥BF ,角平分线性质及三角形外角的性质知道:∠1+∠2=∠1+•∠3=∠1+(a+β)=(∠1+β)+a=a+a=2a .故选(B ).20.不妨设a<b<c ,则由a+b+c=30,知a+b=30-c ,又由三角形边的性质知a+b>c ,•于是30-c>c ,得c<15.又c>3033a b c ++==10,所以10<c<15, 又因为c 为整数,所以c=11,12,13,14. 当c=11时,b=10,a=9.当c=12时,b=11,a=7;b=10,a=8.当c=13时,B=12,a=5,b=11,a=6;•B=10,a=7;b=9,a=8.当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7. 满足条件的三角形共有12个,故选(B ).21.已知点G 在△ABC 内部,所以△ABC 不是直角三角形.由于G 点是△ABC 的垂心,•所以AB ⊥BC ,又G 点在BC 的中线AD 上,所以AD ⊥BC ,即BC 边的中线与高重合,△ABC 是等腰三角形.故选(B ).22.从C 作CH ⊥AB ,H 为垂足,在Rt △ACH 中,∠A=60°,∠1=30°,AC=16,•所以AH=12AC=8.所以ABC 的面积S △ABC所以12·AB · 解得AB=55,故选(B ).23.①和③是正确的,②和④是错误的,故选(C).24.从4个条件中任选2个条件,共有6种选法,其中①②,①③,①④,②④这4种组合都可以推出四边形ABCD是平行四边形,而选②③,③④,四边形ABCD•不一定是平行四边形,所以概率P=46=23.故选(C).25.连结EC、AF,如图?所示,由于△ABE,△BCF是等边三角形,并且∠ABC=90°,易证△EFB≌△ECB≌△AFB,于是CE=AF=EF,所以△CEF和△FAE是等腰三角形,•且EB平分∠FEC,FB平分∠AFE,所以FB⊥AE,EB⊥CF,所以B是△EMF的垂心,故选(A).26.译文:如图7所示,四边形ABCD是正方形,点E在BC上,且CE=AC,连结A,E交CD 于点F,则∠AFC的度数是()(A)150°(B)125°(C)135°(D)112.5°因为ABCD为正方形,AC是对角线,则∠1=45°,∠2=135°,•因为CE=•CA,•所以△ACE 是等腰三角形,∠E=22.5°,所以∠3=∠FCE+∠E=112.5°,故选(D).27.连结FB,如图,因为EF垂直平分AB,ABCD是菱形,•所以AF=•FB=•FD.•在菱形ABCD中,∠1=∠2=∠3=12∠BAD=40°,又因为AB∥CD,所以∠CDA=180°-80°=100°,所以∠CDF=100°-40°=60°,故选(D).28.连结AC,BD,如图所示,由E,F,G,H是所在边的中点,得EH∥FG•∥BD,•且EH=FG=12 BD,及EF∥HG∥AC,且EF=HG=12AC,•可知四边形EFGH•是平行四边形.•要使四边形EFGH是正方形,则必须:①EF=EH,即AC=BD;②EF⊥EH,即AC⊥BD.故选(D).29.扇形面积S随圆心角的增大而增大,且扇形面积是圆的一部分,设扇形的圆心角为x°,则扇形面积S=22360260x R R x ππ=,其中,变量x 前面的2360R π是常数,故选(A ). 30.因为白色瓷砖和灰色瓷砖面积相同,所以宝物藏在两种瓷砖下的可能性一样大,故选(D ). 二、填空题31.3 32.1 33.答案不惟一 34.9 35.14 36.> 37.> 38.0 39.x<-340.20 41.1200742.-3 43.±3 44.-2 45.±1 47.1000048.5 49..±.252.(0) 53.354.①④⑤ 55.5 56.5;8 4 57.6 58..35 60611;1 62.b 63.2 64.17 65.4 66.34 67.1 68.8.5折 69.18或15 70.1260;84 71.0.85a ;0.92a72.n+(n+1)+…+(3n-2)=(2n-1)2(n 是正整数) 73.110 74.25;0.64 75.216.5 76.6.5 77. 78.10或26 79.-2005解析:31.令a=2008,b=2007,c=2006,则原式=a 2+b 2+c 2-ab-bc-ca=12[(a-b )2+(b-c )2+(c-a )2]=3 32.根据:当n 是正整数时,(x n +x n-1+…+x 2+x+1)(x-1)=x n+1-1,知原式=x 2007-1=1. 33.a+b ,b+c ,c+a 中有一个或两个是0即可,如:a=-b ;或a=c=1,b=-1.34.译文:如果m ,n 是正整数,满足m 3+27mn+n 3=729,m+n>mn ,则m+n 的值是_____.因为m+n>mn ,所以m+n-mn-1>-1,即(m-1)(n-1)<1,而m ,n 是正整数, 所以(m-1)(n-1)=0,m=1或n=1,若m=n=1,不符合题意,舍去.所以m ,n 中有且只有一个是1,不妨设n=1,则m 3+27m+1=729,得m 2+27m-728=0, 即(m-512)+(27m-216)=0,(m-8)(m+8m+64)+•27(m-8)=0,(m-8)(m 2+8m+91)=0,所以m=8或m 2+8m+91=0,而m 2+8m+91=0无实根,故只能m=8,于是m+n=9. 35则原式+22-2+2()+2=1436.可以构造商式比较大小,由于A>0,B>0,所以20072008200920092007200820092009(200720082009)2007A B ⨯⨯==⨯⨯>1,所以A>B .37.20082008011A A B =+=+==-=<<<即又A>0,B>0, 所以A>B 38.