高考物理电磁感应现象习题试卷含答案

合集下载

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)

[必刷题]2024高三物理下册电磁场专项专题训练(含答案)试题部分一、选择题:A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动2. 下列关于电磁感应现象的描述,错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向与磁场方向有关C. 感应电流的大小与导体运动速度成正比D. 感应电流的大小与导体长度成正比A. 电势能减小B. 电势能增加C. 电势增加D. 电势减小A. 电容器充电时,电场能转化为磁场能B. 电容器放电时,电场能转化为磁场能C. 电感器中的电流增大时,磁场能转化为电场能D. 电感器中的电流减小时,磁场能转化为电场能A. 电磁波在真空中传播速度为3×10^8 m/sB. 电磁波的传播方向与电场方向垂直C. 电磁波的传播方向与磁场方向垂直D. 电磁波的波长与频率成正比A. 匀速直线运动B. 匀速圆周运动C. 匀加速直线运动D. 匀加速圆周运动A. 洛伦兹力的方向垂直于带电粒子的速度方向B. 洛伦兹力的大小与带电粒子的速度成正比C. 洛伦兹力的大小与磁感应强度成正比D. 洛伦兹力的方向与磁场方向垂直8. 一个闭合线圈在磁场中转动,下列关于感应电动势的说法,正确的是:A. 感应电动势的大小与线圈面积成正比B. 感应电动势的大小与磁场强度成正比C. 感应电动势的大小与线圈转速成正比D. 感应电动势的方向与磁场方向平行A. 变化的电场会产生磁场B. 变化的磁场会产生电场C. 静止的电荷会产生磁场D. 静止的磁场会产生电场A. 电场强度与磁场强度成正比B. 电场强度与磁场强度成反比C. 电场强度与电磁波频率成正比D. 电场强度与电磁波波长成正比二、判断题:1. 带电粒子在电场中一定受到电场力的作用。

