时间序列分析试验报告

合集下载

时间序列分析实例研究报告

时间序列分析实例研究报告

时间序列分析实例研究报告实例研究背景:某大城市的人口数量变化首先,我们选取了某大城市的人口数量变化作为实例进行分析,以了解该城市的人口发展趋势和变化规律。

1. 数据收集和观察我们首先收集了过去十年该城市每年的人口数据,从2009年到2019年的数据。

通过观察这些数据,我们可以初步了解人口数量的增减情况。

2. 数据预处理在进行时间序列分析之前,需要对数据进行预处理。

首先,我们要检查数据是否存在异常值或缺失值,并进行处理。

其次,我们要对数据进行平滑处理,以减少异常波动对分析结果的影响。

常见的平滑方法有均值平滑和移动平均法。

3. 时间序列分解接下来,我们使用时间序列分解方法,将人口数据分解为趋势、季节和随机成分。

- 趋势分析:通过一系列统计方法,了解人口数量的长期变化趋势。

可以使用简单平均法或线性回归模型等方法。

- 季节分析:通过统计周期性规律,了解人口数量的季节性变化。

可以使用季节指数法或移动平均法等方法。

- 随机分析:通过统计残差项,了解人口数量的随机波动情况。

可以使用ARIMA模型等方法。

4. 模型拟合和预测在分析了趋势、季节和随机成分之后,我们可以选择适当的模型进行拟合和预测。

- 趋势预测:可以根据趋势分析的结果选择合适的趋势预测模型,如线性趋势模型、指数平滑模型等。

- 季节预测:可以根据季节性分析的结果选择合适的季节预测模型,如季节指数法、季节ARIMA模型等。

- 随机预测:可以使用时间序列模型进行随机成分的预测,如ARIMA模型等。

5. 模型评估和调整在完成模型拟合和预测后,我们需要对模型进行评估和调整,以提高模型的准确性和可靠性。

常见的评估指标有均方误差、平均绝对误差等。

如果模型评估结果不理想,需要调整模型参数或选择其他模型进行尝试。

6. 结果分析和讨论最后,我们对时间序列分析的结果进行分析和讨论。

通过对人口数量的趋势、季节和随机成分的分析,我们可以对该城市的人口发展趋势和变化规律进行深入理解。

时间序列分析试验报告

时间序列分析试验报告

时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。


间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。

二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。

该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。

三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。

2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。

3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。

四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。

2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。

3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。

五、结论
通过本次实验可以得出结论。

时间序列实验报告心得

时间序列实验报告心得

在本次时间序列实验中,我深刻体会到了时间序列分析在解决实际问题中的重要作用。

通过对时间序列数据的收集、处理、分析和预测,我学会了如何运用时间序列分析方法解决实际问题,以下是我在实验过程中的心得体会。

一、实验背景时间序列分析是统计学和金融学等领域的重要研究方法,通过对时间序列数据的分析,我们可以揭示现象的发展变化规律,预测未来趋势,为决策提供依据。

本次实验以我国某地区1980年1月至1995年8月每月屠宰生猪数量为研究对象,运用时间序列分析方法进行建模和预测。

二、实验步骤1. 数据收集与处理:首先,收集了某地区1980年1月至1995年8月每月屠宰生猪数量数据。

然后,对数据进行初步处理,包括去除异常值、缺失值等。

2. 时间序列图绘制:运用Excel或R等软件绘制时间序列图,观察数据的变化趋势,为后续建模提供依据。