原式=0 39.译文:如果a ,b 为常数,且不等式ax+b>0的解集是x<13,则不等式bx-a<0•的解集为不等式ax+b>0,即ax>-b 题设它的解是:x<13,所以a<0,且-b a =13即a=-3b ,所以b>0 则不等式bx-a<0的解集为x<ab=-3,即x<-3 40.考虑极端情况,假设小明答题只有答对和答错两种情况,且他答对x 道题,•由题设条件可得4x-4(25-x )≥60, 解得x ≥20,所以他至少要答对20道题. 41.由题设的22222222221,1x xy y x xy y a b c c b a++=++=,两式相减,得222222x y y x a c --+=0. 所以(x 2-y 2)(2211a c-)=0 因为a ≠c ,且a ,c 为正数 所以2211a c -≠0, 所以x 2-y 2=0.由x ,y 均为正数,且将222111a b c ++=12007. 42.若方程42axx -+=3有解,则应有x ≠-2, 于是有4-ax=3x+6, x=-23a+.显然,必须a ≠-3.因此,当a=-3时,方程无解. 43.题设,m m m n m n ++-=-14, 即2222m m n-=-14, 也即222m n m -=-8,即1-(n m )2=-8, (n m )2=9,nm=±3.44.当x=2时,753753113222222a b c d a b c d x x x x ++++=++++=所以7532222a b c d +++=52,753753753121(2)(2)(2)(2)21()2222a b c d x x x x a b c d a b c d ++++=++++----=++++当x=2时, =-2. 45.在1a -1b =1a b+的两边同乘以(a+b ),得a b a ba b ++-=1, 即(1+b a )-(a b +1)=1,也即b a -ab=1.又b a +a b =4a b=2222b a a b -=(b a -a b )(ba +ab )=46.由ax+y=1得y=1-ax ,代入x+ay=2,得x+a (1-ax )=2,(1-a 2)x=2-a ,因为方程组有解,所以此方程有解,所以1-a 2≠0,这时,方程组有解x=22212,11a a y a a--=--,又,•若a 2=1时,如果方程组有解,则在ax+y=1两边同乘以a ,得到a 2x+ay=a ,即x+ay=a ,所以a=2,与a 2=1矛盾,综上,知:仅当a ≠±1时,原方程组有解 47.由(n-2)a n-2-(n-1)a n-1+1=0,(2≤n ≤100)得a 1=1,a 3-2a 2=-1,2a 4-3a 3=-1,3a 5-4a 4=-1,……98100-9999=-1.以上各式相加,得98a 100-2(a 2+a 3+…+a 99)=98,以a 100=199代入,得a 2+a 3+…+a 99=9800,•于是a 1+a 2+…+a 100=1+9800+199=10000. 48.由题可知xy=1,x=1y,代入到题设的等式,得 19x 2+145+219x =2007, 19(x 2+21x )=1862, x 2+21x =98, x 2+21x +2=100,(x+1x )2=100,所以x+1x=±10,2()10,a ba b -+=±-也即=±10,±5(a-b )=a+b , 取正数5a-5b=a+b ,则2a=3b ,最小,a=3,b=2,a=b=5; 取负数-5a+5b=a+b ,则3a=2b ,最小,a=2,b=3,a+b=5. 49.由x 3+y 3+z 3=3xyz 得 x 3+y 3+z 3-3xyz=0, (x+y )3+z 3-3x 2y-3xy 2=0.[(x+y )+z]3-3(x+y )2-3(x+y )z 2-3x 2y-3x y 2-3xyz=0,(x+y+z )3-3(x+y )z (x+y+z )-3xy (x+y+z )=0, (x+y+z )3-(x+y+z )(3x+3xz+3yz )=0, (x+y+z )(x 2+y 2+z 2-xy-xz-yz )=0, (x+y+z )(2x+2y+2z-2xy-2xz-2yz )=0. (x+y+z )[(x-y )2+(y-z )2+(z-x )2]=0. 因为x ,y ,z 互不相等, 所以x+y+z=0 ①又因为②①+②得①-②得所以(2x+z )2(2y+z )2=(2+(250.由条件得ab=2,则(a+b )2=a 2+2ab+b 2=8,所以a+b=±51=2x,则=2x,则若比例式为1x ,则. 52.依题意,设P 1(m ,4m ),P 2(n ,4n ),则m=4m,m 2=4.所以m=2(m>0), 所以OA 1=4, 所以4+4n=n ,n 2-4n=4, (n-2)2=8.所以,所以,所以OA 2=n+4n所以点A 的坐标是(0).53.译文:在下列交通标志中,是轴对称图形的标志有_______个. 只有第三个不是轴对称图形,所以轴对称图形有3个. 54.如图,可得矩形、平行四边形和等腰三角形,填①④⑤.55.因为ABCD 是平行四边形,O 是BD 的中点,则△AEM ≌△CFN ,△DEO ≌△BFO ,△BMO ≌△DNO ,△ABD ≌△CDB ,△EDN ≌△FBM ,• 共有5对全等三角形.56.设小正方形的边长为1,则正方形ABCD 的面积为16,周长为16, •阴影部分的面积是16-4×12×3×1=10,周长是 所以,面积比=5:8,4.57.