()2. 电磁波在传播过程中,电场方向、磁场方向和传播方向三者相互垂直。

()3. 在LC振荡电路中,电容器充电完毕时,电场能最大,磁场能为零。

高考物理考点《电磁感应中的图像问题》真题练习含答案

高考物理考点《电磁感应中的图像问题》真题练习含答案

高考物理考点《电磁感应中的图像问题》真题练习含答案1.如图甲所示,线圈ab、cd绕在同一软铁芯上,若线圈ab中电流i与时间t的关系图线如图乙所示,则在这段时间内,下列关于线圈cd中产生的感应电流i cd与时间t的关系图线,正确的是()答案:D解析:由图乙可知,在t=0时刻,图线的斜率最大,即ab线圈中的电流变化最快,电流产生的磁场变化最快,cd线圈中的磁通量变化最快,所以此时在cd线圈中产生的感应电流最大;t=T4时,图线的斜率为零,即ab线圈中的电流变化为零,电流产生的磁场变化为零,cd线圈中的磁通量变化为零,所以此时在cd线圈中无感应电流;t=T4之后,感应电流改变方向;T2到T时间内c、d线圈产生的感应电流为零,由上述分析可知,D正确.2.(多选)如图甲所示,在垂直纸面向里的匀强磁场中,一个线圈与一个电容器相连,线圈平面与匀强磁场垂直,电容器的电容C=60 μF,穿过线圈的磁通量Φ随时间t的变化如图乙所示,下列说法不正确的是()A.电容器下极板电势高于上极板B .线圈中磁通量的变化率为3 Wb/sC .电容器两极板间电压为2.0 VD .电容器所带电荷量为120 C答案:ABD解析:根据楞次定律可以判断出感应电流方向为逆时针方向,所以电容器下极板电势低于上极板,A 错误;线圈中磁通量的变化率为ΔΦΔt =6-22Wb/s =2 Wb/s ,B 错误;根据法拉第电磁感应定律,有E =ΔΦΔt=2.0 V ,C 正确;电容器所带电荷量为Q =CU =60×10-6×2.0 C =1.2×10-4 C ,D 错误.3.[2024·黑龙江省哈尔滨市重点三校期末联考]如图所示,两个有界匀强磁场的磁感应强度大小均为B ,方向分别垂直纸面向里和向外,磁场宽度均为L .距磁场区域的左侧L 处,有一边长为L 的正方形导体线框,总电阻为R ,且线框平面与磁场方向垂直.现用水平外力F 使线框以速度v 匀速穿过磁场区域,以初始位置为计时起点.规定:电流沿逆时针方向时电动势E 为正,磁感线垂直纸面向里时磁通量Φ为正,水平外力F 向右为正.则下列关于线框中的感应电动势E 、所受外力F 、消耗的电功率P 和通过线框的磁通量Φ随时间变化的图像正确的是( )答案:B解析:进入磁场时磁通量随时间变化为ΔΦ=BL v t,完全进入左边磁场后再运动0.5L时磁通量减为零,再运动0.5L磁通量变为反向的BL2,因此中间图像斜率是两端的2倍,D错误;进入磁场时感应电动势E1=BL v,而运动到两磁场交接处时感应电动势E2=2BL v,A 错误;根据F=BIL运动到两个磁场交接处时,回路中的电动势为刚进入磁场时的2倍,电流为刚进入磁场时的2倍,并且在两个磁场交接处时,左右两边都受到向左的安培力,因此在中间时,安培力是在两端时的4倍,根据P=F v,则在中间安培力的功率也是两端的4倍,C错误,B正确.4.如图所示,宽度为d的两条平行虚线之间存在一垂直纸面向里的匀强磁场,一直径小于d的圆形导线环沿着水平方向匀速穿过磁场区域,规定逆时针方向为感应电流的正方向,由圆形导线环刚进入磁场开始计时,则关于导线环中的感应电流i随时间t的变化关系,下列图像中可能的是()答案:A解析:由楞次定律易知,圆形导线环进入磁场时,电流方向为逆时针,即正方向,圆形导线环全进入磁场时,电流为零,圆形导线环离开磁场时,电流方向为顺时针,即负方向,选项D错误;设经过时间t圆形导线环的位置如图所示,圆形导线环运动速度大小为v,半径为R,电阻为r,此时圆形导线切割磁场的有效长度为L=2R2-(R-v t)2,产生的感应电动势e=BL v,电流大小为i=er,联立三式变化可得i2(2B v Rr)2+(t-R v)2(R v)2=1.可见,圆形导线环匀速进入磁场时的i ­ t图像是椭圆的一部分,同样,圆形导线匀速离开磁场时的i ­ t图像也是椭圆的一部分,选项A正确,B、C错误.5.如图所示,等腰直角三角形区域内有垂直于纸面向里的匀强磁场,左边有一形状与磁场边界完全相同的闭合导线框,线框斜边长为l,线框从图示位置开始水平向右匀速穿过磁场区域,规定线框中感应电流逆时针方向为正方向,其感应电流i随位移x变化的图像正确的是()答案:B解析:闭合导线框穿过磁场的过程中,磁通量先增加后减小,根据楞次定律和安培定则,感应电流先逆时针后顺时针,即先正后负,A、D错误;导线框切割的有效长度是先增加后减小,由E=BL v,感应电动势的大小是先增加后减小,所以感应电流先增加后减小,B正确,C错误.6.