3. 平稳性检验:对时间序列数据进行平稳性检验,以确定是否可以直接进行建模。

常用的平稳性检验方法有ADF检验、KPSS检验等。

4. 模型选择与参数估计:根据时间序列图和平稳性检验结果,选择合适的模型进行拟合。

本次实验选择了ARIMA模型,并对模型参数进行估计。

5. 模型预测与结果分析:利用估计出的模型对未来的数据进行预测,并对预测结果进行分析,评估模型的准确性。

三、实验心得1. 时间序列分析的重要性:通过本次实验,我深刻认识到时间序列分析在解决实际问题中的重要性。

在实际工作中,许多现象都呈现出时间序列特征,运用时间序列分析方法可以揭示现象的发展变化规律,为决策提供依据。

2. 数据处理的重要性:在实验过程中,数据预处理是至关重要的。

只有保证数据的准确性和完整性,才能得到可靠的实验结果。

3. 平稳性检验的必要性:时间序列建模的前提是数据平稳。

通过对数据平稳性进行检验,可以确保模型的准确性。

4. 模型选择与参数估计的重要性:选择合适的模型和参数对于时间序列分析至关重要。

不同的模型适用于不同类型的数据,需要根据实际情况进行选择。

统计实验报告时间序列

统计实验报告时间序列

一、实验背景时间序列分析是统计学中的一个重要分支,它主要研究如何对时间序列数据进行建模、预测和分析。

本实验旨在通过实际数据的时间序列分析,了解时间序列的基本特性,掌握时间序列建模的方法,并尝试进行未来趋势的预测。

二、实验目的1. 理解时间序列的基本概念和特征。

2. 掌握时间序列数据的可视化方法。

3. 学习并应用时间序列建模的基本方法,如自回归模型(AR)、移动平均模型(MA)和自回归移动平均模型(ARMA)。

4. 尝试进行时间序列数据的预测。

三、实验数据本实验选用某城市过去一年的月度降雨量数据作为分析对象。

数据包括12个月的降雨量,单位为毫米。

四、实验步骤1. 数据预处理- 读取数据:使用Python的pandas库读取降雨量数据。

- 数据检查:检查数据是否存在缺失值或异常值。

- 数据清洗:如果存在缺失值或异常值,进行相应的处理。

2. 数据可视化- 使用matplotlib库绘制降雨量时间序列图,观察数据的趋势和季节性特征。

3. 时间序列建模- 自回归模型(AR):根据自回归模型的理论,建立AR模型,并通过AIC(赤池信息量准则)和SC(贝叶斯信息量准则)进行模型选择。

- 移动平均模型(MA):建立MA模型,并使用同样的准则进行模型选择。

- 自回归移动平均模型(ARMA):结合AR和MA模型,建立ARMA模型,并选择最佳模型。

4. 模型验证与预测- 使用历史数据进行模型验证,比较不同模型的预测精度。

- 对未来几个月的降雨量进行预测。

五、实验结果与分析1. 数据可视化通过时间序列图可以看出,降雨量存在明显的季节性特征,每年的夏季降雨量较多。

2. 时间序列建模- AR模型:通过AIC和SC准则,选择AR(2)模型作为最佳模型。

- MA模型:同样通过AIC和SC准则,选择MA(3)模型作为最佳模型。

- ARMA模型:结合AR和MA模型,选择ARMA(2,3)模型作为最佳模型。

3. 模型验证与预测- 模型验证:通过比较实际值和预测值,可以看出ARMA(2,3)模型的预测精度较高。

实验报告-时间序列

实验报告-时间序列

实验报告----平稳时间序列模型的建立08经济统计I60814030王思瑶一.实验目的从观察到的化工生产过程产量的70个数据样本出发,通过对模型的识别、模型的定价、模型的参数估计等步骤建立起适合序列的模型。

以下是化工生产过程的产量数据:obs BF obs BF1 47 36582 64 37453 23 38544 71 39365 38 40546 64 41487 55 42558 41 43459 59 445710 48 455011 71 466212 35 474413 57 486414 40 494315 58 505216 44 513817 80 525918 55 535519 37 544120 74 555321 51 564922 57 573423 50 583524 60 595425 45 604526 57 616827 50 623828 45 635029 25 646030 59 653931 50 665932 71 674033 56 685734 74 695435 50 7023可以明显看出序列均值显著非零,所以用样本均值作为其估计对序列进行零均值化。

