应用时间序列分析实验报告
时间序列分析试验报告

时间序列分析试验报告
一、试验简介
本次试验旨在探索时间序列分析,以分析日期变化的影响与规律。
时
间序列分析是数据分析的一种,目的是预测未来正确的趋势,并且分析既
有趋势的影响及其变化。
二、试验材料
本次试验使用的资料为最近12个月(即2024年1月到2024年12月)的电子商务网站销售数据。
该电子商务网站以每月总销售量、每月总销售
额及每月交易次数三个变量作为试验数据。
三、试验方法
1.首先,收集2024年1月到2024年12月的电子商务销售数据,记
录每月总销售量、总销售额及交易次数。
2.然后,编制时间序列分析图表,反映每月总销售量、总销售额及
交易次数的变化情况。
3.最后,分析每月的变化趋势,比较每月的销售数据,并进行相关
分析推断。
四、实验结果
1.通过时间序列分析图表可以看出,每月总销售量、总销售额及交
易次数均呈现出稳定上升趋势。
2.从图表中可以推断,在2024年底到2024年底,当月的总销售量、总销售额及交易次数均较上月有所增加。
3.从表中可以推断,每月的总销售量、总销售额及交易次数都在逐渐增加,最终在2024年末达到高峰。
五、结论
通过本次实验可以得出结论。
应用时间序列分析实训报告

《应用时间序列分析》实训报告实训项目名称非平稳时间序列模型的建立实训时间 2013年12月16日实训地点实验楼308班级计科1001班学号姓名《应用时间序列分析》实训(实践) 报告实训名称平稳时间序列模型的建立一、实训目的本次实验是一个综合试验,通过自己选定问题,收集数据,确定研究方法,建立合适模型,解决实际问题,增强学生动手能力,提高学生综合分析的能力。
二、实训内容学生根据自己喜好,选定一个实际问题,确定指标,收集相关数据,利用所学时间序列分析方法队进行研究,建立时间序列模型,揭示其研究对象内部的规律,并对未来进行预测。
并写出分析报告。
具体实验内容如下:1 确定研究问题2 收集数据3 建立合适模型1.ARIMA模型建模前的准备:判断序列是否平稳.①通过序列自相关图、趋势图等进行判断②若序列不平稳:均值非平稳序列通过差分变换转换为平稳方差非平稳序列通过对数变换等转化为平稳序列③模型平稳化以后,将序列零均值化2.模型识别主要通过序列的自相关函数、偏自相关函数表现的特征,进行初步的模型识别3.模型参数估计①在Eviews中估计ARMA模型的方法②估计模型以后要能写出模型的形式(差分方程形式和用B算子表示的形式)4.模型的诊断检验①根据模型残差是不是白噪声来判断模型是否为适应性模型②能根据输出结果判断模型是否平稳,是否可逆③若有多个序列是模型的适应性模型,会用合适的方法从这些模型中进行选择,如比较模型的残差方差,AIC,SC等。
5.模型应用①掌握追溯预测的操作方法②外推预测的操作方法四、实训分析与总结1)输入数据2)生成时序图观测序列时序图,可知序列具有线性长期趋势,需要进行一阶差分观测差分时序图看出并无明显的趋势性或者循环性,得出一阶差分平稳。
由图知,序列一阶自相关显著,序列平稳;Q 统计量P 值小于0.05,非白噪声;同时偏自相关拖尾、自相关一步截尾,可建立ARIMA (0,1,1)模型。
3)模型参数估计ARMA 模型估计方程:t )708169.01(015566.5εB x t ++=∇SBC 值为7.013764由图知偏自相关,C 的值大于0.05,则去掉C,继续建立模型:ARIMA 模型估计方程:t 652119.011εBx t -=∇SBC 值为7.055671比较两个模型的SBC 值,建立ARMA 模型最优。
应用时间序列实验报告

工程学院课程设计《时间序列分析课程设计》学生学号:学院:理学院专业班级:专业课程:时间序列分析课程设计指导教师:2017年 6 月 2 日目录1. 实验一澳大利亚常住人口变动分析 (1)1.1 实验目的 (2)1.2 实验原理 (2)1.3 实验容 (2)1.4 实验过程 (4)2. 实验二我国铁路货运量分析 (9)2.1 实验目的 (10)2.2 实验原理 (10)2.3 实验容 (11)2.4 实验过程 (12)3. 实验三美国月度事故死亡数据分析 (15)3.1 实验目的 (17)3.2 实验原理 (17)3.3 实验容 (18)3.4 实验过程 (18)课程设计体会 (22)1.实验一澳大利亚常住人口变动分析1971年9月—1993年6月澳大利亚常住人口变动(单位:千人)情况如表1-1所示(行数据)。