(多选)如图所示,在竖直平面内有四条间距均为L的水平虚线L1、L2、L3、L4,在L1、L2之间和L3、L4之间存在磁感应强度大小相等且方向均垂直纸面向里的匀强磁场.现有一矩形金属线圈abcd,ad边长为3L.t=0时刻将其从图示位置(cd边与L1重合)由静止释放,cd边经过磁场边界线L3时开始做匀速直线运动,cd边经过磁场边界线L2、L3、L4时对应的时刻分别为t 1、t 2、t 3,整个运动过程线圈平面始终处于竖直平面内.在0~t 3时间内,线圈的速度v 、通过线圈横截面的电量q 、通过线圈的电流i 和线圈产生的热量Q 随时间t 变化的关系图像可能正确的是( )答案:BD解析:线圈cd 边在L 1、L 2之间的磁场切割磁感线,则有E =BL v ,I =E R,F 安=BIL ,解得F 安=B 2L 2v R ,根据牛顿第二定律a =mg -F 安m可知随着速度的增加,安培力也逐渐增大,加速度逐渐减小,根据题意,cd 边经过磁场边界线L 3时开始做匀速直线运动,说明从0时刻到t 1的过程,线圈做加速度减小的加速运动,从t 1到t 2的过程,线圈做加速度为g 的匀加速直线运动,从t 2到t 3的过程,线圈做匀速直线运动,根据v ­ t 图像的切线斜率表示加速度,A 错误;从0时刻到t 1的过程,线圈做加速度减小的加速运动,线圈中的电流逐渐增大,从t 1到t 2的过程,线圈做加速度为g 的匀加速直线运动,但此过程线圈没有切割磁感线,感应电流为零,从t 2到t 3的过程,线圈做匀速直线运动,线圈中的电流保持不变,根据q ­ t 图像的切线斜率表示电流,B 正确,C 错误;从0时刻到t 1的过程,线圈中的电流逐渐增大,从t 1到t 2的过程,线圈中的电流为零,从t 2到t 3的过程,线圈中的电流保持不变,根据Q =I 2Rt 可知Q ­ t 图像的切线斜率表示电流的平方,D 正确.7.如图所示的匀强磁场中有一根弯成45°的金属线POQ ,其所在平面与磁场垂直,长直导线MN与金属线紧密接触,起始时OA=l0,且MN⊥OQ,所有导线单位长度电阻均为r,MN水平向右匀速运动的速度为v,使MN匀速运动的外力为F,则外力F随时间变化的规律图像正确的是()答案:C8.[2024·山东省青岛市模拟]如图所示,MN和PQ是竖直放置的两根平行光滑金属导轨,导轨足够长且电阻不计,MP间接有一定值电阻R,电阻为r的金属杆cd保持与导轨垂直且接触良好.杆cd由静止开始下落并开始计时,杆cd两端的电压U、杆cd所受安培力的大小F随时间t变化的图像,合理的是()答案:A解析:设杆长为L,杆下落过程中速度增大,切割磁感线产生的感应电流增大,杆所受安培力的大小为F=BIL=B2L2v,根据牛顿第二定律有mg-F=ma,杆下落过程中先做加R+r速度减小的加速运动,当加速度为零时,速度保持不变,所以安培力随速度先增大,后不变,其大小为mg,B错误,A正确;导体杆两端的电压为U=IR=BLR v,速度先增大,后不R+r变,所以U先增大,后不变,且U增大的越来越慢,即图线的斜率减小,C、D错误.9.[2024·辽宁省十校联合体调研]如图所示,xOy平面的第一、三象限内充满垂直纸面向外的匀强磁场.边长为L 的正方形金属框始终在O 点的顶点环绕,在xOy 平面内以角速度ω顺时针匀速转动,t =0时刻,金属框开始进入第一象限,已知匀强磁场的磁感应强度为B ,金属框的总电阻为R ,规定顺时针方向为电流的正方向,不考虑自感影响,关于金属框中感应电流i 随时间t 变化的图像正确的是( )答案:A解析:如图所示,在t =0到t =π2ω的过程中,即金属框顺时针转过90°的过程中,金属框切割磁感线的有效切割长度先变大后变小,根据转动切割感应电动势的计算公式E =12Bω2l 可知E 先增大后减小,感应电流先增加后减小,根据楞次定律可知,电流方向为顺时针方向,即正方向;在t =0到t =π4ω的过程中,由圆周运动公式可知θ=ωt ,根据几何关系和三角形的面积公式可得S =L ·L tan θ2 ,则穿过线圈的磁通量为Φ=12BL 2tan ωt ,对上述的表达式由数学知识得ΔE Δt =BL 2ω2·tan ωt cos 2ωt ,由此可知,在t =0到t =π4ω的过程中,E 的变化率一直增大,感应电流的变化率一直增加;同理可得在t=π4ω到t=π2ω的过程中,E的变化率一直减小,感应电流的变化率一直减小,A正确,B、C、D错误.。

