ARMA模型的定阶与参数估计的一种方法

合集下载

ARMA相关模型及其应用

ARMA相关模型及其应用

ARMA相关模型及其应用一、本文概述随着科技的快速发展和数据分析技术的不断进步,时间序列分析在金融、经济、工程等领域的应用日益广泛。

其中,自回归移动平均模型(ARMA模型)作为一种重要的时间序列分析工具,其理论和实践价值备受关注。

本文旨在深入探讨ARMA模型的基本理论、性质及其在实际问题中的应用,旨在为读者提供一个全面而深入的理解和应用ARMA模型的参考。

本文将简要介绍ARMA模型的基本概念、发展历程及其在时间序列分析中的地位。

随后,重点阐述ARMA模型的数学原理、参数估计方法以及模型的检验与优化。

在此基础上,本文将通过具体案例,展示ARMA模型在金融市场分析、经济预测、工程信号处理等领域的实际应用,并探讨其在实际应用中的优势与局限性。

本文旨在为研究者、学者和实践者提供一个关于ARMA模型及其应用的全面指南,帮助他们更好地理解和应用这一重要的时间序列分析工具。

通过案例分析,本文旨在为相关领域的学者和实践者提供新的思路和方法,推动ARMA模型在实际问题中的更广泛应用。

二、ARMA模型基础ARMA模型,全称为自回归移动平均模型(AutoRegressive Moving Average Model),是时间序列分析中的一种重要模型。

它结合了自回归模型(AR,AutoRegressive)和移动平均模型(MA,Moving Average)的特点,能够更全面地描述时间序列数据的动态变化特性。

ARMA模型的基本形式为ARMA(p, q),其中p是自回归项的阶数,q是移动平均项的阶数。

模型的一般表达式为:_t = \varphi_1 _{t-1} + \varphi_2 _{t-2} + \cdots +\varphi_p _{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} +\theta_2 \epsilon_{t-2} + \cdots + \theta_q \epsilon_{t-q}) 其中,(_t)是时刻t的观察值,(\varphi_i)是自回归系数,(\epsilon_t)是时刻t的白噪声项,(\theta_i)是移动平均系数。

时间序列中的ARMA模型

时间序列中的ARMA模型
件期望是相等旳,若设为u,则得到 :
c u=
1 (1 2 ... p)
旳无条
7
ARIMA模型旳概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
(1
2
1
1≤j≤22q ... q2 )
0 j>q
j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程旳一种特征
如下图:
18
ARMA模型旳辨认
MA(2)过程
yt =0.5ut-1 0.3ut2 ut
19
ARMA模型旳辨认
⑵ AR(p)过程旳偏自有关函数
j p 时,偏自有关函数旳取值不为0 j>q 时,偏自有关函数旳取值为0 AR(p)过程旳偏自有关函数p阶截尾 如下图:
32
ARMA模型旳预测
二. 基于MA过程旳预测
过程 结论:
MA (2) 过程仅有2期旳记忆力
33
ARMA模型旳预测
三. 基于ARMA过程旳预测
结合对AR过程和MA过程进行预测 ARMA模型一般用于短期预测
34
五、实例:ARMA模型在金融数 据中旳应用
数据: 1991年1月到2023年1月旳我国货币供
3
ARIMA模型旳概念
2.MA(q)过程旳特征
1. E(Yt)=u
2.
var(Yt)
(1
2

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

实验二:ARMA模型建模与预测实验报告

实验二:ARMA模型建模与预测实验报告

实验二:A R M A模型建模与预测实验报告(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--课程论文(2016 / 2017学年第 1 学期)课程名称应用时间序列分析指导单位经济学院指导教师易莹莹学生姓名班级学号学院(系) 经济学院专业经济统计学实验二 ARMA模型建模与预测实验指导一、实验目的:学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA 模型的阶数p 和q ,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。

掌握在实证研究中如何运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念:宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。

AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为:1122t t t p t p t y y y y φφφε---=++++式中: p 为自回归模型的阶数i φ(i=1,2, ,p )为模型的待定系数,t ε为误差, t y 为一个平稳时间序列。

MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

滑动平均模型的数学公式为:1122t t t t q t q y εθεθεθε---=----式中: q 为模型的阶数; j θ(j=1,2, ,q )为模型的待定系数;t ε为误差;t y 为平稳时间序列。

ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA , 数学公式为:11221122t t t p t p t t t q t q y y y y φφφεθεθεθε------=++++----三、实验任务:1、实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q和自回归阶数p;(3)对某企业201个连续生产数据建立合适的(,)ARMA p q模型,并能够利用此模型进行短期预测。

ARMA模型介绍知识分享

ARMA模型介绍知识分享

MA(q)的自相关函数(AC)
根据自相关函数,当k>q时,yt 与y t-k 不相关, 这种现象称为截尾,因此,当k>q时,自相关 函数为零是MA(q)的一个特征。也就是说, 可以根据自相关系数是否从某一点开始一直为 零来判断MA(q)模型的阶。
MA(q)的偏自相关系数随着滞后期的增加, 呈现指数衰减,趋向于零,这称为偏自相关系 数的拖尾性。
Quick → Estimate equation 在窗口中输入因变量,自变量为AR(p)和
MA(q),以ARMA(1,2)为例:
GDP c AR(1) MA(1) MA(2)
参考AC或PAC确定滞后期 根据回归结果选择适合的估计结果
模型结果的分析
ARMA模型估计对参数t检验其显著性水 平要求并不严格,更多的是考虑模型的 整体拟合效果。
调整可决系数、AIC和SC准则都是模型 选择的重要标准。
AIC准则和SC准则
赤池信息准则:AIC=-2L/n+2k/n,其中L 是对数似然值,n是观测值数目,k是被 估计的参数个数。AIC准则要求其取值 越小越好。
施瓦茨准则:SC=-2L/n-klnn/n,使用时 也要求SC值越小越好。
ARIMA模型
考虑ARIMA(p,d,q)模型 一个ARIMA(p,d,q)模型代表一个I(d)变量
经过d次差分后所做的AR(p)和MA(q)模 型。
结束语
谢谢大家聆听!!!
17
Yt 1Yt1 2Yt2 ... pYt p ut 1ut1 qutq
则称该序列为(p,q)阶自回归移动平均模型。 记为ARMA(p,q)
随机时间序列分析模型的识别
对于AR、MA、ARMA模型,在进行 参数估计之前,需要进行模型的识别。 识别的基本任务是找出ARMA(p,q)、 AR(p)、MA(q)模型的阶。识别 的方法是利用时间序列样本的自相关 函数和偏自相关函数。

《时间序列分析》课程总结

《时间序列分析》课程总结

《时间序列分析》课程总结(2009~2010学年第二学期)会计学院统计系石岩涛本学期开设的时间序列分析是统计学专业本科生的一门专业必修课,它是概率统计学中的一门比较新的分支,在经济社会中的应用越来越广泛。

本课程通过讲授一元时间序列的模型识别、参数估计、假设检验和预报等知识,使学生掌握时间序列分析的基本方法,并用以分析、探索社会经济现象,进而对未来现象进行预报。

本课程主要讲述:一是平稳时间序列、线性差分方程及最小方差估计;二是ARMA模型,包括ARMA模型的定义、性质及其判别条件、自协方差函数与偏相关函数的特征;三是ARMA模型的参数估计,包括矩估计和极大似然估计;四是模型的定阶、改进、建模、定阶的FPE方法、AIC、BIC统计量等、模型检验的方法;五是时间序列的预报,包括线性最小方差预报、信息预报等。

基本要求是要求学生掌握各类平稳ARMA过程的基本概念及基本特征,理解间序列的时域分析和频域分析的基本理论和基本方法,运用时域分析和频域分析的基本理论和方法,对获得的一组动态数据能进行分析研究,选择合适的模型,并对该模型进行参数估计,最终建立模型,达到预报目的。