由条件得(a+2)2+62=102,所以(a+2)2=46,a+2=8,a=6. 58.如图所示,已知AC=2AB=10米,∠ABC=90°,•所以地面上的工人行走的距离是.59(厘米).当滑块B 滑到0点时,滑块A 距0点25厘米,故滑块A 向上滑动了10厘米.当滑块B 由0点滑到C 点时,滑块A 由最高点滑到0点,即向下滑动了25厘米, 所以滑块A 共滑动了35厘米. 60.设AC=b ,BC=a ,AB=c , 由AB=2,CD=1, 知∠ACB=90°, 于是a 2+b 2=c 2 所以(a+b )2-2ab =c 2而,c=2所以2-2ab=22,得因此,S △ABC =12 61.由题设条件可知a c 2+bc 2-b 3-abc=b 2(c-b )+ac (c-b )=(c-b )(b 2+ac )=0 所以c=b .因此三角形为等腰三角形,又一个内角是120°,所以其底角是30°,则a :b :2:1:1.62.因为a ,b ,c 是三角形的三条边,所以a ,b ,c 及a+b-c ,b+c-a ,c+a-b 均为正数, 所以111a b c b c a c a bc a b a b b c a cc a ba b b c a cc a ba b c a b c a b cc a b+++-+->>+++->->-+++>>++++++>>c<a<b .即,三边中最长的边是b . 63.可转化为面积求解.设△AA 2B ,△BOA 2,△BC 2O ,△B 2CO ,△OA 2C ,△AA 2C 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,△ABC 的面积为S ,如图33所示,并利用以下三个结论:(1)等高三角形面积的比等于对应底边的比(如图34).11212,S S AD ADS DB S S AB==+ (2)合比定理,若,a c a c a c b d b d b d+===+则 (3)分比定理. 若,a c a c a cb d b d b d-===-则 ?则(见扫描卷) 将上面三式相加,得1112AO BO CO SAA BB CC S++==2 64.延长BE 交AD 的延长线于F ,如图所示,因为AD ∥BC ,E•为CD•的中点,•所以△DFE ≌△CBE,于是BC=DF,BE=EF.? S=S因为BE=132,所以BF=13,在Rt△ABF中,AB2+AF2=BF2=132?12AB·AF=S=30于是(AB+AF)2=AB2+AF2+2AB·AF=132+120=289=172 所以AB+BC+DA=AB+AF=1765.如图36,延长CB到M,使BM=DQ,连AM,因为AD=AB,∠D=∠ABM=90°,所以△ADQ≌△ABM,AM=AQ,∠MAB=∠DAQ,因为∠BAP+∠DAQ=45°,所以∠MAB+∠BAP=45°,所以∠MAP=∠PAQ又因为AP=AP所以△MAP≌△QAP,MP=PQ,所以△POQ周长=PC+CQ+PQ=PC+BP+CQ+DQ=4.66.设重叠部分的面积是xm2,则120+(74-x)=160,所以x=34.? 67.由n是正整数,知道凸4n+2边形的边数至少是6.因为∠A,∠A,∠A都是90°,•所以此多边形的外角和是270°.因此,除了∠A ,∠A ,∠A 外,若存在某一角∠A ≤90°(i=4, 5,…,4n+2), 则此多边形外角和大于360°,与“凸多边形外角和等于360•°”矛盾,又题设该多边形的内角都是30°的整数倍,所以除了∠A ,∠A 和∠A 外,•其余角只能是120°或150°.设∠A ,∠A ,…,∠A 中有k 个120°,t 个150°(k ,t 为非负整数),那么 k+t=(4n+2)-3=4n-1,t=4n-k-1,因为[(4n+2)-2]·180°=3×90°+k ·120°+(4n-k-1)·150°.整理得4n=4-k ,由于n 是正整数,k 非负,所以只能是k=0,n=1.68.设该时装的进价是a ,则原售价是(1+30%)a ,设后来打x 折销售,根据题意有 (130%)10x a a a+⨯-×100%≥10%解得x ≥11013≈8.5 所以打折的幅度不能低于8.5折.69.设今年安排考场x 个,则120120(150%)23x x++=- 解得x=18或x=15.经检验,x=18和x=15都是原方程的根,所以,今年安排的考场有18个或15个.70.设另一直角边和斜边长分别为y ,z ,则352+y 2=z2 即(z+y )(z-y )=52·72,设周长为1,则1=35+z+y,又z+y>35,所以z+y最大为52·72,最小为72.?所以1.5.7+35=1260,1=49+35=84.71.由题意,得(1-15%)a<b<(1-8%)a,即0.85a<b<0.92a.72.由于1=12,2+3+4=32,3+4+5+6+7=52,……所以第n个式子从n开始,且有2n-1个连续自然数相加,即第n个式子为 n+(n+1)+…+(n+2n-2)=(32)(21)2n n n+--=(2n-1)2(n是正整数).即一般规律为n+(n+1)+…+(3n-2)=(2n-1)2(n是正整数).73.设商品共有a件,售出一半后,收入为12am元,其余的一半按m元的8折出售,即售价为0.8m元,收入为0.4am元,总收入为0.9am元,依题意有0.9am=1.1a×90,所以m=110.74.总人数是 4+6+10+5=25(人).在70.5~90.5这一分数段的人数是16人,占25人的64%,所以频率为0.64.75.