时间序列上机实验ARMA模型的建立
时间序列arma模型建立的流程

时间序列arma模型建立的流程时间序列ARMA模型建立的流程1. 引言时间序列分析是一种对时间序列数据进行建模、预测和分析的统计方法。
ARMA模型是一种常用的时间序列模型,它可以描述时间序列数据中的自相关和移动平均关系。
本文将从数据准备、模型选择、参数估计和模型诊断等方面,介绍建立时间序列ARMA模型的完整流程。
2. 数据准备1.收集时间序列数据,确保数据具有一定的观测频率,并且包含足够的历史观测值。
2.对数据进行可视化分析,绘制时间序列图和自相关图,初步了解数据的趋势和周期性。
3. 模型选择1.确定时间序列数据是否平稳。
对于非平稳数据,需要进行差分运算,直到得到平稳的时间序列数据。
2.根据平稳时间序列数据的自相关和偏自相关图,选择合适的ARMA模型阶数。
通过观察自相关图的截尾性和偏自相关图的截尾性,确定ARMA(p, q)模型中的p和q。
4. 参数估计1.通过最大似然估计或最小二乘法,估计ARMA模型中的参数。
最大似然估计假定模型误差服从正态分布,而最小二乘法假定误差服从零均值正态分布。
2.通过估计的参数,建立ARMA模型。
5. 模型诊断1.对残差进行自相关和偏自相关分析,验证模型的残差序列是否为纯随机序列,即不存在自相关和异方差性。
2.对模型的残差序列进行Ljung-Box检验,验证残差的独立性。
3.对模型的残差序列进行正态性检验,验证模型的残差是否符合正态分布。
4.对模型的残差序列进行异方差性检验,验证模型的残差是否存在异方差现象。
6. 模型评估和预测1.使用信息准则(如AIC、BIC)评价模型的拟合程度。
较小的AIC和BIC值表示模型的拟合程度较好。
2.使用估计的ARMA模型对未来的数据进行预测,得到预测值和置信区间。
7. 结论建立时间序列ARMA模型的流程包括数据准备、模型选择、参数估计和模型诊断等环节。
通过该流程,我们能够对时间序列数据进行建模和预测,为相关领域的决策提供科学依据。
以上为时间序列ARMA模型建立的流程,希望对读者有所帮助。
时间序列中的ARMA模型

c u=
1 (1 2 ... p)
旳无条
7
ARIMA模型旳概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
(1
2
1
1≤j≤22q ... q2 )
0 j>q
j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程旳一种特征
如下图:
18
ARMA模型旳辨认
MA(2)过程
yt =0.5ut-1 0.3ut2 ut
19
ARMA模型旳辨认
⑵ AR(p)过程旳偏自有关函数
j p 时,偏自有关函数旳取值不为0 j>q 时,偏自有关函数旳取值为0 AR(p)过程旳偏自有关函数p阶截尾 如下图:
32
ARMA模型旳预测
二. 基于MA过程旳预测
过程 结论:
MA (2) 过程仅有2期旳记忆力
33
ARMA模型旳预测
三. 基于ARMA过程旳预测
结合对AR过程和MA过程进行预测 ARMA模型一般用于短期预测
34
五、实例:ARMA模型在金融数 据中旳应用
数据: 1991年1月到2023年1月旳我国货币供
3
ARIMA模型旳概念
2.MA(q)过程旳特征
1. E(Yt)=u
2.