obs BF 零均值化后的数据Y obs BF零均值化后的数据Y1 47 -4.12857 3658 6.871432 64 12.87143 3745-6.128573 23 -28.12857 3854 2.871434 71 19.87143 3936-15.128575 38 -13.12857 4054 2.871436 64 12.87143 4148-3.128577 55 3.87143 4255 3.871438 41 -10.12857 4345-6.128579 59 7.87143 4457 5.8714310 48 -3.12857 4550-1.1285711 71 19.87143 466210.8714312 35 -16.12857 4744-7.1285713 57 5.87143 486412.8714314 40 -11.12857 4943-8.1285715 58 6.87143 50520.8714316 44 -7.12857 5138-13.1285717 80 28.87143 52597.8714318 55 3.87143 5355 3.8714319 37 -14.12857 5441-10.1285720 74 22.87143 5553 1.8714321 51 -0.12857 5649-2.1285722 57 5.87143 5734-17.1285723 50 -1.12857 5835-16.1285724 60 8.87143 5954 2.8714325 45 -6.12857 6045-6.1285726 57 5.87143 616816.8714327 50 -1.12857 6238-13.1285728 45 -6.12857 6350-1.1285729 25 -26.12857 64608.8714330 59 7.87143 6539-12.1285731 50 -1.12857 66597.8714332 71 19.87143 6740-11.1285733 56 4.87143 6857 5.8714334 74 22.87143 6954 2.8714335 50 -1.12857 7023-28.12857二.实验步骤1.模型识别零均值平稳序列的自相关函数与偏相关函数的统计特性如下:模型 AR(n) MA(m) ARMA(n,m)自相关函数拖尾截尾拖尾偏自相关函数截尾拖尾拖尾所以,作零均值化后数据的自相关函数与偏自相关函数图Date: 04/25/11 Time: 22:35Sample: 2001 2070Included observations: 70Autocorrelation Partial Correlation AC PAC Q-Stat Prob***| . | ***| . | 1 -0.382 -0.382 10.638 0.001. |** | . |** | 2 0.325 0.209 18.444 0.000**| . | . | . | 3 -0.193 -0.018 21.234 0.000. |*. | . | . | 4 0.090 -0.049 21.857 0.000.*| . | .*| . | 5 -0.162 -0.126 23.900 0.000. | . | .*| . | 6 0.014 -0.094 23.916 0.001. | . | . | . | 7 0.012 0.065 23.928 0.001.*| . | .*| . | 8 -0.085 -0.079 24.519 0.002. | . | . | . | 9 0.039 -0.051 24.644 0.003. | . | . |*. | 10 0.033 0.080 24.736 0.006. |*. | . |*. | 11 0.090 0.125 25.426 0.008.*| . | . | . | 12 -0.077 -0.054 25.942 0.011. | . | . | . | 13 0.063 -0.045 26.291 0.016. | . | . |*. | 14 0.051 0.134 26.524 0.022. | . | . |*. | 15 -0.006 0.079 26.528 0.033. |*. | . |*. | 16 0.126 0.145 28.016 0.031.*| . | . | . | 17 -0.090 -0.040 28.792 0.036. | . | .*| . | 18 0.017 -0.084 28.820 0.051.*| . | . | . | 19 -0.099 -0.017 29.795 0.054. | . | . | . | 20 0.006 -0.036 29.798 0.073. | . | . | . | 21 0.015 0.055 29.820 0.096. | . | . | . | 22 -0.037 -0.015 29.968 0.119. | . | . | . | 23 0.013 -0.051 29.985 0.150. | . | . | . | 24 0.010 0.010 29.997 0.185. | . | . | . | 25 0.015 -0.016 30.023 0.223. | . | . | . | 26 0.036 0.023 30.172 0.261. | . | . | . | 27 -0.016 -0.036 30.202 0.305. | . | . | . | 28 0.033 0.030 30.335 0.347. | . | . | . | 29 -0.057 -0.015 30.735 0.378. | . | . | . | 30 0.051 -0.003 31.064 0.412.*| . | . | . | 31 -0.070 -0.053 31.706 0.431. | . | . | . | 32 0.057 -0.003 32.141 0.460由上图可知Autocorrelation与Partial Correlation序列均有收敛到零的趋势,可以认为Y的自相关函数与偏自相关函数均是拖尾的,所以初步判断该序列适合ARMA模型。

时间序列分析实验报告

时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。

时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。

本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。

正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。

本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。

通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。

时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。

因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。

时间序列期末实验报告10

时间序列期末实验报告10

时间序列分析实验报告一、实验主题对“2001年至2009年每个月发电量”序列进行分析预测,并得出其发展趋势的结论。

二、实验内容1、数据的平稳性检验。

2、数据的平稳化处理。

(差分消除方法)3、根据平稳序列的自-偏自相关图确定模型类型。

4、模型阶数的确定。

5、模型的建立。

(参数显著性、残差检验)6、模型的预测。

三、实验步骤:1、数据录入打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中选择“Mouthly”,分别在起始年输入2001M01,终止年输入2009M11,点击ok,见图1,这样就建立了一个工作文件。