高考物理电磁感应现象习题试卷附答案解析

高考物理电磁感应现象习题试卷附答案解析

高考物理电磁感应现象习题试卷附答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,在倾角30o θ=的光滑斜面上,存在着两个磁感应强度大小相等、方向分别垂直斜面向上和垂直斜面向下的匀强磁场,两磁场宽度均为L 。

一质量为m 、边长为L 的正方形线框距磁场上边界L 处由静止沿斜面下滑,ab 边刚进入上侧磁场时,线框恰好做匀速直线运动。

ab 边进入下侧磁场运动一段时间后也做匀速度直线运动。

重力加速度为g 。

求:(1)线框ab 边刚越过两磁场的分界线ff′时受到的安培力; (2)线框穿过上侧磁场的过程中产生的热量Q 和所用的时间t 。

【答案】(1)安培力大小2mg ,方向沿斜面向上(2)4732mgL Q = 72Lt g= 【解析】 【详解】(1)线框开始时沿斜面做匀加速运动,根据机械能守恒有21sin 302mgL mv ︒=, 则线框进入磁场时的速度2sin30v g L gL =︒线框ab 边进入磁场时产生的电动势E =BLv 线框中电流E I R=ab 边受到的安培力22B L vF BIL R== 线框匀速进入磁场,则有22sin 30B L vmg R︒= ab 边刚越过ff '时,cd 也同时越过了ee ',则线框上产生的电动势E '=2BLv线框所受的安培力变为22422B L vF BI L mg R==''=方向沿斜面向上(2)设线框再次做匀速运动时速度为v ',则224sin 30B L v mg R︒='解得4v v ='=根据能量守恒定律有2211sin 30222mg L mv mv Q ︒'⨯+=+解得4732mgLQ =线框ab 边在上侧磁扬中运动的过程所用的时间1L t v=设线框ab 通过ff '后开始做匀速时到gg '的距离为0x ,由动量定理可知:22sin302mg t BLIt mv mv ︒-='-其中()022BL L x I t R-=联立以上两式解得()02432L x v t vg-=-线框ab 在下侧磁场匀速运动的过程中,有0034x x t v v='=所以线框穿过上侧磁场所用的总时间为123t t t t =++=2.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。

高三物理电磁感应试题答案及解析

高三物理电磁感应试题答案及解析

高三物理电磁感应试题答案及解析1.电磁感应现象在生活及生产中的应用非常普遍,下列不属于电磁感应现象及其应用的是【答案】 C【解析】试题分析: 发电机是利用线圈在磁场中做切割磁感线运动从而产生电流---电磁感应现象来工作的,所以A属于电磁感应现象及其应用;动圈式话筒是利用说话时空气柱的振动引起绕在磁铁上的线圈做切割磁感线运动,从而产生随声音变化的电流,利用了电磁感应现象,所以B属于电磁感应现象及其应用;电动机是利用通电线圈在磁场中受力转动的原理来工作的,所以C不属于电磁感应现象及其应用;变压器是利用电磁感应现象的原理来改变交流电压的,所以D属于电磁感应现象及其应用,故选C。

【考点】电磁感应2.在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L,如图所示。

一个质量为m、电阻为R、边长也为L的正方形线框在t=0时刻以速度v0进入磁场,恰好做匀速直线运动,若经过时间t,线框ab边到达gg′与ff′中间位置时,线框又恰好做匀速运动,则下列说法正确的是()A.当ab边刚越过ff′时,线框加速度的大小为gsinθB.t时刻线框匀速运动的速度为C.t时间内线框中产生的焦耳热为D.离开磁场的过程中线框将做匀速直线运动【答案】BC【解析】当ab边进入磁场时,有E=Blv0,I=E/R,mgsinθ=BIl,有B2l2v/R=mgsinθ.当ab边刚越过f′时,线框的感应电动势和电流均加倍,则线框做减速运动,有4B2I2v/R=4mgsinθ,加速向上为3gsinθ,A错误;t0时刻线框匀速运动的速度为v,则有4B2I2v/R=mgsinθ,解得v=v/4,B正确;线框从进入磁场到再次做匀速运动过程,沿斜面向下运动距离为3l/2,则由功能关系得线框中产生的焦耳热为Q=3mglsinθ/2+(mv02/2-mv2/2)=3mgls inθ/2+15mv2/32,C正确;线框离开磁场时做加速运动,D错误。