表1-1(1)判断该序列的平稳性与纯随机性。
(2)选择适当模型拟合该序列的发展。
(3)绘制该序列拟合及未来5年预测序列图。
1.1 实验目的掌握用SAS软件对数据进行相关性分析,判断序列的平稳性与纯随机性,选择模型拟合序列发展。
1.2 实验原理(1)平稳性检验与纯随机性检验对序列的平稳性检验有两种方法,一种是根据时序图和自相关图显示的特征做出判断的图检验法;另一种是单位根检验法。
(2)模型识别先对模型进行定阶,选出相对最优的模型,下一步就是要估计模型中未知参数的值,以确定模型的口径,并对拟合好的模型进行显著性诊断。
(3)模型预测模型拟合好之后,利用该模型对序列进行短期预测。
1.3 实验容(1)判断该序列的平稳性与纯随机性时序图检验,根据平稳时间序列均值、方差为常数的性质,平稳序列的时序图应该显示出该序列始终在一个常识值附近波动,而且波动的围有界。
如果序列的时序图显示该序列有明显的趋势性或周期性,那么它通常不是平稳序列。
对自相关图进行检验时,可以用SAS系统ARIMA过程中的IDENTIFY语句来做自相关图。
时间序列分析实验报告

引言概述:
时间序列分析是一种用于研究时间数据的统计方法,主要关注数据随时间的变化趋势、季节性和周期性等特征。
时间序列分析应用广泛,可以用于金融预测、经济分析、气象预测等领域。
本实验报告旨在介绍时间序列分析的基本概念和方法,并通过实例分析来展示其应用。
正文内容:
1.时间序列分析基本概念
1.1时间序列的定义
1.2时间序列的模式
1.3时间序列分析的目的
2.时间序列分析方法
2.1随机游走模型
2.2移动平均模型
2.3自回归移动平均模型
2.4季节性模型
2.5ARCH和GARCH模型
3.时间序列数据预处理
3.1数据平稳性检验
3.2数据平滑
3.3缺失值填补
3.4离群值检测
3.5数据变换
4.时间序列模型建立与评估
4.1模型的选择
4.2参数估计
4.3拟合优度检验
4.4模型诊断
4.5预测准确性评估
5.实例分析:某公司销售数据时间序列分析
5.1数据收集与预处理
5.2模型建立与评估
5.3预测分析与结果解释
5.4预测精度评估
5.5结果讨论与进一步改进方向
总结:
时间序列分析是一种重要的统计方法,可用于预测和分析时间相关的数据。
本报告介绍了时间序列分析的基本概念和方法,并通
过实例分析展示了其应用过程。
通过时间序列分析,可以更好地理解数据的趋势和周期性,并进行准确的预测。
时间序列分析也面临着多样的挑战,如数据质量问题和模型选择困难等。
因此,在实际应用中,需要综合考虑多种因素,灵活运用合适的方法和技巧,以提高预测准确性和分析可靠性。
时间序列分析的实验报告-实验一

2013——2014学年第二学期
实验报告
课程名称:应用时间序列分析
实验项目:Eviews软件使用初步
实验类别:综合性□设计性□验证性□√专业班级:
姓名:学号:
实验地点:
实验时间:2014.5. 4
指导教师:成绩:
吉首大学数学与统计学院
一、实验目的:
掌握应用Eviews软件完成以下任务:(1)工作文件及建立;
(2)掌握数据分析的常用操作;(3)进行OLS回归;(4)预测二、实验内容:
用拟合的线性回归模型对数据集进行线性趋势拟合;数据来源是1996年黑龙江省伊春林区16个林业局的年木材采伐量和相关伐木剩余物数据。
三、实验方案(程序设计说明)
四. 实验步骤或程序(经调试后正确的源程序)
五.程序运行结果
六、实验总结
学生签名:
年月日
七、教师评语及成绩
教师签名:
年月日
1。
时间序列法实验报告

一、实验目的1. 了解时间序列分析方法的基本原理和应用。
2. 学习如何使用时间序列分析方法对实际数据进行预测和分析。
3. 通过实验,提高对时间序列数据处理的实际操作能力。
二、实验内容本次实验选取了一组某城市过去三年的月均降雨量数据,旨在通过时间序列分析方法预测未来一个月的降雨量。
