时间序列实验报告(ARMA模型的参数估计)

合集下载

时间序列中的ARMA模型

时间序列中的ARMA模型
件期望是相等的,若设为u,则得到 :
c u=
1 (1 2 ... p)
的无条
6
ARIMA模型的概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
1-1Z- 2Z2 -...- pZp 0
特征方程的根全部落在单位圆以外时, ARMA(p,q)是一个平稳过程。
9
ARIMA模型的概念
3.ARMA(p, q)过程的特征
1)E(Yt)=
c
1 (1 2 ... p)
2)ARMA(p, q)过程的方差和协方差
10
ARIMA模型的概念
四. AR、MA过程的相互转化
于滞后长度描图)。
14
ARMA模型的识别
2. 自相关函数和偏自相关函数的概念
①自相关函数
过程Yt的第j阶自相关系数即 j j 0 ,
自相关函数记为ACF(j) 。 ②偏自相关函数
偏自相关系数 *j度量了消除中间滞后项影响
后两滞后变量之间的相关关系。偏自相关函数 记为PACF(j)
15
ARMA模型的识别
结论一:平稳的AR(p)过程可以转化为一个MA(∞)过程, 可采用递归迭代法完成转化
结论二:特征方程根都落在单位圆外的 MA(q)过程具 有可逆性
平稳性和可逆性的概念在数学语言上是完全等价的, 所不同的是,前者是对AR过程而言的,而后者是对 MA过程而言的。

ARMA模型的eviews的建立--时间序列分析实验指导

ARMA模型的eviews的建立--时间序列分析实验指导

时间序列分析实验指导42-2-450100150200250统计与应用数学学院前言随着计算机技术的飞跃发展以及应用软件的普及,对高等院校的实验教学提出了越来越高的要求。

为实现教育思想与教学理念的不断更新,在教学中必须注重对大学生动手能力的培训和创新思维的培养,注重学生知识、能力、素质的综合协调发展。

为此,我们组织统计与应用数学学院的部分教师编写了系列实验教学指导书。

这套实验教学指导书具有以下特点:①理论与实践相结合,书中的大量经济案例紧密联系我国的经济发展实际,有利于提高学生分析问题解决问题的能力。

②理论教学与应用软件相结合,我们根据不同的课程分别介绍了SPSS、SAS、MATLAB、EVIEWS等软件的使用方法,有利于提高学生建立数学模型并能正确求解的能力。

这套实验教学指导书在编写的过程中始终得到安徽财经大学教务处、实验室管理处以及统计与应用数学学院的关心、帮助和大力支持,对此我们表示衷心的感谢!限于我们的水平,欢迎各方面对教材存在的错误和不当之处予以批评指正。

统计与数学模型分析实验中心 2007年2月目录实验一 EVIEWS中时间序列相关函数操作···························- 1 - 实验二确定性时间序列建模方法 ····································- 8 - 实验三时间序列随机性和平稳性检验 ···························· - 18 - 实验四时间序列季节性、可逆性检验 ···························· - 21 - 实验五 ARMA模型的建立、识别、检验···························· - 27 - 实验六 ARMA模型的诊断性检验····································· - 30 - 实验七 ARMA模型的预测·············································· - 31 - 实验八复习ARMA建模过程·········································· - 33 - 实验九时间序列非平稳性检验 ····································· - 35 -实验一 EVIEWS中时间序列相关函数操作【实验目的】熟悉Eviews的操作:菜单方式,命令方式;练习并掌握与时间序列分析相关的函数操作。

ARMA模型时间分析分析

ARMA模型时间分析分析

ARMA 模型分析我国工业总产值华北科技学院基础部计算B091班刘建红摘要:本文摘录了从1990年1月至1997年12月我国工业总产值的月度资料(1990年不变价格),共有96个观测值。

在我国工业总产值逐年增长的同时,随季节、月份的改变,总产值也会出现轻微波动情况。

研究工业总产值随时间的变化,将有利于我们更细致地了解一年内每个季度,每个月份工业产值的变化规律。

本文运用数据分析功能强大的数据分析软件EVIEWS 进行分析,通过时间序列自相关系数分析,得到我国总产值的发展趋势图,以及该时间序列的自相关与偏自相关分析图;由自相关分析图来很难看出序列是有季节性,并对原序列进行逐期差分,以消除趋势;对新序列进行季节差分,消除序列的趋势,得到该序列的自相关与偏自相关分析图,表明序列可以直接进行ARMA 模型;又运用序列均值检验,均值与0无显著差异,进一步表明序列可以直接进行ARMA 模型。