var(Yt)
(1
2
时间序列分析和ARMA模型建模研究

时间序列分析和ARMA模型建模研究一、引言时间序列是一种基本的统计数据类型,它记录了随时间变化的某个现象的数值,如股票价格、气温、销售额等等。
时间序列分析是一种用来探测和预测时间序列中趋势、季节性和周期性等特征的统计方法。
ARMA模型是时间序列分析中最常用的模型之一,它将时间序列视为由自相关(AR)和移动平均(MA)两个过程混合而成的结果,可以对其进行预测和建模分析。
本文旨在介绍时间序列分析和ARMA模型建模的基本理论,包括数据分析方法、模型拟合和预测等相关内容。
二、时间序列分析1、基本概念时间序列指在时间轴上每个时刻所对应的变量值的序列,它是由许多个观察值构成的。
一个时间序列通常可以用以下公式来表示:Yt = f (t, εt)其中,Yt表示时间t时刻的变量值,f表示一个关于t和随机误差项εt的函数。
时间序列可以分为平稳和非平稳两类。
2、样本自相关函数与偏自相关函数在时间序列分析中,自相关函数(ACF)和偏自相关函数(PACF)都是非常重要的概念,它们用于刻画序列内部的相关性。
ACF是一个时间序列与其滞后版本之间的相关性度量,而PACF则是在除去其它所有的滞后版本影响下,一个时间序列与其滞后版本之间关系的度量。
3、时间序列模式的识别对于时间序列分析来说,关键任务之一就是识别出序列的模式。
模式可以分为三种:趋势、季节性和周期性。
趋势模式是指序列中长期变化的基本趋势,被认为是序列的“平滑”或“漂移”的程度。
季节性模式是指序列随时间变化的基本周期规律。
周期性模式是连续时间周期性变化的随机性模式。
三、ARMA模型建模1、ARMA模型的概念ARMA模型是时间序列中最常用的模型之一,它表示为自回归(AR)和移动平均(MA)过程的线性组合。
ARMA模型的一般表达式为:Yt = μ + εt + ΣφiYt-i + Σθjεt-j其中,μ是常数项,εt是序列的随机误差项,φi和θj是AR和MA的参数。
2、模型拟合方法在建立ARMA模型时,目标是最小化模型拟合误差。
时序实验ARMA建立预测

实验二 ARMA 模型建模与预测指导一、实验目的学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA 模型的阶数p 和q ,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。
掌握在实证研究中如何运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。
二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。
AR 模型:AR 模型也称为自回归模型。
它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为:1122t t t p t p t y y y y φφφε---=++++式中: p 为自回归模型的阶数i φ(i=1,2, ,p )为模型的待定系数,t ε为误差, t y 为一个平稳时间序列。
MA 模型:MA 模型也称为滑动平均模型。
它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。
滑动平均模型的数学公式为:1122t t t t q t q y εθεθεθε---=----式中: q 为模型的阶数; j θ(j=1,2, ,q )为模型的待定系数;t ε为误差; t y 为平稳时间序列。
ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA , 数学公式为:11221122t t t p t p t t t q t q y y y y φφφεθεθεθε------=++++----三、实验内容及要求1、实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;(3)运用经典B-J 方法对某企业201个连续生产数据建立合适的ARMA (,p q )模型,并能够利用此模型进行短期预测。
2、实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。
基于AR(2)模型和 ARMA(2,1)模型的时间序列分析模型的建立与预测

图4
3
图5
第三步:在 Eviews 菜单栏中点击 Quick→Equation Estimate,在输入栏输入 如下图 6 所示的 内容,点击“确定”,得到如图 7 所示的结果图:
图6
4
图7
第四步 结果分析: 通过对比两种模型的估计结果可以知道,ARMA(2、1)模型的 AIC、BIC 值均 小于 AR(2)模型的值,故得出结论 ARMA(2、1)模型更好。 两种模型的各期预测表达式如下: AR(2)一期预测表达式为: yt 1793 .589 1.557061 yt 1 AR(2)二期预测表达式为: yt 1 1793 .589 1.55061 yt 2 AR(2)三期预测表达式为: yt 2 1793 .589 1.55061 yt 3 ARMA(2、1)一期预测表达式为: yt 2.238542 yt 1 1.235874 yt 3 12492 .15 0.927281 t 1 ARMA(2、1)二期预测表达式为: yt 1 2.238542 yt 2 1.235874 yt 3 12492 .15 0.927281 t 2 ARMA(2、1)三期预测表达式为: yt 2 2,238542 yt 3 1.235874 yt 4 12492 .15 0.927281 t 3 得出两种模型各期误差方差分别为: AR(2)一期误差方差= 2 ( 1 2 ) 2 6.0109897 2 AR(2)二期误差方差= AR(2)三期误差方差= ((12 22 ) 1 12 ) 2 48.7613274 2