三、实验步骤1. 数据预处理- 读取实验数据,确保数据格式正确。
- 检查数据是否存在缺失值,如有,进行插补处理。
- 对数据进行初步的描述性统计分析,了解数据的分布情况。
2. 时间序列平稳性检验- 对原始数据进行ADF(Augmented Dickey-Fuller)检验,判断时间序列是否平稳。
- 若不平稳,进行差分处理,直至序列平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择合适的模型进行拟合。
- 本实验选取ARIMA模型进行拟合,其中AR项数为1,MA项数为1,差分次数为1。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计。
5. 模型检验- 对拟合后的模型进行残差分析,检查是否存在自相关或异方差。
- 若存在自相关或异方差,对模型进行修正。
6. 预测- 使用拟合后的模型对未来一个月的降雨量进行预测。
四、实验结果与分析1. 数据预处理- 实验数据共有36个观测值,无缺失值。
- 描述性统计分析结果显示,降雨量数据呈正态分布。
2. 时间序列平稳性检验- 对原始数据进行ADF检验,结果显示P值小于0.05,拒绝原假设,说明原始数据不平稳。
- 对数据进行一阶差分后,再次进行ADF检验,结果显示P值小于0.05,接受原假设,说明一阶差分后的数据平稳。
3. 时间序列建模- 根据平稳时间序列的特点,选择ARIMA(1,1,1)模型进行拟合。
4. 模型参数估计- 使用最小二乘法对模型参数进行估计,得到AR系数为0.8,MA系数为-0.9。
5. 模型检验- 对拟合后的模型进行残差分析,发现残差序列存在自相关,但不存在异方差。
- 对模型进行修正,加入自回归项,得到修正后的ARIMA(1,1,1,1)模型。
时序分析实验报告

时间序列分析实验报告1、实验内容1.1问题描述用Eviews软件确定该序列的平稳性,根据数据的性质特征对其进行分析并适当模型拟合该序列的发展,最后利用所选取的拟合模型预测1939-1945年英国绵羊的数量。
2、判别原数据的平稳性2.1.画时序图在Eviews中建立workfile为1867-1938年的年度数据,通过file→ import 把数据导入Eviews中。
变量名命名为x。
在workfile中打开数据x,点击series:x窗口中的view→graph→line,则会出x的现时序图1。
时序图1从时序图1中可以看出数据为非平稳的,且大致呈现下降趋势。
因此为经一步说明该数据的平稳性,做相关分析。
2.2.自相关分析继续在该时序图窗口中点击view→correlogram,在弹出的correlogram Specification 的对话框中的lags to include中输入12,点击OK。
则x的自相关图2如下。
自相关图2从自相关图的autocorrelation的一栏可以看出自相大部分都关超出了(至少第三个自相关值要落入两倍的标准差中则为平稳的)两倍的标准差。
则可以进一步认为该数据为非平稳的。
为作出最终的判断,对数进行单位根检验。
2.3.单位根检验同样在自相关图2的窗口中点击view→unit root test在弹出的unit root test 的对话空中的automatic selection的下拉框中选择Schwarz Info,并在Include in test equation中选择intercept点击ok则有如下结果输出单位根表3。
单位根表3从表3中以看所有的ADF值没有都小于值临界值,因此结合时序图和自相关图可以判断出该数据为非平稳的。
3、对数据进行平稳化3.1.对数据做一阶差分在代码窗口中输入genr dx=d(x)并按回车键则在workfile窗体中新生成变量为dx的数据该数据即为x的一阶差分。
时间序列分析实验报告

时间序列分析实验报告一、实验目的时间序列分析是一种用于处理和分析随时间变化的数据的统计方法。
本次实验的主要目的是通过对给定的时间序列数据进行分析,掌握时间序列分析的基本方法和技术,包括数据预处理、模型选择、参数估计和预测,并评估模型的性能和准确性。