然后运用ARIMA (3,1,1)模型对我国1997年工业总产值进行试预测,得到模型预测值与实际观测值的对比折线图,并且模型预测值与实际观测值很接近,说明预测精度较高,进一步说明了ARIMA 模型的拟合效果很好。

同时运用ARIMA (3,1,1)模型对我国1998年工业总产值进行试预测,得到1998年各月工业总产值预测折线图。

关键字:EVIEWS 软件 自相关分析 ARMA 模型 季节性 预测1、 研究背景随着我国经济的迅速发展,工业总产值也逐年增加。

在我国工业总产值逐年增长的同时,随季节的改变,总产值也会出现轻微波动情况。

研究工业总产值随时间的变化,将有利于我们更细致地了解一年内每个季度,甚至每个月份大致变化规律,通过这些规律我们可以对未来我国工业总产值的变化,做很好的预测。

因此,研究我国工业总产值的变化规律就显得非常必要了。

本文运用分析功能强大的数据分析软件EVIEWS 进行数据分析,建立ARMA 模型,并进行简单预测,节约了手工计算时间,简化了手工计算过程,更精确地反映我国工业总产值的变化规律。

时间序列上机实验ARMA模型的建立

时间序列上机实验ARMA模型的建立

实验一ARMA模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA模型进行估计,以及掌握利用ARMA模型进行预测的方法。

学会运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。

AR模型:AR模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为:乂2『t2 川p y t p t式中:p为自回归模型的阶数i(i=1,2,,p)为模型的待定系数,t为误差,yt 为一个平稳时间序列。

MA模型:MA模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

滑动平均模型的数学公式为:y t t 1 t 1 2 t 2 川q t q式中:q为模型的阶数;j(j=1,2,,q)为模型的待定系数;t为误差;yt为平稳时间序列。

ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为:y t 1 y t 1 2 y t 2 p y t p t 1 t 1 2 t 2 q t q三、实验内容(1)通过时序图判断序列平稳性;(2)根据相关图,初步确定移动平均阶数q 和自回归阶数p;(3)对时间序列进行建模四、实验要求学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。

五、实验步骤1.模型识别(1)绘制时序图在Eviews 软件中,建立一个新的工作文件, 500个数据。

通过Eviews 生成随机序列“ e,再根据“ x=*x(-1)*x(-2)+e ”生成AR(2)模型序列“ x” 默认x(1)=1, x(2)=2,得到下列数据,由于篇幅有限。

ARMA模型的参数估计主要内容

ARMA模型的参数估计主要内容

ARMA模型的参数估计主要内容ARMA模型是一种时间序列分析模型,用于预测和建模时间序列数据。

它结合了自回归模型(AR)和移动平均模型(MA),以描述时间序列数据中的自相关和随机误差。

ARMA模型的参数估计是建立一个最佳拟合模型的重要步骤,它涉及到估计AR和MA参数的值。

参数估计的主要内容如下:1.数据预处理:在进行参数估计之前,需要对时间序列数据进行预处理。

这包括去除趋势和季节性成分,以及对数据进行平稳性检验。

2.模型选择:首先,需要选择适当的ARMA模型来拟合时间序列数据。

模型选择可以通过观察自相关函数(ACF)和偏自相关函数(PACF)的图形来进行。

它们提供了关于时间序列数据中存在的自相关和部分自相关关系的信息。

根据这些图形,可以选择合适的AR和MA的阶数。

3.参数估计方法:有多种方法可以用来估计ARMA模型的参数。

最常用的是最大似然估计(MLE)方法,它通过最大化给定模型下样本数据的似然函数来估计参数。

另外,还可以使用最小二乘法(LS)方法和广义矩估计法(GMM)等。

4.AR和MA参数的估计:在估计AR和MA参数之前,需要对模型进行初始化。

一般情况下,初始参数可以设置为0。

然后,通过迭代算法(如牛顿拉夫逊算法)或优化算法(如梯度下降法)来估计AR和MA参数。

迭代算法逐步改进参数的值,直到找到最佳拟合模型。

5. 参数估计的评估:在估计完参数之后,需要对拟合模型进行评估。

这可以通过检查残差序列的自相关和偏自相关函数图形,以及进行统计检验(如Ljung-Box检验)来完成。

如果残差序列不具有自相关性,则可以认为模型已成功拟合数据。

6.模型诊断:最后,还需要对拟合模型进行诊断,以确定模型是否满足模型假设和统计性质。

这可以通过检查模型残差的分布是否为正态分布,以及是否存在异方差性和残差的齐性来完成。

如果模型不满足假设,则需要重新调整模型参数。

总之,ARMA模型的参数估计是建立合适模型的关键步骤。

通过对时间序列数据进行预处理,选择合适的模型,以及使用估计方法对参数进行估计和评估,可以找到最佳拟合模型,并进行预测和分析时间序列数据。

时间序列析-第六章 ARMA模型的参数估计

时间序列析-第六章 ARMA模型的参数估计

(1.3)