高中物理电磁感应测试题及参考答案

高中物理电磁感应测试题及参考答案

高中物理电磁感应测试题及参考答案一、单项选择题:(每题3分,共计18分)1、下列说法中正确的有:()A、只要闭合电路内有磁通量,闭合电路中就有感应电流产生B、穿过螺线管的磁通量发生变化时,螺线管内部就一定有感应电流产生C、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流和感应电动势D、线框不闭合时,若穿过线圈的磁通量发生变化,线圈中没有感应电流,但有感应电动势2、根据楞次定律可知感应电流的磁场一定是:()A、阻碍引起感应电流的磁通量;B、与引起感应电流的磁场反向;C、阻碍引起感应电流的磁通量的变化;D、与引起感应电流的磁场方向相同。

3、穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势每秒减少2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势始终为2V4、在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,规定线圈中感应电流的正方向如图1所示,当磁场的磁感应强度B随时间如图2变化时,图3中正确表示线圈中感应电动势E变化的是()A. B. C. D.5、如图所示,竖直放置的螺线管与导线abcd构成回路,导线所在区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平桌面上有一导体圆环,导线abcd所围区域内磁场的磁感强度按下列哪一图线所表示的方式随时间变化时,导体圆环将受到向上的磁场作用力()6.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行,现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移动过程中线框的一边a、b两点间电势差绝对值最大的是()二、多项选择题:(每题4分,共计16分)7、如图所示,导线AB可在平行导轨MN上滑动,接触良好,轨道电阻不计电流计中有如图所示方向感应电流通过时,AB的运动情况是:()A、向右加速运动;B、向右减速运动;C、向右匀速运动;D、向左减速运动。

2023年新高考I卷物理电磁感应题及答案

2023年新高考I卷物理电磁感应题及答案

2023年新高考I卷物理电磁感应题及答案一、选择题1. 下面哪个选择最符合电磁感应定律?A. 法拉第定律B. 压强定律C. 康普顿散射定律D. 狄拉克定理2. 一个长直导线通电,当导线距离一个方向固定的磁铁越来越近时,导线中感应电流的方向会如何变化?A. 保持不变B. 从正方向向负方向变化C. 从负方向向正方向变化D. 随机变化3. 在一个恒定磁场中,一个导线框图如下所示:\[\begin{array}{cccc}\hline1 &2 &3 &4 \\\hline5 &6 &7 &8 \\\hline\end{array}\]当磁场方向向右,导线1和导线2的感应电流方向分别为:A. 1从上到下,2从左到右B. 1从左到右,2从上到下C. 1从下到上,2从左到右D. 1从上到下,2从右到左4. 一个长直导线产生的磁场方向向外,我们可以推断电流有:A. 顺时针方向B. 逆时针方向C. 零电流D. 不确定二、计算题1. 一个半径为5cm的扇形线圈,旋转至匀强磁场中,磁场的大小为0.5T,旋转角度为60°,扇形线圈的匝数为1000,求产生的感应电动势。

2. 一个闭合线圈的自感系数为1H,通过线圈的电流发生改变,若在0.5秒内电流由0.5A增加到1A,求此过程中产生的感应电动势大小。

三、简答题1. 电磁感应现象的基本原理是什么?请简要解释。

2. 电磁感应定律的表达式是什么?请说明其中各个符号的含义。

四、解答题请根据提供的实验数据,回答下列问题。

实验数据:- 引线1:导线材质为铜,长度为20cm,电阻为10Ω。

- 引线2:导线材质为铁,长度为15cm,电阻为5Ω。

- 磁铁:与导线平行,磁场强度为0.2T。

1. 引线1和引线2的端点A夹角为90°,引线1的位置固定不动,求当磁铁与引线2距离为5cm时,通过引线2的感应电流大小。

2. 实验中引线2存在一段长度的焊缝,将导电性较差的金属连接在一起,这会对实验结果产生什么影响?为什么?答案:选择题1. A2. C3. B4. A计算题1. 0.5T × 0.05m × 1000 × sin60° = 21.65V2. ΔI/Δt = (1A - 0.5A) / 0.5s = 1A/s,V = L × (ΔI/Δt) = 1H × 1A/s = 1V简答题1. 电磁感应现象的基本原理是磁场变化导致感应电流发生。