点击File/Import,找到相应的Excel数据集,导入即可。

图1 建立工作文件2、作出序列的时序图对“2001年至2009年每个月发电量”序列y作时序图,观察数据的形态,双击序列y,点击View/Graph,出现图2的时序图:5001,0001,5002,0002,5003,0003,500图2 序列y 时序图从时序图上可以看出,发电量有季节变动的因素影响,以一个年度为周期呈现循环上升的趋势,看出序列不平稳。

欲对其进行分析,需先平稳化。

3、差分法消除增长趋势除了周期性波动外,序列呈现出上升趋势,利用差分方法消除增长趋势,在命令栏里输入series x=y-y(-1),见图3,就得到一个不再有长期趋势的序列x ,时序图见图4:图3 一阶差分-600-400-200200400600图4 序列x 时序图4、季节差分法消除季节变动经过一阶差分过的时序图4显示出序列不再有明显的上升趋势,但有明显的季节变动,现在通过4步差分来消除季节变动,在命令栏里输入series xt=x-x(-4),得到消除季节变动的序列时序图见图5:-600-400-2000200400600800XT图5 序列xt 时序图经过一阶差分消除增长趋势和经过4步差分消除季节变动的序列围绕0上下波动,看起来是平稳的,但需要通过统计检验进一步证实这个结论。

时间序列分析实训报告心得

时间序列分析实训报告心得

时间序列分析实训报告心得1. 引言时间序列分析是一种重要的统计分析方法,可以用于研究时间序列数据的变化规律、预测未来趋势以及分析影响因素等。

在本次时间序列分析实训中,我们通过实际数据的分析和建模,深入学习了时间序列的基本理论和方法,并运用所掌握的知识解决了实际问题。

在本文中,我将分享我的实训心得和体会。

2. 数据获取与初步分析在时间序列分析的实训中,首先需要获取相关的时间序列数据,并进行初步的数据分析。

我们可以使用Python编程语言和相关的库来获取和处理数据。

通过对实际数据的初步观察和描述性统计分析,可以对数据的特征有一个初步的了解。

3. 数据预处理时间序列数据可能存在缺失值、异常值以及非平稳性等问题,因此在进行时间序列分析之前需要对数据进行预处理。

我们可以使用插值法来填充缺失值,使用平滑法或者移动平均法来处理异常值,使用差分法来消除非平稳性等。

4. 时间序列模型的选择与建立选择适当的时间序列模型是时间序列分析的关键步骤之一。

常见的时间序列模型包括ARMA模型、ARIMA模型、ARCH模型等。

根据实验要求和数据特点,我们可以选择合适的模型,并通过参数估计来建立模型。

5. 模型诊断与验证建立时间序列模型后,需要进行模型的诊断和验证。

通过残差的自相关图和偏自相关图,可以判断模型是否符合ARMA(p, q)模型的要求。

同时,还可以通过计算残差的百分比误差、平均绝对百分比误差等指标来评估模型的拟合效果。

6. 模型用于预测与应用时间序列模型的主要应用之一是预测未来的数值。

在选定合适的模型后,可以使用模型对未来的数据进行预测。

同时,时间序列模型还可以用于分析影响因素、判断趋势变化等。

通过对模型的应用,可以得到一些有价值的结论和洞察。

7. 总结与展望通过本次时间序列分析实训,我不仅深入了解了时间序列分析的理论和方法,还学会了使用Python编程语言和相关的库对时间序列数据进行分析和建模。

实践中遇到的问题和挑战也锻炼了我的动手能力和解决问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5532.6
4989.6
6642.3
6073.7
1995
7413.5
5863.1
4997.4
6776.1
6262.6
1996
7476.5
5965.5
5202.1
6894.1
6384.5
季平均
7058.1
5649.3
4909.6
6597.7
(1)由表8.1.1中每年每季的数据计算年平均值与季平均值,并绘出1991~1996年中每个季度的数据的散点图。
表7.1.1某城市居民季度用煤消耗量 (单位:吨)
年份
1季度
2季度
3季度
4季度
年平均
1991
6878.4
5343.7
4847.9
6421.9
5873.0
1992
6815.4
5532.6
4745.6
6406.2
5875.0
1993
6634.4
5658.5
4674.8
6445.5
5853.3
1994
7130.2
5955.9
5216.2
6904.3
真实值
7720.5Biblioteka 5973.35304.4
7075.1
预测误差
-355.8000
-17.4000
-88.2000
-170.8000