二、实验数据本次实验使用了一组某商品的月销售量数据,数据涵盖了过去两年的时间范围,共 24 个观测值。
数据的具体形式为一个时间序列,其中每个观测值表示该商品在相应月份的销售量。
三、实验方法1、数据预处理首先,对数据进行了可视化,绘制了时间序列图,以便直观地观察数据的趋势、季节性和随机性。
然后,对数据进行了平稳性检验。
采用了 ADF(Augmented DickeyFuller)检验来判断数据是否平稳。
如果数据不平稳,则需要进行差分处理,使其达到平稳状态。
2、模型选择根据数据的特点和可视化结果,考虑了几种常见的时间序列模型,如 ARIMA(AutoRegressive Integrated Moving Average)模型、SARIMA(Seasonal AutoRegressive Integrated Moving Average)模型和HoltWinters 模型。
通过对不同模型的参数进行估计,并比较它们在训练数据上的拟合效果和预测误差,选择了最适合的模型。
3、参数估计对于选定的模型,使用最大似然估计或最小二乘法等方法来估计模型的参数。
通过对参数的估计值进行分析,判断模型的合理性和稳定性。
4、预测使用估计得到的模型参数,对未来一段时间内的销售量进行预测。
为了评估预测的准确性,采用了均方根误差(RMSE)、平均绝对误差(MAE)等指标来衡量预测值与实际值之间的差异。
四、实验过程1、数据可视化通过绘制时间序列图,发现数据呈现出明显的季节性和上升趋势。
同时,数据的波动范围也较大,存在一定的随机性。
2、平稳性检验对原始数据进行 ADF 检验,结果表明数据是非平稳的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用时间序列分析实验报告学院名称理学院专业班级应用统计学14-2学生姓名张艳雪学号************齐鲁工业大学实验报告 成绩课程名称 《应用时间序列分析实验》 指导教师 黄玉林 实验日期 2017.6.30院(系) 理学院 专业班级 统计14-2 实验地点 机电楼C428学生姓名 张艳雪 学号 201411081051 同组人 无实验项目名称 ARIMA 模型、确定性分析法,多元时间序列建模一、 实验目的和要求1.熟悉非平稳序列的确定性分析法:趋势分析、季节效应分析、综合分析2.熟悉差分平稳序列的建模步骤。
3.掌握单位根检验、协整检验、动态回归模型的建立。
二、 实验原理1. 序列的各种变化都归结于四大因素的综合影响:长期趋势(Trend ),循环波动(Circle ),季节性变化(Season ),机波动(Immediate ).常假设它们有如下的相互模型:加法模型 t t t t t X T C S I =+++ 乘法模型 t t t t t X T C S I =⋅⋅⋅ 混合模型 模型结构不唯一2.非平稳序列如果能通过适当阶数的差分后实现平稳,就可以对差分后序列进行ARMA 模型拟合了,所以ARIMA 模型是差分运算与ARMA 模型的组合tt d B x B ε)()(Θ=∇Φ3.单位根检验:(1)DF 检验;(2)ADF 检验; (3)PP 检验; 4.动态回归模型ARIMAX如果两个非平稳序列之间具有协整关系,则先建立它们的回归模型,再对平稳的残差序列建立ARMA 模型。
⎪⎪⎩⎪⎪⎨⎧ΦΘ=+ΦΘ+=∑=t t t kk it l ii ta B B x B B B y i)()()()(1εεμ三、实验内容1、P202页:第7 题(X11因素分解法)2、P155页:第3题(乘积季节模型)3、P240页:第4题出口为t x ,进口为t y ,回答以下问题(1)画出t x ,t y 的时序图,用单位根检验序列它们的平稳性; (2)对t t y x ln ,ln 分别拟合模型(提示:建立ARIMA 模型);(3)考察t t x y ln ln ,的协整关系,建立t t x y ln ln 关于的协整模型,同时建立误差修正模型。
四、实验过程(一) P202页:第7 题(X11因素分解法) 1.绘制序列时序图。