设a=(a,b)a,b=(a,b)b,(a,b)=1,则[a,b]=(a,b)ab,即(a,b)ab=1085-(a,b).1085=5×7×31是(a,b)的倍数,所以(a,b)的可能值是1,5,7,31,35,•155,•217,1085.(1)当(a,b)=1时,?? a=a,b=b,ab=1085=271×4,a-b=267.(2)当(a,b)=5时,5ab=1085-5,ab=216=2×3,所以a=3,b=2,a-b=5(3-2)=95.(3)当(a,b)=7时,ab=154=11×7×2,当a=14,b=11时,a-b最小,a-b=21.由于a-b=(a,b)(a-b)≥(a,b),所以当(a,b)≥31时,a-b的值一定大于21,所以a-b的最小值为21.76.设EC=x,CD=y,则有AC=3x,BC=3y.在Rt△ACD中,有(3x)2+y2=62,①在Rt△BCE中,有(3y)2+x2=82.②①+②得10(x2+y2)=100,x 2+y 2=10,又x+y=6,所以xy=222()()361022x y x y +-+-==13 所以S △BCD =12xy=6.5 ? 77.连AC ,如图37所示,在梯形ABCE 中,S=S ,? 在梯形ACFD 中,S=S? 而S-S=S-S? 即S=S? 所以S=S78.因为4x 2+1+kx=(2x )2+kx+1是关于x 的完全平方式,所以 ±2·2x ·1=kx ,解得 k=±4.当k=4时,k-2k+2=10;当k=-4时,k-2k+2=26.79.原方程可化为1111200420062007200311112006200720032004(2007)(2006)(2004)(2003)(2006)(2007)(2003)(2004)11(2006)(2007)(2003)(2004)x x x x x x x x x x x x x x x x x x x x +=+++++-=-+++++-++-+=++++=++++ =(x+2006)(x+2007)=(x+2003)(x+2004)x 2+4013x+4026042=x 2+4007x+40140126x=-12030x=-2005经检验,x=-2005是原方程的根.三、解答题80.设全班共有x 人,有y 人既参加语文组又参加数学组,则有23x 人参加语文组,•有32y 人参加数学组,依题意得 23()448322324432x y y xx y x y⎧+-+=⎪=⎧⎪⎨⎨=⎩⎪+=⎪⎩解得即全班有48人,既参加语文组又参加数学组的人数是24人.81.设A 和B 两种产品的月产量分别为x ,y 件,则最大利润z=600x+800y ,且x ,y 满足条件0300020003000005001000110000x y x y x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩由z=600x+800y=a (3000x+2000y )+b (500x+1000y )解得 a=110,b=35所以 z=110(3000x+2000y )+35(500x+1000y )≤96000此时3000200030000040500100011000090x y x x y y +==⎧⎧⎨⎨+==⎩⎩解得即 A 产品每月生产40件,B产品每月生产90件.每月可获得的最大利润是96000元.82.在射线OE上取一点M,使AO=AM,如图38所示,则△OAM为等边三角形,过C作CN∥AM,则∠NCO=∠NCB+∠2=60°,又因为∠1+∠NCB=60°,所以∠1=∠2,在△ACN和△BCO中,因为∠1=∠2,∠ANC=∠BOC=120°,NC=CO,所以△ACN≌△BCO.所以BC=AC,所以△ABC是等边三角形.当B、C点各在OG、OE射线上运动时,欲保证△ABC是等边三角形,只有AC或AB•与AO 重合时面积最大(△AOC中,∠ACO>∠AOC,AO>AC).所以△ABC面积的最大值是△AOM m2.83.(1)当0≤x<1600时,y=0;当1600≤x<2100时,y=(x-1600)×5%;当2100≤x<3600时,y=(x-2100)×10%+500×5%;当3600≤x<6600时,y=(x-3600)×15%+1500×10%+500×5%;……(2)如图39所示.(3)当x=4000时,y=(4000-3600)×15%+1500×10%+500×5%=235(元).84.(135,40)=5(最大公约数).135=27×5,40=8×5.将木棍分成5个相等的截段,则每一截段上的红刻度线将它(截段)分成27等份,•黑刻度线将它分成8等份,且5个截段中的红、黑刻度线的分布完全相同,因此只需要考虑一个截段即可,不妨假定一个截段的长度为27×8,则相邻两红线的长度为8,•相邻两黑线的长度为27,注意到27=3×8+3,2×27=6×8+63×27=10×8+1,4×27=13×8+4,5×27=16×8+7,6×27=20×8+2,7×27=23×8+5,8×27=27×8+0.这8个等式表明,对于任意正整数k,0≤k≤7,我们可以找到两个正整数p,q,使得1≤p≤8,1≤q≤27,p×27=q×8=k.上式说明,在一个截段中锯下来的短木棍的长度有1,2,3,4,5,6,7,8共8种,而不可能有比8更长的短木棍(两红段间距为8),其它四个截段也一样.85.设取出一组线段,其中的任意三条都能构成一个三角形,•记这组线段中最短的两条长为x,y,最长的一条长为z,则1≤x<y<z≤100,由于x,y,z构成三角形,故z+y>z.。
蓝天教育:2015年第十三届小学希望杯二试六年级试题答案

=
10 3.