(2)用回归直线趋势法对序列进行分解。
(3)若1997年四季的数据分别为:7720.5 5973.3 5304.4 7075.1,运用(2)对1997年数据作预测并分析误差。




(1)首先做理论准备。每个时间序列,或经过适当的函数变换的时间序列,都可以分解成三个部分的叠加
(1)
其中 是趋势项, 是季节项, 是随机项。
C=[dx(:,1:4);dx(:,5:8);dx(:,9:12);dx(:,13:16);dx(:,17:20);dx(:,21:24)];
s=mean(C)%季节项估计
则得
s = 1.0e+003 *
1.0371 -0.3936 -1.1552 0.5110
即季节项估计为
分解随机项:利用原始数据 减去趋势项的估计 和季节项的估计 后得到的数据就是随机项的估计 .
然后,利用MATLAB软件,编写程序进行计算,即
A=[6878.4 5343.7 4847.9 6421.9
6815.4 5532.6 4745.6 6406.2
6634.4 5658.5 4674.8 6445.5
7130.2 5532.6 4989.6 6642.3
7413.5 5863.1 4997.4 6776.1
时间序列分析实验报告(一)




时间序列是按时间次序排列的随机变量序列,任何时间序列经过合理的函数变换后都可以被认为是由三个部分叠加而成,这三个部分别是趋势项部分、周期项部分和随机噪声项部分,从时间序列中把这三个部分分解出来是时间序列分析的首要任务。本实验目的学习时间序列的分解方法。




下面的表7.1.1中的数据是某城市1991~1996年中每个季度的民用煤消耗量(单位:吨)。数据图形由图1.1.2给出。
每个季度的数据的散点图:
图1城市居民季度用煤消耗量散点图
(2)分解回归直线趋势。由于数据有缓慢的上升趋势,可以试用回归直线表示趋势项,这时认为( 满足一元线性回归模型
在Matlab命令窗口中继续输入下列命令:
polyfit(1:24,B(:)',1)
输出:ans =
1.0e+003 *
0.0219 5.7801
7476.5 5965.5 5202.1 6894.1
];
A1=mean(A)%计算季平均值
B=A';
A2=mean(B)%计算年平均值
plot(B(:),'+-')%画出每个季度的散点图
则得:
季平均值为:7058.1 5649.3 4909.6 6597.7
年平均值为:5873.0 5875.0 5853.3 6073.7 6262.5 6384.5
在Matlab命令窗口中继续输入下列命令:
for j=1:6
for k=1:4
St(k+4*(j-1))=s(k);%求季节项值St
end
end
Rt=dx-St;%求随机项估计
plot(1:24,St,'*-',1:24,Rt,'<-')%画出季节项和随机项图形
图2季节项和随机项散点图
预测:为得到1997年的预报值,可以利用公式

这里, 是用例中的24个观测数据对第 个数据的预测值,利用MATLAB编写命令:
for i=25:28
m=5780.1+21.9*(i)+s(i-24)%计算1997年四个季度的预测值
end
得到结果:m=7364.75955.95216.26904.3
将1997年的预测值与真实值比较:
预测值
7364.7
所以得: ,
这时,趋势项 的估计值是回归直线:

利用原始数据 减去趋势项的估计 后得到的数据基本只含有季节项和随机项了。
分解季节项:用第k季度的平均值作为季节项 的估计。如果用 分别表示第j年第k个季度的数据和趋势项,则时刻(j,k)的时间次序指标为 .
在Matlab命令窗口中继续输入下列命令:
dx=B(:)'-(5780.1+21.9*(1:24))
相关文档
最新文档