(程序见附录)由上图可得季节序列的振幅随序列水平的变化而变化,所以季节效应与趋势效应不独立,采用乘法模型: x t =T t ×S t ×I t2.进入x -11季节调整模型经过三个阶段共十步的重复迭代后,得到如下的拟合效果图:显然,该地区奶牛的月度产奶量序列具有显著的季节变动特征。
(二)P155页:第3题(乘积季节模型)1.绘制序列时序图。
绘制时序图,如图1所示(程序见附录1)。
图1 美国月度事故死亡人数序列时序图时序图显示该序列具有以年为周期的季节效应。
2.差分平稳化:对原序列作1阶12步差分,希望提取原序列季节效应,差分后序列时序图如图2所示。
图2 美国月度事故死亡人数1阶12步差分后序列时序图时序图显示差分后序列类似平稳。
3.模型定阶:考察差分后序列自相关图,如图3,进一步确定平稳性判断,并估计拟合模型的阶数。
图3 美国月度事故死亡人数1阶12步差分后序列自相关图自相关图显示延迟12阶自相关系数显著大于2倍标准差范围,这说明差分后序列中仍蕴含着非常显著的季节效应。
延迟1阶的自相关系数也大于2倍的标准差,这说明差分后序列还具有短期相关性。
观察偏自相关图,如图4,得到的结论和上面的结论一致。
图4 美国月度事故死亡人数1阶12步差分后序列偏自相关图图5 序列白噪声检验图5显示,原序列延迟各阶LB 统计量的P 值小于显著性水平0.05,所以拒绝原假设,序列不通过白噪声检验。
根据差分后序列的自相关图和偏自相关图的性质,拟合乘积季节模型12),,(),,p (Q D P q d ARIMA 。
自相关图显示,12阶以内的自相关系数1阶截尾,偏自相关图显示,12阶以内的偏自相关系数1阶截尾,所以尝试使用ARMA(1,0)模型提取差分后序列的短期自相关信息。
再考虑季节自相关特征,这时考察延迟12阶、24阶等以周期长度为单位的自相关系数和偏自相关系数的特征。
自相关图显示延迟12阶自相关系数显著非零,而偏自相关图显示延迟12阶偏自相关系数显著非零,这时用以12步为周期的12)1,1(ARMA 模型提取差分后序列的季节自相关信息。
4.参数估计:图6 拟合模型综合前面的差分信息,我们要拟合的乘积季节模型为12)1,1,1()0,1,1(⨯ARIMA 。
使用条件最小二乘估计方法,确定该模型的口径为:5.模型检验:对序列拟合12)1,1,1()0,1,1(⨯ARIMA 模型,模型及模型参数的显著性检验如图7、8所示。
图7 模型参数的显著性由图7知,拟合效果显示模型参数显著。
图8 残差白噪声检验对拟合模型进行白噪声检验,结果显示P值都大于显著性水平0.05.接受原假设,残差序列通过白噪声检验,模型显著,说明模型拟合良好,对序列相关信息提取充分。
将序列拟合值和序列观察值联合作图,如图9所示。
图9 美国月度事故死亡人数拟合效果图说明:图中,点为序列观察值;曲线为序列拟合值。
从图9可以直观地看出该乘积季节模型对原序列的拟合效果良好。
(三)P240页:第4题1.画出t x ,t y 的时序图,用单位根检验序列的平稳性; 输出时序图如图1所示(程序见附录2)。
图1 我国出口总额Xt 、进口总额yt 时序图图1中,黑色为出口总额xt 序列时序图,红色为进口总额yt 序列时序图。
从图1中可以看出出口总额xt 序列、进口总额yt 序列均显著非平稳,这个直观判断还可以通过单位根检验验证。
同时时序图显示这两个序列具有某种同变关系。
对我国出口总额序列xt 进行ADF 检验,单位根检验结果如图2所示。
图2 出口总额xt 白噪声、单位根检验检验结果显示,无论考虑何种类型的模型,检验统计量的P 值均显著大于0.05的显著性水平,所以可以认为中国我国出口总额序列xt 显著非平稳,且这六种处理均不能实现残差序列平稳。
对我国进口总额序列yt 进行ADF 检验,单位根检验结果如图3所示。
图3 进口总额yt 白噪声、单位根检验同出口序列xt 的检验结果一样,在显著性水平取为0.05时,可以认为我国进口序列yt 非平稳,且这六种处理均不能实现残差序列平稳。
显然,这两个序列的ADF 检验结果与根据时序图得到的直观判断完全一致2.对t t y x ln ,ln 分别拟合模型(提示:建立ARIMA 模型);对我国出口对数序列lnxt 和进口对数序列lnyt 绘制时序图,如图4所示。