高中物理电磁感应练习题及答案

高中物理电磁感应练习题及答案

高中物理电磁感应练习题及答案一、选择题1、在电磁感应现象中,下列说法正确的是:A.感应电流的磁场总是阻碍原磁通量的变化B.感应电流的磁场方向总是与原磁场的方向相反C.感应电流的磁场方向总是与原磁场的方向相同D.感应电流的磁场方向与原磁场方向无关答案:A.感应电流的磁场总是阻碍原磁通量的变化。

2、一导体在匀强磁场中匀速切割磁感线运动,产生感应电流。

下列哪个选项中的物理量与感应电流大小无关?A.磁感应强度B.导体切割磁感线的速度C.导体切割磁感线的长度D.导体切割磁感线的角度答案:D.导体切割磁感线的角度。

二、填空题3、在电磁感应现象中,当磁通量增大时,感应电流的磁场方向与原磁场方向_ _ _ _ ;当磁通量减小时,感应电流的磁场方向与原磁场方向 _ _ _ _。

答案:相反;相同。

31、一根导体在匀强磁场中以速度v运动,切割磁感线,产生感应电动势。

如果只增大速度v,其他条件不变,则产生的感应电动势将_ _ _ _ ;如果保持速度v不变,只减小磁感应强度B,其他条件不变,则产生的感应电动势将 _ _ _ _。

答案:增大;减小。

三、解答题5、在电磁感应现象中,有一闭合电路,置于匀强磁场中,接上电源后有电流通过,现将回路断开,换用另一电源重新接上,欲使产生的感应电动势增大一倍,应采取的措施是()A.将回路绕原路转过90°B.使回路长度变为原来的2倍C.使原电源的电动势增大一倍D.使原电源的电动势和回路长度都增大一倍。

答案:A.将回路绕原路转过90°。

法拉第电磁感应定律是电磁学中的重要规律之一,它描述了变化的磁场产生电场,或者变化的电场产生磁场的现象。

这个定律是法拉第在1831年发现的,它为我们打开了一个全新的领域——电磁学,也为我们的科技发展提供了强大的理论支持。

在高中物理中,法拉第电磁感应定律主要通过实验和理论推导来展示,让学生们能够更直观地理解这个重要的规律。

高中的学生们已经对电场和磁场的基本概念有了一定的了解,他们已经掌握了电场线和磁场线的概念,以及安培定则等基本知识。

高考物理电磁感应现象习题试卷及答案解析

高考物理电磁感应现象习题试卷及答案解析

高考物理电磁感应现象习题试卷及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。

现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小(2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =- 【解析】【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22m B L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理电磁感应现象习题试卷含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,质量为4m 的物块与边长为L 、质量为m 、阻值为R 的正方形金属线圈abcd 由绕过轻质光滑定滑轮的绝缘细线相连,已知细线与斜面平行,物块放在光滑且足够长的固定斜面上,斜面倾角为300。

