自回归移动平均模型公式
自回归AR模型、移动平均MA模型及自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。
(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。
式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。
(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。
实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。
(3)平稳条件一阶:|φ1|<1。
二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。
φ越大,自回归过程的波动影响越持久。
(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。
时间序列中的ARMA模型

c u=
1 (1 2 ... p)
的无条
6
ARIMA模型的概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
1-1Z- 2Z2 -...- pZp 0
特征方程的根全部落在单位圆以外时, ARMA(p,q)是一个平稳过程。
9
ARIMA模型的概念
3.ARMA(p, q)过程的特征
1)E(Yt)=
c
1 (1 2 ... p)
2)ARMA(p, q)过程的方差和协方差
10
ARIMA模型的概念
四. AR、MA过程的相互转化
于滞后长度描图)。
14
ARMA模型的识别
2. 自相关函数和偏自相关函数的概念
①自相关函数
过程Yt的第j阶自相关系数即 j j 0 ,
自相关函数记为ACF(j) 。 ②偏自相关函数
偏自相关系数 *j度量了消除中间滞后项影响
后两滞后变量之间的相关关系。偏自相关函数 记为PACF(j)
15
ARMA模型的识别
结论一:平稳的AR(p)过程可以转化为一个MA(∞)过程, 可采用递归迭代法完成转化
结论二:特征方程根都落在单位圆外的 MA(q)过程具 有可逆性
平稳性和可逆性的概念在数学语言上是完全等价的, 所不同的是,前者是对AR过程而言的,而后者是对 MA过程而言的。
自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析

自回归AR模型、移动平均MA模型与自回归移动平均ARMA模型的比较分析系统中某一因素变量的时间序列数据没有确定的变化形式,也不能用时间的确定函数描述,但可以用概率统计方法寻求比较合适的随机模型近似反映其变化规律。
(自变量不直接含有时间变量,但隐含时间因素)1.自回归AR(p)模型(R:模型的名称 P:模型的参数)(自己影响自己,但可能存在误差,误差即没有考虑到的因素)(1)模型形式(εt越小越好,但不能为0:ε为0表示只受以前Y的历史的影响不受其他因素影响)yt=φ1yt-1+φ2yt-2+……+φpyt-p+εt式中假设:yt的变化主要与时间序列的历史数据有关,与其它因素无关;εt不同时刻互不相关,εt与yt历史序列不相关。
式中符号:p模型的阶次,滞后的时间周期,通过实验和参数确定;yt当前预测值,与自身过去观测值yt-1、…、yt-p是同一序列不同时刻的随机变量,相互间有线性关系,也反映时间滞后关系;yt-1、yt-2、……、yt-p同一平稳序列过去p个时期的观测值;φ1、φ2、……、φp自回归系数,通过计算得出的权数,表达yt 依赖于过去的程度,且这种依赖关系恒定不变;εt随机干扰误差项,是0均值、常方差σ2、独立的白噪声序列,通过估计指定的模型获得。
(2)识别条件当k>p时,有φk=0或φk服从渐近正态分布N(0,1/n)且(|φk|>2/n1/2)的个数≤4.5%,即平稳时间序列的偏相关系数φk为p步截尾,自相关系数rk逐步衰减而不截尾,则序列是AR(p)模型。
实际中,一般AR过程的ACF函数呈单边递减或阻尼振荡,所以用PACF函数判别(从p阶开始的所有偏自相关系数均为0)。
(3)平稳条件一阶:|φ1|<1。
二阶:φ1+φ2<1、φ1-φ2<1、|φ2|<1。
φ越大,自回归过程的波动影响越持久。
(4)模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量相互独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性等造成的困难。
自回归移动平均模型