整 理 ,得
{27d +8e+f =216,
9d +4e+f =120.
①
两 式 相 减 ,消 去 f,得
9d +2e=48.
②
由d 是分割后的棱长为3的小正方体的个数,
得
d 是不大于8(2×2×2=8)的自然数,
由 ② 可知 d 是小于5的偶数,
所以d 的可能取值是0,2,4,
将d 的值分别代入 ② 和 ① 可得:
(64)10 + (0)10 + (16)10 + (8)10 + (4)10 +
(2)10 + (1)10
= (2015)10.
(15 分 )
14.用 插 板 法 ,将 10 天 的 作 业 看 做 10 个 小
球 ,然 后 向 小 球 间 插 板 .
两个小球间:
(1)插 0 个 板 :表 示 连 续 两 天 做 作 业 ;
长为5 的 正 方 体 时,剩 余 部 分 只 能 切 割 成 棱 长
为 1 的 小 正 体 ,设 其 个 数 为 a,则 由 切 割 前 后 体 积不变可得:
6×6×6=5×5×5+1×1×1×a,
解得
a =91.
此时切割后的所有小正方体的表面积之和是切
割前的大正方体的表面积的
5×5×66+×16××16×6×91=299(倍),
PD =AD -AP =4-4÷2÷2=3,
所以 △NPQ 的面积为
3×4÷2=6(平 方 米 );
(5 分 )
图1
(2)第 15 秒 时 ,1×15=15(米 ), 此时 P 点运动到线段 MD 的中点, Q 点运动了2×15=30(米),
重庆市巴南区鱼洞南区学校2015-2016学年度八年级上期末复习数学第26题专题训练五
2015-2016学年度八年级上期末复习数学第26题训练五1. 如图,D、E分别在正△ABC的边BC和AC上,且AE=CD,连BE交AD于P,过点B作BQ⊥AD于点Q.(1)求证:BP=2PQ;(2)若CP⊥BP,求证:AP=PQ.2.(2010秋•江岸区期中)如图,点D是等边△ABC边AB上的一点,AB=3AD,DE⊥BC于点E,AE、CD相交于点F.(1)求证:△ACD≌△BAE;(2)请你过点C作CG⊥AE,垂足为点G,探究CF与FG之间的数量关系,并证明.3.已知:△ABC是等边三角形,点E在边AC上,点D在边BC上,且AE=CD,连接AD、BE相交于点P,过点B作BF⊥AD,垂足为F.求证:EP+2PF=AD;4.(2013秋•兰溪市校级期中)已知,△ABC是等边三角形,D、E分别是BC、AC边上的点,AE=CD,连接AD、BE相交于点P,BQ⊥AD于Q. (1)求∠BPD的度数;(2)若PQ=3,PE=1,求AD的长.5.在等边△ABC中,点D、E分别在BC、AC上,且BD=CE,连接AD、BE,交于点F.(1)如图1,求证∠AFE=60°;(2)如图2,连接FC,若∠AFC=90°,BF=4时,求AF的长度.6.如图在等边△ABC 中,D 、E 分别是BC 、AC 上的点,且AE=CD ,AD 与BE 相交于F ,CF ⊥BE .(1)求证: △ACD ≌△BAE ;(2)求∠BFD 的度数;(3) 猜想BF 与AF 有何数量关系,并证明你的结论.提示:过B 作BM ⊥AD,交AD 于M.7.如图,在正△ABC 中,D 、E 分别是BC 、AC 上一点,AE=CD,AD 与BE 交于点F ,AF= BF .求证:CF ⊥BE .(第6题)。
第希望杯初二第2试试题及答案
第二十一届“希望杯”全国数学邀请赛初二第 2 试一、选择题(每题 4 分,共 40 分.)以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题后边圆括号内.1.计算21259,得数是()A.9 位数B.10 位数C. 11 位数D.12 位数2.若xy 1 ,则代数式9xy18的值()239x y18A.等于7B.等于5C.等于5或不存在D.等于7或不存在57753( x a) 2 ≥ 2(1 2x a)3. The integer solutions of the inequalities about x :x b b x are 1,2,332then the number of integer pairs(a,b)is()A. 32B.35C. 40D.48(英汉字典: integer整数)4.已知三角形三个内角的度数之比为x : y : z ,且 x y z ,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等腰三角形5.如图 1 ,三个凸六边形的六个内角都是120 ,六条边的长分别为 a ,b ,c ,d ,e, f ,则以下等式中建立的是()bacf de图1A.a b c d e f B.a c e b d fB . a b d eC . a c b d6.在三边互不相等的三角形中,最长边的长为 a ,最长的中线的长为 m ,最长的高线的长为 h ,则()A . a m hB . a h mC . m a hD . h m a7.某次足球竞赛的计分规则是:胜一场得 3 分,平一场得 1 分,负一场得 0 分,某球队参赛 15场,积 33 分,若不考虑竞赛次序,则该队胜、平、负的状况可能有()A .15 种B .11 种C .5 种D .3 种8.