ˆ2 r ˆ0 ˆ jr ˆj
j 1
p
(1.4)
决定。


ˆ0 r ˆ r 1 ˆ Γp r ˆp 1 ˆ r 1 ˆ0 r ˆp 2 r ˆ ˆ1 ˆp 1 r r 1 ˆp 2 ˆ2 ˆ2 r r ˆ ˆp , b p , α ˆ0 ˆ ˆ r r p p

ˆ j 1.96 j , j / n , ˆ j 1.96 j , j / n ] [
2 ˆ 1 ˆ 在实际问题中, j , j 未知,可用 p 的 j j 元素 ˆ j , j 代替 j , j ,得到 的近似置信区间 j
ˆ j 1.96 ˆ j , j / n , ˆ j 1.96 ˆ j, j / n ] [
第六章 ARMA模型的参数估计

第一节 AR(p)模型的参数估计 第二节 MA(q)模型的参数估计
第三节 ARMA(p,q)模型的参数估计 第四节 求和模型及季节模型的参数估计



第一节. AR(p)模型的参数估计

目的:为观测数据建立AR(p)模型 (1.1) T 假定自回归阶数p已知,考虑回归系数 α (1,, p ) 和 零均值白噪声{ t } 的方差 2 的估计。
r1 r0

a1 rp 1 rp 2 a2
r0 a p
rp 2
2 唯一决定,白噪声方差 由

决定。
2
r0 j rj
j 1
p

时序实验ARMA建立预测

时序实验ARMA建立预测

实验二 ARMA 模型建模与预测指导一、实验目的学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA 模型的阶数p 和q ,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。

掌握在实证研究中如何运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。

AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为:1122t t t p t p t y y y y φφφε---=++++式中: p 为自回归模型的阶数i φ(i=1,2, ,p )为模型的待定系数,t ε为误差, t y 为一个平稳时间序列。

MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

滑动平均模型的数学公式为:1122t t t t q t q y εθεθεθε---=----式中: q 为模型的阶数; j θ(j=1,2, ,q )为模型的待定系数;t ε为误差; t y 为平稳时间序列。

ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA , 数学公式为:11221122t t t p t p t t t q t q y y y y φφφεθεθεθε------=++++----三、实验内容及要求1、实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;(3)运用经典B-J 方法对某企业201个连续生产数据建立合适的ARMA (,p q )模型,并能够利用此模型进行短期预测。

2、实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

金融时序分析ARMA模型实验报告

金融时序分析ARMA模型实验报告

一、平稳性判断:(1)时序图:该序列的时序图都表现出围绕其水平均值不断波动的过程,没有明显的趋势或周期性,粗略估计是平稳时间序列。

(2)序列相关图:自相关系数快速衰减到0,在虚线范围内波动,没有明显的波动、发散,判断为平稳序列。

(3)ADF检验:模型3与模型2的伴随概率为0,拒绝有单位根的原假设,说明序列是平稳的。

但模型3的时间趋势项的伴随概率为0.6437,不显著,故不选用。

而模型2的常数项的伴随概率为0,在显著性水平0.05情况下显著,因此模型2是最合适的模型,有常数项。

模型1的t检验的伴随概率为0.6128,不能拒绝有单位根的原假设,不选用。

综上所述,该序列是平稳的。

二、随机性检验观察自相关图最后两列可以看到,Q检验的伴随概率均小于0.05,拒绝没有自相关性的原假设,因此该序列不是白噪声序列,没有把信息都提取出来。

观察其AC,虽落入虚线内后没有再到虚线外,但不是由非0骤降到0,判断为拖尾。

观察PAC,结果与AC类似,因此AC、PAC都是拖尾,初步判断使用ARMA模型。

接下来将尝试使用AR(1)、AR(2)、MA(1)、MA(2)、ARMA(1,3)、ARMA(1,2)模型进行拟合。

三、模型估计与白噪声检验(1)AR(1):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,拒绝没有自相关性的原假设,不是白噪声序列。

(2)AR(2):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,阶数较小时拒绝没有自相关性的原假设,不是白噪声序列。

(3)MA(1):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列。

(4)MA(2):该模型MA(2)项不显著,不选用。

(5)ARMA(1,3):该模型各项显著,故对其进行残差项白噪声检验,观察Q检验及其伴随概率,在显著性水平为0.05时,接受没有自相关性的原假设,是白噪声序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档