平稳性
一个时间序列是随机变量按时间顺序排列的观测 值,在经济和金融的应用中,我们仅能得到的是 时间序列的一次实现,时间序列分析的目标就是 从观测到的一次实现来对过程进行推断,常用的 方法就是选择一个适当的模型来近似描述所研究 的过程。 选择一个适当的模型,就涉及到评价样本数据的 联合分布函数 F ( x1 , x2 , xT ) Pr(X 1 x1 ,, X T xT ) 其中,T是样本容量,xi是实数。通常xt是一个 观测序列。为了能更好地为时间序列构模,需要 限制联合分布。进一步,为了预测,还要说明过 程分布的一些关键性质,即时间不变性。
1
1
1
2
1
2
m阶平稳过程
强平稳的要求苛刻,因而引入较弱的条件 如果一个平稳过程 m 阶以下矩 ( 包括 m 阶矩 ) 的取 值与时间无关,称随机过程为m阶平稳过程。
随机过程为m阶平稳过程并不要求 xt 和x 的概 率分布相同,仅要求这两个分布的主要特征相同, 只要求相等到m阶矩。
1
t1 k
白噪声
在二阶平稳过程中,白噪声序列at,其定义如下, (1)均值为0,即对于所有的t, E(at ) 0 (2)方差是常数,即对于所有的t, E(at2 ) 2 E(at as ) 0 (3)协方差为0,即对于ts, 也就是说,白噪声是均值为0、方差为2的不相关序列。 白噪声相当于没有“记忆”过程,即过程第t时刻的值与所 有过去直到 t-1 时刻的值 ( 实际上也包括过程的未来值 ) 都不 相关。 白噪声过程滞后 k 期的自相关系数为 0 。应该指出的是,白 噪声过程是人为的,实际中过程的前后往往都存在着“记 忆”。但是,白噪声为构造更复杂的模型提供了基本“元 素”,因此,它在平稳过程理论中起着十分重要的作用。
ARMAARIMA模型介绍及案例分析

ARMAARIMA模型介绍及案例分析AR、MA和ARIMA是时间序列分析中常见的模型,用于分析和预测时间序列数据的特征和趋势。
下面将对这三种模型进行介绍,并提供一个案例分析来展示它们的应用。
自回归模型(AR)是一种基于过去的观测值来预测未来观测值的模型。
它基于一个假设:未来的观测值可以由过去的观测值的线性组合来表示。
AR模型的一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项。
AR模型的关键是确定自回归阶数p和自回归系数ϕ。
移动平均模型(MA)是一种基于过去的误差项来预测未来观测值的模型。
它基于一个假设:未来的观测值的误差项可以由过去的误差项的线性组合来表示。
MA模型的一般形式可以表示为:y_t=c+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。
MA模型的关键是确定移动平均阶数q和移动平均系数θ。
自回归移动平均模型(ARIMA)结合了AR和MA模型的特点,同时考虑了时间序列数据的趋势性。
ARIMA模型一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。
ARIMA模型的关键是确定自回归阶数p、移动平均阶数q和相关系数ϕ和θ。
下面举一个电力消耗预测的案例来展示AR、MA和ARIMA模型的应用:假设有一段时间内的电力消耗数据,我们想要用AR、MA和ARIMA模型来预测未来一段时间内的电力消耗。
时间序列分析模型

时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。
时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。
本文将介绍几种常见的时间序列分析模型。
1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。
它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。
该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。
2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。
自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。
3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。
自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。
4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。
arima时间序列公式

arima时间序列公式ARIMA(自回归移动平均)模型是一种常用的时间序列分析方法,用于预测未来一段时间内的数据趋势。
ARIMA模型基于时间序列的自相关性、差分平稳性和移动平均性质进行建模,通过对历史数据的分析来预测未来的趋势。
在ARIMA模型中,AR表示自回归,MA表示移动平均。
自回归是指当前值与前一时刻的值之间存在相关性,移动平均是指当前值与过去时刻的误差之间存在相关性。
ARIMA模型的建立一般包括三个主要步骤:确定参数、估计模型和检验模型。
确定ARIMA模型的参数。
参数的选择是建立ARIMA模型的关键步骤,其中包括AR、MA和差分的阶数。
AR阶数表示自回归模型的滞后项个数,MA阶数表示移动平均模型的滞后项个数,差分阶数表示将非平稳的时间序列转化为平稳序列所需的差分次数。
确定参数的常用方法有自相关函数(ACF)和偏自相关函数(PACF)的分析,以及信息准则(如AIC和BIC)的比较。
估计ARIMA模型。
估计模型的目标是找到最优的参数估计值,使得模型的拟合度最好。
常用的估计方法有最小二乘法、极大似然估计法和Yule-Walker估计法。
最小二乘法通过最小化残差平方和来估计参数,极大似然估计法则通过最大化似然函数来估计参数,Yule-Walker估计法则通过样本自相关函数的递推关系来估计参数。
检验ARIMA模型。
检验模型的目的是验证模型的拟合效果和预测能力。
常用的检验方法有残差检验、模型拟合优度检验和预测准确性检验。
残差检验主要是检验模型的残差序列是否满足白噪声假设,模型拟合优度检验则是通过比较模型拟合值与实际观测值之间的差异来评估模型的拟合效果,预测准确性检验则是通过比较模型预测值与实际观测值之间的差异来评估模型的预测能力。
ARIMA模型的应用范围广泛,可以用于经济预测、股票预测、气象预测等领域。
例如,经济学家可以利用ARIMA模型对经济指标进行预测,从而指导政策制定和经济决策。
投资者可以利用ARIMA 模型对股票价格进行预测,以指导投资决策。
金融风险预测中的时间序列模型使用教程