垂直纸面向里的匀强磁场的磁感应强度为B ,磁场上下边缘的高度为L ,上边界距离滑轮足够远,线圈ab 边距离磁场下边界的距离也为L 。

现将物块由静止释放,已知线圈cd 边出磁场前线圈已经做匀速直线运动,不计空气阻力,重力加速度为g ,求:(1)线圈刚进入磁场时ab 两点的电势差大小 (2)线圈通过磁场的过程中产生的热量【答案】(1)3245ab U BL gL =;(2)32244532m g R Q mgL B L =-【解析】 【详解】(1)从开始运动到ab 边刚进入磁场,根据机械能守恒定律可得214sin 30(4)2mgL mgL m m v =++,25v gL =应电动势E BLv =,此时ab 边相当于是电源,感应电流的方向为badcb ,a 为正极,b 为负极,所以ab 的电势差等于电路的路端电压,可得332445ab U E BL gL == (2)线圈cd 边出磁场前线圈已经做匀速直线运动,所以线圈和物块均合外力为0,可得绳子的拉力为2mg ,线圈受的安培力为mg ,所以线圈匀速的速度满足22mB L v mg R=,从ab 边刚进入磁场到cd 边刚离开磁场,根据能量守恒定律可知2143sin 3(4)2m mg L mgL m m v Q θ=+++,32244532m g R Q mgL B L=-2.某兴趣小组设计制作了一种磁悬浮列车模型,原理如图所示,PQ 和MN 是固定在水平地面上的两根足够长的平直导轨,导轨间分布着竖直(垂直纸面)方向等间距的匀强磁场1B 和2B ,二者方向相反.矩形金属框固定在实验车底部(车厢与金属框绝缘).其中ad边宽度与磁场间隔相等,当磁场1B 和2B 同时以速度0m 10s v =沿导轨向右匀速运动时,金属框受到磁场力,并带动实验车沿导轨运动.已知金属框垂直导轨的ab 边长0.1m L =m 、总电阻0.8R =Ω,列车与线框的总质量0.4kg m =,12 2.0T B B ==T ,悬浮状态下,实验车运动时受到恒定的阻力1h N .(1)求实验车所能达到的最大速率;(2)实验车达到的最大速率后,某时刻让磁场立即停止运动,实验车运动20s 之后也停止运动,求实验车在这20s 内的通过的距离;(3)假设两磁场由静止开始向右做匀加速运动,当时间为24s t =时,发现实验车正在向右做匀加速直线运动,此时实验车的速度为m 2s v =,求由两磁场开始运动到实验车开始运动所需要的时间.【答案】(1)m 8s ;(2)120m ;(3)2s 【解析】 【分析】 【详解】(1)实验车最大速率为m v 时相对磁场的切割速率为0m v v -,则此时线框所受的磁场力大小为2204-B L v v F R=()此时线框所受的磁场力与阻力平衡,得:F f = 2m 028m/s 4fRv v B L =-= (2)磁场停止运动后,线圈中的电动势:2E BLv = 线圈中的电流:EI R=实验车所受的安培力:2F BIL =根据动量定理,实验车停止运动的过程:m F t ft mv ∑∆+=整理得:224m B L vt ft mv R∑∆+=而v t x ∑∆=解得:120m x =(3)根据题意分析可得,为实现实验车最终沿水平方向做匀加速直线运动,其加速度必须与两磁场由静止开始做匀加速直线运动的加速度相同,设加速度为a ,则t 时刻金属线圈中的电动势 2)E BLat v =-( 金属框中感应电流 2)BL at v I R-=( 又因为安培力224)2B L at v F BIL R(-==所以对试验车,由牛顿第二定律得 224)B L at v f ma R(--=得 21.0m/s a =设从磁场运动到实验车起动需要时间为0t ,则0t 时刻金属线圈中的电动势002E BLat =金属框中感应电流002BLat I R=又因为安培力2200042B L at F BI L R==对实验车,由牛顿第二定律得:0F f =即2204B L at f R= 得:02s t =3.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成=30θ︒角固定,N 、Q 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B =0.5T ,质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻位为r 。

现从静止释放杆ab ,测得最大速度为v M ,改变电阻箱的阻值R ,得到v M 与R 之间的关系如图乙所示。

已知导轨间距为L =2m ,重力加速度g =10m/s 2,轨道足够长且电阻不计。

求: (1)当R =0时,杆ab 匀速下滑过程中产生感应电动势E 的大小及杆中的电流方向; (2)金属杆的质量m 及阻值r ;(3)当R =4Ω时,回路瞬时电功率每增加1W 的过程中合外力对杆做的功W 。