由于时间序列分析是我校统计系统计专业开设的一门新课,对于我而言也是一门全新的课程,因此,备课及课堂教学都带来了前所未有的挑战、压力。

但是,为了把这样艰巨的任务保质保量的完成,我克服了重重困难,多方请教、查找资料,同时,与学生沟通,了解他们学习本课程的困难。

有时为了解决一个小的困难点,要与学生共同努力,集思广益想办法,一起查找相关资料,直到问题彻底解决。

为了调动学生学习本课程的兴趣,将学生分成五个学习小组,以小组的表现和个人表现相结合给每个学生的平时表现打分,这样既培养了学生的团队意思,又突出了个人表现,使大部分学生的学习有了明显的进步。

另外,为了使得学生的掌握知识更牢固以及期末复习的比较系统些,我将各个章节的复习内容的总结任务分配到各个小组,然后,由课代表和老师进行汇总、取舍和补充,形成学生期末复习资料,期末考试结果比较理想。

ARMA模型建模与预测指导

ARMA模型建模与预测指导

实验二 ARMA 模型建模与预测指导一、实验目的学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA 模型的阶数p 和q ,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。

掌握在实证研究中如何运用Eviews 软件进行ARMA 模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。

AR 模型:AR 模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测, 自回归模型的数学公式为:1122t t t p t p t y y y y φφφε---=++++式中: p 为自回归模型的阶数i φ(i=1,2, ,p )为模型的待定系数,t ε为误差, t y 为一个平稳时间序列。

MA 模型:MA 模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

滑动平均模型的数学公式为:1122t t t t q t q y εθεθεθε---=----式中: q 为模型的阶数;j θ(j=1,2, ,q )为模型的待定系数;t ε为误差; t y 为平稳时间序列。

ARMA 模型:自回归模型和滑动平均模型的组合, 便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA , 数学公式为:11221122t t t p t p t t t q t q y y y y φφφεθεθεθε------=++++----三、实验内容及要求1、实验内容:(1)根据时序图判断序列的平稳性;(2)观察相关图,初步确定移动平均阶数q 和自回归阶数p ;(3)运用经典B-J 方法对某企业201个连续生产数据建立合适的ARMA (,p q )模型,并能够利用此模型进行短期预测。

2、实验要求:(1)深刻理解平稳性的要求以及ARMA 模型的建模思想;(2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARMA 模型;如何利用ARMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。

时间序列分析练习题

时间序列分析练习题
通过一阶差分,得到 Yt=a+bt-[a+b(t-1)]=b 消除了线性趋势。
17. 在趋势性检验中,进行单位根检验的意义是什么?
单位根检验就是根据已观测到的时间序列,检验产生这个时间序列的随机过程中的一阶 自回归系数是否为一,这个检验实际上就是对时间序列是否为一个趋势平稳过程的检验,如 果检验表明没有单位根,则它是一个趋势平稳过程,否则,它是一个带趋势的单位根过程。
①( 均值为常数 ) ②( 协方差为时间间隔 的函数 )
则称该序列为宽平稳时间序列,也叫广义平稳时间序列。 8. 对于一个纯随机过程来说,若其期望和方差(均为常数),则称之为白噪声过程。白 噪声过程是一个(宽平稳)过程。 9. 时间序列分析方法按其采用的手段不同可概括为数据图法,指标法和(模型法)
19. 线性趋势平稳的特点:当我们将时间序列中的完全确定的线性趋势去掉以后,所形 成的时间序列就是一个平稳的时间序列。
20. 如何以系统的观点看待时间序列的动态性? 系统的动态性就是在某一时刻进入系统的输入对系统后继行为的影响,也就是系统的记 忆性,描述记忆性的函数称为记忆函数。
三、证明题
1. AR(1)模型: X t 1 X t1 at ,其中 at 是白噪声,且 E at2
37. ARMA(n,m) 的逆转形式 X t I j X t j at 。 j 1
38.
模型适应性检验的相关函数法,在显著性水平

0.05 下,若

k
1.96 /
N,
则接受 k 0 的假设,认为 at 是独立的。
39. 模型适应性检验的 2 检验法,在显著性水平 下,若统计量
G12
G22

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档