金融风险预测中的时间序列模型使用教程时间序列模型是金融风险预测中常用的一种分析方法。
它能够根据过去的数据模式来预测未来的市场走势,帮助投资者做出更明智的决策。
本文将为您介绍时间序列模型的基本概念和常用方法,帮助您更好地理解和使用这一工具。
一、时间序列模型的基本概念时间序列模型是指根据时间顺序排列的一系列数据点,用以描述某个特定变量随时间变化的模式。
其中,最基本的时间序列模型是自回归移动平均模型(ARMA),它由自回归模型(AR)和移动平均模型(MA)组成。
自回归模型的核心思想是当前时刻的值与过去时刻的值呈线性关系,用数学公式表示为:X_t = c + φ_1*X_{t-1} + φ_2*X_{t-2}+ … + φ_p*X_{t-p} + ε_t。
其中,X_t是当前时刻的值,c是常数,φ_i是自回归系数,p是时间跨度,ε_t是随机误差。
移动平均模型是指当前时刻的值与过去时刻的随机误差呈线性关系,用数学公式表示为:X_t = μ + ε_t + θ_1*ε_{t-1} + θ_2*ε_{t-2} + … + θ_q*ε_{t-q}。
其中,X_t是当前时刻的值,μ是常数,θ_i 是移动平均系数,q是时间跨度,ε_t是随机误差。
二、常用的时间序列模型除了ARMA模型,金融风险预测中还常用到自回归积分移动平均模型(ARIMA),它是ARMA模型的一种延伸。
ARIMA模型用于处理非平稳时间序列,可以通过差分运算将非平稳序列转化为平稳序列再进行建模。
ARIMA模型的数学公式为:Δ^d X_t = c + Φ_1*Δ^d X_{t-1} + Φ_2*Δ^d X_{t-2} + … + Φ_p*Δ^d X_{t-p} + Θ_1*ε_{t-1} +Θ_2*ε_{t-2} + … + Θ_q*ε_{t-q} + ε_t。
其中,Δ^d X_t表示进行d 阶差分运算后的序列,Φ_i和Θ_i分别是差分运算后的自回归系数和移动平均系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自回归移动平均模型公式
自回归移动平均模型(ARMA)是一种经济时间序列分析方法,用于预测未来的观测值。
它结合了自回归模型(AR)和移动平均模型(MA)的特点,具有很好的预测性能。
ARMA模型的数学表达式为:
y_t = c + φ₁*y_(t-1) + φ₂*y_(t-2) + ... + φ_p*y_(t-p) + ε_t + θ₁*ε_(t-1) +
θ₂*ε_(t-2) + ... + θ_q*ε_(t-q)
其中,y_t 是时间 t 的观测值,c 是常数项,φ₁, φ₂, ..., φ_p 是自回归系数,表示 t-1, t-2, ..., t-p 时刻 y 值对 t 时刻 y 值的线性影响;ε_t 是时间 t 的误差项,θ₁, θ₂, ..., θ_q 是移动平均系数,表示 t-1, t-2, ..., t-q 时刻的误差对 t 时刻 y 值的影响。
ARMA模型的参数估计可以利用最大似然估计或最小二乘法等方法进行。
根据观测数据的特征,选择合适的 AR 和 MA 阶数是模型建立的关键。
ARMA模型的预测能力在实际应用中被广泛认可。
通过估计模型参数,可以利用过去的观测值来预测未来的观测值。
预测结果可以帮助决策者制定相应的策略和措施。
需要注意的是,ARMA模型在实际应用中可能面临一些限制。
例如,如果数据存在非平稳性或季节性等特征,需要对数据进行预处理或使用其他模型进行分析。
总之,自回归移动平均模型是一种常用的时间序列分析工具,通过结合自回归和移动平均的特点,提供了对未来观测值的预测能力。
在实际应用中,应根据数据特征选择合适的阶数,并结合其他方法进行验证和优化,以达到更好的预测效果。