5
四、实验总结
通过对 1978-2008 年中国财政收入的数据分析, 建立了 AR ( 2 )模型和 ARMA(2,1)模型,并且对这两个模型进行了比较。通过比较,我了解到不同的 数据用不同的模型分析,可以得出不一样的分析效果,让我更加了解了如何用 Eviews 软件对数据进行分析。
时间序列实验报告(ARMA模型的参数估计)

时间序列分析实验报告实验课程名称时间序列分析
实验项目名称 ARMA,ARIMA模型的参数估计年级
专业
学生姓名
成绩
理学院
实验时间:2015 年11月20日
学生所在学院:理学院专业:金融学班级:数学班
1、判断该序列的稳定性和纯随机性
该序列的时序图如下:
从图中可以看出具有很明显的下降趋势和周期性,所以通常是非平稳的。
在做它的自相关图。
由该时序图我们基本可以认为其是平稳的,再做DX自相关图和偏自相关图
自相关图显示延迟12阶自相关系数显著大于2倍标准差范围。
说明差分后序列中仍蕴含着非常显著的季节效应。
3、模型参数估计和建模
普通最小二乘法下,输入D(X,1,12) AR(1) MA(1) SAR(12) SMA(12) ,得到下图,其中,所有的参数估计量的
于0.05,均显著。
AIC为1.896653,SC为1.964273 。
普通最小二乘法,输入D(X,1,12)AR(1 )MA(1)SAR(12)SAR(24)SMA(12),
值小于0.05,均显著。
AIC为1.640316,SC为1.728672 。
4、参数估计结果
比较这两个模型,因为第二个模型的SC值小于第一个模型的SC值,所以相对而言,第二个模型是最优模型。
模型结果为:。
时间序列ARMA模型及分析

ARMA模型及分析本次试验主要是通过等时间间隔,连续读取70个某次化学反应的过程数据,构成一个时间序列。
试对该时间序列进行ARMA模型拟合以及模型的优化,最后进行预测。
以下本次试验的数据:表1 连续读取70个化学反应数据47 64 23 71 38 64 55 41 59 48 71 35 57 4058 44 80 55 37 74 51 57 50 60 45 57 50 4525 59 50 71 56 74 50 58 45 54 36 54 48 5545 57 50 62 44 64 43 52 38 59 55 41 53 4934 35 54 45 68 38 50 60 39 59 40 57 54 23 资料来源:O’Donovan, Consec. Readings Batch Chemical Proces, ler et al.下面的分析及检验、预测均是基于上述数据进行的,本次试验是在Eviews 6.0上完成的。
一、序列预处理由于只有对平稳的时间序列才能建立ARMA模型,因此在建立模型之前,有必要对序列进行预处理,主要包括了平稳性检验和纯随机检验。
序列时序图显示此化学反应过程无明显趋势或周期,波动稳定。
见图1。
图2 化学反应过程相关图和Q统计量从图2的序列的相关分析结果:1. 可以看出自相关系数始终在0周围波动,判定该序列为平稳时间序列2.看Q统计量的P值:该统计量的原假设为X的1期,2期……k期的自相关系数均等于0,备择假设为自相关系数中至少有一个不等于0,因此如图知,该P值在滞后2、3、4期是都为0,所以拒接原假设,即序列是非纯随机序列,即非白噪声序列(因为序列值之间彼此之间存在关联,所以说过去的行为对将来的发展有一定的影响,因此为非纯随机序列,即非白噪声序列)。
二、模型识别由于检验出时间序列是平稳的,且是非白噪声序列,因此可以建立模型,在建立模型之前需要识别模型阶数即确定阶数。
arma模型的建模流程

arma模型的建模流程
ARMA模型是自回归移动平均模型,用于时间序列的建模和预测。
其建模流程如下:
1. 数据预处理:对原始数据进行观察、检验和筛选,并进行必
要的差分或变换,以使得数据符合ARMA模型的假设条件。
2. 确定模型阶数:根据自相关函数ACF和偏自相关函数PACF的特征图形来确定ARMA模型的阶数p和q。
3. 估计系数:使用最大似然法或最小二乘法等方法,对ARMA模型中的系数进行估计。
4. 模型诊断与检验:对已建立的ARMA模型进行残差分析、模型诊断和统计检验,以验证模型是否符合假设条件。
5. 模型选择和评价:比较不同ARMA模型的拟合优度和泛化性能,选择最优模型并进行评价。
6. 预测和应用:使用已建立的ARMA模型进行未来值的预测,并结合实际应用场景进行决策和分析。
需要注意的是,ARMA模型中的参数估计和模型诊断都涉及到许
多复杂的统计理论和方法,需要慎重选择和运用。
此外,在实际应用中还需要考虑数据质量、时序性、噪声干扰等因素,以确保建立的ARMA模型具有可靠性和实用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一ARMA模型建模一、实验目的学会检验序列平稳性、随机性。
学会分析时序图与自相关图。
学会利用最小二乘法等方法对ARMA模型进行估计,以及掌握利用ARMA模型进行预测的方法。
学会运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。
二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。
AR模型:AR模型也称为自回归模型。