图4 我国出口总额Xt 、进口总额yt 取对数时序图图4中,黑色线代表我国出口对数序列lnxt,红色线代表我国进口对数序列lnyt。
时序图显示这两个对数序列有显著的上升趋势,为典型的非平稳序列。
同时时序图显示这两个序列具有某种同变关系。
因为序列呈现出近似线性趋势,所以选择1阶差分。
1阶差分后出口对数序列lnxt时序图如图5所示。
图5 对数序列Lnx差分时序图时序图显示,lnxt差分后序列在均值附近比较稳定地波动。
为了进一步确定平稳性,考察差分后序列的自相关图,如图6所示。
图6 对数序列Lnxt差分后自相关图自相关图显示序列有很强的短期相关性,所以可以初步认为lnxt1阶差分后序列平稳。
对平稳的1阶差分序列进行白噪声检验,白噪声检验结果如图7所示。
图7 lnxt一阶差分后序列白噪声检验在检验的显著性水平取为0.05的条件下,由于延迟6阶、12阶的P值均小于0.05,所以lnxt差分后的序列不能视为白噪声序列,即差分后序列还蕴含着不容忽视的相关信息可以提取。
对平稳非白噪声差分序列拟合ARMA模型,1阶差分后序列的自相关图(见图6)已经显示该序列有不截尾的性质。
再考察其偏自相关系数的性质,如图8所示。
图8 对数序列Lnxt差分后偏自相关图偏自相关图显示出1阶截尾性,所以考虑用AR(1)模型拟合lnxt1阶差分后序列。
考虑到前面已经进行的1阶差分运算,实际上是用)0,1,1(ARIMA模型拟合原序列。
对序列拟合)0,1,1(ARIMA模型,模型参数及模型的显著性检验如图9、10所示。
图9 模型参数显著性检验由图9知,系数显著性检验显示两参数均显著。
对残差序列进行白噪声检验,检验结果如图10所示。
图10 残差白噪声检验显然,拟合检验统计量的P值都显著大于显著性检验水平0.05,可以认为残差序列即为白噪声序列,模型显著,这说明)0,1,1(ARIMA模型对lnxt序列建模成功。
图11 模型图12 对数序列Lnxt拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。
从图可以直观地看出该)0,1,1(ARIMA模型对原序列的拟合效果良好。
因为对数序列lnyt呈现出近似线性趋势,所以选择1阶差分。
1阶差分后进口对数序列lnyt时序图如图13所示。
图13 对数序列Lny差分时序图时序图显示,lnyt差分后序列在均值附近比较稳定地波动。
为了进一步确定平稳性,考察差分后序列的自相关图,如图14所示。
图14 对数序列Lnyt差分后自相关图自相关图显示序列有很强的短期相关性,所以可以初步认为lnyt1阶差分后序列平稳。
对平稳的1阶差分序列进行白噪声检验,白噪声检验结果如图15所示。
图15 lnyt一阶差分后序列白噪声检验在检验的显著性水平取为0.05的条件下,由于延迟6阶的P值小于0.05,所以lnyt差分后的序列不能视为白噪声序列,即差分后序列还蕴含着不容忽视的相关信息可以提取。
对平稳非白噪声差分序列拟合ARMA模型,1阶差分后序列的自相关图(见图14)已经显示该序列有1阶截尾的性质。
再考察其偏自相关系数的性质,如图16所示。
图16 对数序列Lnyt差分后偏自相关图偏自相关图显示该序列1阶截尾的性质,所以考虑用AR(1)模型拟合lnyt1阶差分后序列。
考虑到前面已经进行的1阶差分运算,实际上是用)0,1,1(ARIMA模型拟合原序列。
对序列拟合)0,1,1(ARIMA模型,模型参数及模型的显著性检验如图17、18所示。
图17 模型参数显著性检验由图17知,系数显著性检验显示两参数均显著。
对残差序列进行白噪声检验,检验结果如图18所示。
图18 残差白噪声检验显然,拟合检验统计量的P 值都显著大于显著性检验水平0.05,可以认为残差序列即为白噪声序列,模型显著。
这说明)0,1,1(ARIMA 模型对该序列建模成功。
图19 模型图20 对数序列Lnyt 拟合效果图说明:图中,星号为序列观察值;曲线为拟合值。
从图20可以直观地看出该)0,1,1(ARIMA 模型对原序列的拟合效果良好。