若 xy0 ,x y0 ,11与 x y 成反比,则 x y2与 x 2 y 2 ()x yA .成正比B .成反比C .既不可正比,也不可反比D .关系不确立9.如图 2,已知函数 y2 k ,点 A 在正 y 轴上,过点 A 作 BC ∥ x 轴,交两个函( x 0) ,y(x 0)xx数的图象于点 B 和 C ,若 AB : AC 1:3 ,则 k 的值是()yCABO x图2A . 6B .3C . 3D . 610 .10 个人围成一圈做游戏,游戏的规则是:每一个人内心都想一个数,并把自己想的数告诉与他相邻的两个人, 而后每一个人将与他相邻的两个人告诉他的数的均匀数报出来,若报出来的数如图 3所示,则报出来的数是3 的人内心想的数是( )A .2B . 2C .4D . 4110 29384756图 3二、填空题(每题4 分,共 40 分)11 .若 x 2 2 7 x 2 0 , 则 x 4 24x 2.12 .如图 4 ,已知点 A( a ,b) , O 是原点, OAOA 1 ,OA OA 1 ,则点 A 1 的坐标是.yA ( a ,b )A 1O x图 413 .已知 ab0 ,而且 a b 0 ,则ab1 1 b 22____________.(填“ ”、“ ”、“≥ ”或“ ≤ ”)aab14 .若 a 2b 2a 2 b2 0 ,则代数式 a a b b a b的值是.15 .将代数式 x 3 2a 1 x 2 a 2 2a 1 x a 2 1 分解因式,得16 . A 、B 、C 三辆车在同一条直路上同向行驶,某一时辰, A 在前, 10 分钟后, C 追上 B ;又过了 5 分钟, C 追上 A .则再过.C 在后, B 在 A 、C 正中间,分钟, B 追上 A .17 .边长是整数,周长等于 20 的等腰三角形有 种,此中面积最大的三角形底边的长是.18 .如图 5 ,在 △ ABC 中, AC BD ,图中的数听说明 ABC .A30°B40° CD 图519 .如图 6,直线 y31 与 x 轴、 y 轴分别交于 A 、B ,以线段 AB 为直角边在第一象限内作x3等腰直角 △ ABC , BAC90 .在第二象限内有一点P a , 1,且 △ABP 的面积与 △ ABC 的面积2相等,则 △ ABC 的面积是; a ___________________yCBPO Ax 图 620 .Given the area of△ ABC is S 1 ,and the length of its three sides are311,9 3,101313respectively . And the perimeter of △ABCis 18 ,its area is S 2 .Then the relationship between S 1 and S 2 isS 1S 2 .( fill in the blank with“ ”,“= ”or “ ”)(英汉字典: area 面积; length长度; perimeter 周长)三、解答题每题都要写出计算过程.21 .(此题满分 10 分)解方程:2 x34 4 x 3 .42 x 334 x【分析】 令2x 3a ,4xb ,43则a1 b 1 ,ab 整理得ab 10 ,aab所以 a b 或 ab1,即3x 34 x , ①4 3或2 x3 4 x 1 ,②43由①得x7 ,10由②得 x0 或 x52经查验,知7 ,0,5都是原方程的解.10222.(此题满分15分)如图7,等腰直角△ABC 的斜边 AB 上有两点 M、N ,且知足MN 2BN 2AM 2,将△ABC绕着 C 点顺时针旋转90 后,点M、N的对应点分别为T、S .⑴请画出旋转后的图形,并证明△MCN△MCS⑵求MCN 的度数.BBNN MC AM SC A r图 7【分析】⑴将△ ABC 绕着C点顺时针旋转90,如图.依据旋转前后的对应关系,可知BN AS ,CN CS , NBC SAC45所以MAS MAC SAC90.由色股定理,得MS 2AM 2AS2AM 2BN 2MN2,所以M N.M S又因为CN CS ,CM 是公共边,所以△MCN △MCS .⑵因为 CN 顺时针旋转 90后获得 CS ,所以NCS90,上边已证得△MCN △MCS ,故MCN MCS 145.NCS223 .(此题满分 15 分)已知长方形的边长都是整数,将边长为 2 的正方形纸片放入长方形,要求正方形的边与长方形的边平行或重合,且随意两个正方形重叠部分的面积为0,放入的正方形越多越好.⑴假如长方形的长是4,宽是 3 ,那么最多能够放入多少个边长为 2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑵假如长方形的长是 n(n ≥ 4) ,宽是 n 2 ,那么最多能够放入多少个边长为2 的正方形?长方形被覆盖的面积占整个长方形面积的百分比是多少?⑶关于随意知足条件的长方形,使长方形被覆盖的面积小于整个长方形面积的55% 求长方形边长的全部可能值.