【答案】(1)3V E =,杆中电流方向从b →a ;(2)0.2kg m =,3r =Ω;(3)0.7J W =【解析】 【分析】 【详解】(1)由图可知,当R =0时,杆最终以v =3m/s 匀速运动,产生电动势E =BLv =0.5×2×3V=3V电流方向为由b 到a(2)设最大速度为v ,杆切割磁感线产生的感应电动势E =BLv ,由闭合电路的欧姆定律:EI R r=+ 杆达到最大速度时满足sin 0mg BIL θ-=解得22()sin mg R r v B L θ+=由图像可知:斜率为62m /(s Ω)1m /(Ω)3s k -=⋅=⋅ 纵截距为v 0=3m/s得到:022sin mgr v B Lθ= 22sin mg k B L θ= 解得m =0.2kg ,r =3Ω(3)由题意:E =B Lv ,2E P R r=+,得222P L v P R r=+ 则22222221P L v P L v P R r R r∆=-++ 由动能定理得22211122W mv mv =- 联立解得22()2m R r W P B L +=∆W =0.7J 【点睛】4.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M ,通过高强度绳子套在半径1r 的承重转盘上,且绳子与转盘之间不打滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r 和3r 的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R .制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B ),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放置质量为m 的货物一起以速度v 竖直上升,电梯箱离终点(图中未画出)高度为h 时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E 为多少?此时a 与b 之间的电势差有多大?(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?(3)若要提高制动的效果,试对上述设计做出二处改进.【答案】(1)22321()2Bv r r E r -=,22321()6Bv r r U r -= (2)21()2Q M m v mgh =+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r 3或减小内金属圈的半径r 2 【解析】 【分析】 【详解】(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度1v r ω=所以,制动转盘的角速度1vr ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势22321()2Bv r r B S E t t r -∆Φ⋅∆===∆∆所以干路中的电流223E EI R R R R R==++ 那么此时a 与b 之间的电势差即为路端电压22321()6Bv r r U E IR r -=-=(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得21(2)()2m M v m M gh Mgh Q +=+-+ 解得:21()2Q M m v mgh =+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率222223221()362B v r r E P Rr R-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.5.如图,两足够长的平行金属导轨平面与水平面间夹角为=30θ︒,导轨电阻忽略不计,二者相距l =1m ,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m =0.1kg 的光滑导体棒ab ,并通过细线、光滑滑轮与一质量为2m 、边长为2l正方形线框相连,金属框下方h =1.0m 处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R 上产生的热量为1Q =0.318J ,且金属框刚好能匀速通过有界磁场。

已知两磁场区域的磁感应强度大小相等。

定值电阻R =1Ω。

导体棒ab 和金属框单位长度电阻r =1Ω/m ,g =10m/s 2,求(1)两磁场区域的磁感应强度为多大?(2)金属框刚离开磁场时,系统损失的机械能是多大? (3)金属框下方没有磁场时,棒的最大速度是多少?【答案】(1)1T(2)2.136J(3)3m/s 【解析】 【详解】(1)由题意知,导体棒ab 接入电路的电阻为11ΩR rl ==与定值电阻R 相等,故金属框由静止释放到刚进入磁场过程重金属导轨回路产生的总热量为120.636J Q Q ==此过程由动能定理得212sin 30(2)2mgh mgh Q m m v ︒--=+ 解得v =2.4m/s金属框的总电阻为2142Ω2R l r =⨯⨯= 金属框在磁场中做匀速运动时导体棒ab 产生的电动势为1E Blv =,则有111E I R R =+ 金属框产生的电动势212E Blv =222E I R =金属框在磁场中做匀速运动时由平衡条件得1212sin 3002mg mg BI l BI l ︒---= 得B =1T(2)由于金属框刚好能做匀速通过有界磁场,说明磁场宽度与线框边长相等0.52ld m == 根据能量守恒得212(2)(2)sin 30(2)2mg h d mg h d E m m v ︒+-+=∆++得2.136J E ∆=(3)金属框下没有磁场,棒的速度达到最大后做匀速运动,设此时速度为m v ,则m1Blv I R R=+ 根据平衡条件得2sin300mg mg BIl ︒--=解得m 3m/s v =。

相关文档
最新文档