它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为:乂2『t2 川p y t p t式中:p为自回归模型的阶数i(i=1,2,,p)为模型的待定系数,t为误差,yt 为一个平稳时间序列。
MA模型:MA模型也称为滑动平均模型。
它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。
滑动平均模型的数学公式为:y t t 1 t 1 2 t 2 川q t q式中:q为模型的阶数;j(j=1,2,,q)为模型的待定系数;t为误差;yt为平稳时间序列。
ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为:y t 1 y t 1 2 y t 2 p y t p t 1 t 1 2 t 2 q t q三、实验内容(1)通过时序图判断序列平稳性;(2)根据相关图,初步确定移动平均阶数q 和自回归阶数p;(3)对时间序列进行建模四、实验要求学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。
五、实验步骤1.模型识别(1)绘制时序图在Eviews 软件中,建立一个新的工作文件, 500个数据。
通过Eviews 生成随机序列“ e,再根据“ x=*x(-1)*x(-2)+e ”生成AR(2)模型序列“ x” 默认x(1)=1, x(2)=2,得到下列数据,由于篇幅有限。
只展示一部分。
图一:x的数据图对序列x进行处理。
首先,生成时序图二,初步判断其平稳性:图二:时序图通过上图可知,此序列为平稳非白噪声序列,可以对其进行进一步的处理分析,进而建模。
2)绘制序列相关图(滞后阶数为22阶)图二:序列自相关和偏自相关图从相关图看出,自相关系数迅速衰减为0,偏自相关系数二阶截尾,说明序列平稳。
当Q统计量大于相应分位点,或该统计量的P值小于时则可以以的置信水平拒绝原假设,认为该序列为非白噪声序列;否则,接受原假设,认为该序列为纯随机序列。
而由下图可以看出Q统计量足够大且P统计量足够小,满足拒绝原假设的条件,认为该序列为非白噪声序列。
故可以对序列采用B-J方法建模研究。
3) ADF检验序列的平稳性在经过上面直观判断后,下面通过统计检验来进一步对其进行证实,在如下对话框中选择对常数项,不带趋势的模型进行检验后点击ok,出现图五,由图五中统计量可得,拒绝存在一个单位根的原假设,序列平稳。
那用]丹。
匚bjwct Fro口呂[ 砂nit] Nnmw| 尸「昌皂zw S召m口Im]G回廿]WT] Gnapqj 5 tats 击t 一I Senes: X Workfile: UNTITLED::Untitled\s I 旦Augmented Die key-Fuller Unit Root Test on XNull Hypothesis: X has a unit root Exogenous: ConstantLag Length: 1 [Automatic based on SIC, M.^XL ^G-22)Augmented DicKey-Ful ler Test Equatio n Dependent Variable: Method: Least SquaresD3t«: 11/28/12 Tm« 11:45 Sample (adjusted}: 3 500Included ooseivations: 493 after acyustments VariableCcefTicient Std Error t-statistic Prob.x(-1)-0670049 0 Q+Q?^9 -15.&4754 0.0000 DCKMJ) 0.401447 0.0411609.753234 €.0000 C 0032765 0 0460690 7112S2 0 4772 R-squared0.361722Wean depen dent var -O.Q075S7 Adjusted R'Squared 0359143 S O de pendent var 1 282479 S.E. of regression 1 02S&7D AKaike info criterion 2 896524 Sum squared resid 521.7554 Schwarz alte don 2 9213S9 Log likelihood -716 2S45 Hannan-duinn criter. 2.906479 F-statistic 140.2518Durbin-V*atson stat1.936428〕抽 :an IC I L A图四ProbCF-statistic}0,000000图五:ADF检验4)模型定阶由图三可以看出,偏自相关系数在k=2后突变为0,且后面的值均在0附近,故可判断其偏自相关系数明显为2阶结尾,可尝试用AR(2)进行拟合。
而自相关系数开始渐变,且后面还有接近甚至稍大于两倍标准差的(已在途中用红圈标出),故一方面可判断其拖尾;另一方面,k=3后自相关系数突然变为几乎为0,后面基本都在2倍标准差内浮动,可认为其有4阶截尾的嫌疑。
故后面会对AR(2)、MA(4)以及ARMA(2,4)分别进行考虑。
点击View/Descriptive Statistics/Histogram and States对原序列做描述统计分析得到图六,可见序列均值为,不为0,但由于通常是对0均值平稳序列做建模分析,故需要在原序列基础上生成一个新的0均值序列。
点击主菜单Quick/Generate Series在对话框中输入赋值语句y二,点击ok生成新序列y,故所得序列y是0均值的平稳非白噪声序列。