(已知0.55 0.74 )【分析】 ⑴ 最多能够放入 2 个正方形,长方形被覆盖的面积占整个长方形面积的百分比是2 22 2 .4 366.7%3⑵当 n 是偶数时, n 2 也是偶数,最多能够放入1 个正方形,长方形被覆盖的面n( n 2)4 积占整个长方形面积的百分比是 100% .当 n 是奇数时, n2 也是奇数,最多能够放入1 3) 个正方形,长方形被覆盖的(n 1)(n4面积占整个长方形面积的百分比是 n 1 n 3n n2100% .⑶设长方形的宽与长分别是x ,y .若 x ,y 都是偶数,则长方形被覆盖的面积占整个长方形面积的100% ,不切合题意.若 x ,y 中一个是偶数 2a ,一个是奇数 2b 1 ( a ,b 是正整数),则4ab 4ab2b0.55 .xy2a (2b 1) 2b 1解得 b 0.61.没有知足此结果的正整数b ,这类状况也不切合题意.所以, x ,y 都是奇数.x 2a 1 ,令 y 2b 1 , a ≤ b ,a ,b 是正整数,则有4ab0.55 .2a 1 2ba4ab4a4a2因为2a2a 1 2b a11,12a12a 12a22ba22a所以0. 55.2a 12a得0. 7 ,4a 1.,42a 1因为 a 是正整数,所以 a 1代入①式,得4b0. 55, 3 ( 2b1)解得 b 2.4 ,因为 b 是正整数,所以 b 1 或 2故有x 3 ,y3或 5.即长方形长为 5,宽为 3,或长与宽都是 3.第二十一届“希望杯”全国数学邀请赛参照答案及评分标准初二第 2 试一、选择题(每题4 分.)题号1 21 3 4 5 6 7 8 9 10答案BDBCCADADB二、填空题(每题 4 分,第 17 、19 题,每空 2 分.)题号111213141516 17 1819 20答案 -4b ,a≥1x 1 x a 1 x a 115 4;6402;3421. 21259 23 109 8 109 ,∴得数是 10 位数.2.∵xy 1 ,∴ y 3 x 32 329x 33 189 x y 18 x21x42 7 x22将其代入代数式,得315x 30 5 x 29 x y 189x3 18x2当 x2 时,原式7;当 x 2 时,原式的值不存在.53x 3a 2 ≥ 4 x 2 2ax ≥ 1a113.原不等式7 b2 x 2b 3b 3x1 7a ≤ xx 5b5于是 01a ≤ 1 , 31b≤ 4所以 a 有 7个不一样的取值, b 有 5 个不一样的取值,75于是整数对 a , b 共有7535个.4.∵x y z ,∴x y z 2 z ,即1802z,∴z90,三角形为钝角三角形.5.如图,补三个等边三角形,则 a b c c d e a f e ,于是a b d e.a b ca cdfee6.利用直角三角形中斜边大于直角边易得结论a m h .7.设该球队胜、平、负的场数分别为x 、y、 15 x y ,则 3x y33 .x ≥ 0y ≥ 0 x ,于是 0 ≤ y ≤ 6 ,又y能整除 3 ,于是 y 0 , 3 , 6 .y ≤ 153x y 33对应的 x 11 , 10 , 9 ,共3种状况.8.∵11与 x y 成反比,∴x y11m ,此中 m 为非零常数.x y x y于是yx m 2 ,所以y为定值.x y x2y2而 x y22y y1, x2y2x2 1 ,联合y为定值xxx x x所以 x y2与x2y2成正比.9. B 与 C 的纵坐标相等,即k2,∴k2AC6AC AB AB10.假定报出来的数是 3 的人内心想的数是 x ,则报出来的 12345678910数4 x x8 x 4 x12 x内心想的数于是 4x 12x20 ,解得 x2 .11. x 4 24x 22 7 x 224 2 7 x 228 x 28 7 x4 48 7x 4828x 2 56 7x 5222 8 2 x7 25 6x 752.412. 过 A 、 A 1 作 x 轴的垂线,利用弦图简单获得A 1 b , a .aba 2ba 211a b13.a bba b∵b 2a 2b 2aba 2,ab11ba2222而a2b2 ≥ 2 a 2 b 22bab a∴ab a b ≥1 1a b ,即ab1 1 .b 2a 2a bb 2 a 2 ≥ a b14. ∵a 2 b 2a 2 b 2a 2b21 , b 1110 ,∴a于是 a a b b a b 12 10 1 .15.x 3 2 a 1 x 2 a 2 2 a 1 x2a 1x 3 2ax 2 a 2 1 x x 2 2ax a 2 1x 1 x 22axa1 a 1x 1 x a 1 x a116. 设当 B 在 A 、C 正中间是 ABBC1,则 C 相对 B 的速度为1,C 相对 A 的速度为 2 ,1015所以 B 相对 A 的速度为1,故 B 追上 A 需要时间为 30 分钟.30于是再过 15 分钟, B 追上 A .17. 设等腰三角形的腰长为x ,则底边长为 20 2x ,于是 0 20 2xxx ,有 5 x 10 ,∴x 的可能取值有 6 , 7 , 8 , 9,共 4 种.其面积为10 1022 x10 ,∴当 x7 时三角形面积最大,此时底边长为6 .x18. 在 BC 上取一点 E ,使得 CE CA ,简单证明 △ AEB ≌△ ADC ,于是 ABC 40 .19. ∵ A 3 , 0 ,B 0,1,∴ AB 2于是 S △ ABC 12AB22∵S△ ABP1 1 1 a1 3 11 3 a 12 ,解得 a3 4 .2 2222220. △ ABC 的面积不小于三边长分别为 3 , 9 , 10 的三角形面积,于是S △ABC ≥ 11 11 3 11 9 11 10262 ;而 △A B C 的面积不大于周长为 18 的正三角形面积,于是3 2S 2 ≤18243 .49 33∴S 1 S 2 .。