重复上面操作序列y进行描述统计分析得到图七,由于y相当于对序列x的平移,故统计特性本质上未发生改变,所以可通过分析y来得到x的特性。
图六:原序列作描述统计分析1.312790 0.042010 3 卿 967 3.299052 0 192141图七:Y 序列作描述统计分析2. 模型参数估计1)尝试AR 模型。
由上面通过识别所确定的阶数 2,可以初步建立AR (2)在主窗口输入Is y ar(1) ar(2),其中ar(i)(i=1,2)表示自回归系数, 得到图9,即得模型估计结果和相关诊断统计量。
由伴随概率可知, AR(1)、AR (2)均高度显著,表中最下方给出的是滞后多项式的倒数根, 只有这些值都在单位圆内时,过程才平稳。
由表可知,这三个根都在单位 圆内。
另外,表中还有其他有价值的统计量:AIC 、SC 准则是选择模型时需要参考的重要指标,其值越小越好。
DW 统计量是对残差的自相关检验统计量,在2附近,说明残差不存在一一阶自相关。
得到的自回归模型如下:-3.7€e -07 0 025307F/aximum 4 284374y 0.731404y t 10.4014467y t 2Q Series; V Workfile; UNTTrLEDr:Untitled\「G3石Senes: YSample 1 SCO Obsen atmn 吕SOOMeanMe dian Std. Dw.SkevvneSrSKurtCSiS Jarcue-Qera Prnb at lit.OEquat[on: UNTITLED Workfih: UZT【TLED;:UMt^cf\ ' ~T|| -a-|fc^|■r ie-- 刁工二Ob -ect Pdnr N an'e | -reeze Estiva?e Fo r e ra^t it? ts ReadsDependeni Variattle: VMethod' LeastSquaresDate: 11/23/12 Time: 11 65Sample (adjusted): 3500Included otsen/ations: 498 after adjjstmeritsConvergence achieved after 3 iterationsVari2ibl&CoefTidert Std Error t-Statistic PrcbAR(1)0 731404□ 04109517.797740 0000AR(2]-0.4014570.041119 -9.76 35660 0000 R-squared0 369^59Mean dependent^ar-0.005601^djustett R-squaied0.383729s.D. dependenl vai1311638S.E. of regression 1.025645Aka ike info criterion 2.S92528Sum squaredresid521.7656Schwarz criterion 2 909438Log likelihocd-718 2394Hannan-Quinn criter. 2 BS9164Durbin-Watson stat 1.995400Invert&d AR Ra ols37-.52i37+.52i图八:AR(2)2)尝试MA模型(此时假定其自相关系数拖尾)根据上面的估计再参照上面的操作步骤:在主窗口输入Is y ma(1) ma(2) ma(3) ma(4,其中ma(i) (i=1,2,3,4)表示自回归系数,得到图九:口Equstion: UrMTITLEP Workfil©E UINnTLEDs:Untitl e d\ [★I F脚[] Pflnt |冋押倬| Ff许了P ]口汗“亠| For FC•套G・| S4呂帕|只严|除[Dependent Vanable: ¥Metriod: Le-ast SduaresDate: 11/20/12 Time: 11:57Sample 1 500Innlucied olb^e rwaiifins SO DConvergence acnieived all&r 8 lie rail on s MA Backcast 二企□variaD->a caomciant sta. error t statistic Prob.MA(1)0,73Q6410,04457 010r550S70 0000MA(2)0.13657A O.DB4703 2.496 6270.0129MA(.3) -0.21 S130 0 0&4716 -3 9^0317 0 OOOTMAC4)-0.1173500 04474S-2 G227B90 0090 R-squar*?d0 3L907&7v^r -3 7fiF-O7Adljusled R-sq u ared a 387102S 口rfle pendleni war 1.3-12790s.E. or regr^ssfion 1.027764Aksfi ke Info criterion J2-900!5g7Sum 兮ciiumi 总叩r^^id523.0142Schwarz criterlor-2.934314Log ikKonriaod■721.14Q2Hannan Quinn crrter. 2.013827Durbin woCGcr 1.080608Inwerted MA Roots,53-.3e+.53i-.36-531-.51图九:MA(4)模型从估计结果的相伴概率可知,ma(1) ma(2) ma(3) ma(4的系数均高度显著 表中最下方是滞后多项式的倒数根,可见这些值都在单位圆内,故平稳。