【精品】八年级希望杯决赛真题与标准答案.doc
4.已知三角形三个内角的度数之比为x : y : z ,且x+yvz, 则这个三角形是()(A )锐角三角形. (B )直角三角形. (C )钝角三角形. (D )等腰三角形.5.如图1, 一个凸六边形的六个内角都是120。
,六条边的长分a, b, c, d, e, f,则下列等式中成立的是)(D)a+c=b+d.(英汉词典:integer 整数)(A)a+b+c=d+e+f .(B)a+c+e=b+d+f . (C)a+b=d+e.6. 在三边互不相等的三角形中,最长边的长为a,最长的中线的长为m,最长的高线的长 为h,则() (A )a>m>h .(B )a>h>m .(C )m>a>h.(D )h>m>a .7. 某次足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得O 分,某球队参赛15场,积33分,若不考虑比赛顺序,则该队胜、平、负的情况可能有()(A ) 15 种.(B ) 11 种.(C )5 种.(D )3 种.第二十一届“希望杯”全国数学邀请赛初二 第2试(2010 年 4 月 11 U 上午 9:00 至 11:00)得分—一、选择题(每小题4分,共40分.)以下每题的四个选项中,仅有一个是正确的,请将 表示正确答案的英文字母写在每题后面的圆括号内. 1 .计算2,2X 59,得数是()(A )9位数. (B ) 10位数. (C ) 11位数.(D) 12位数.2.若三=1,Or + v — ]8则代数式 一的值()9x-y-\S 7 (A )等于;・55 7(B )等于+(C )等写或不存在.(D )等专或不存在.3. The integer solutions of the inequalities about x3(x — q) + 22 2(1 — 2x — ci)x b b — xarcl,2,3,--- < -----then the number of integer pairs (a,b) (A)32.(B)35.(C)40.(D)48.(A)2.(B)— 2. (C)4.(D) 一4.8.若 xy *O,x+y *0,—+ —与 x+y 成反比,则(x + y)2与亍+)=()工 )'(A )成正比.(B )成反比.(C )既不成正比,也不成反比. (D )的关系不 确定.2k9.如图2,已知函数y - —(X > 0),y = —(x < 0),点A 在正y 轴上,过点A 作BC//x 轴, x x交两个函数的图象于点B 和C,若AB:AC = 1:3,则k 的值是()(A )6.(B )3.(C )— 3.(D )— 6.10. 10个人围成一圈做游戏.游戏的规则是:每个人心里都想一个数,并把目己想的数告许与他相邻的两个人,然后每个人将与他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图3所示,则报出来的数是3的人心里想的数是()110 2 9 3二、填空题(每小题4分,共40分.) 11 .若 了 _ 2A /7X + 2 = 0,则 X 4—24X 2=12. 如图4,已知点A (a, b ), 0是原点,OA=OA|, OA ± OA },则点A 〕的坐标是 13.已 知 ab + 0 , 并 且 a + b >。
2024年希望杯五年级竞赛数学试卷培训题含答案
2024年希望杯五年级竞赛数学试卷培训题1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:.can be expressed by a product of and;.is a square number;Find the digit number.已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选..A..B..C..D..E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁).70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.2 、【答案】3 、【答案】4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】55 、【答案】56 、【答案】57 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】97 、【答案】98 、【答案】99 、【答案】100 、【答案】。