电磁感应现象压轴题综合题附答案
电磁感应现象压轴题综合题含答案解析

电磁感应现象压轴题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,竖直放置、半径为R 的圆弧导轨与水平导轨ab 、在处平滑连接,且轨道间距为2L ,cd 、足够长并与ab 、以导棒连接,导轨间距为L ,b 、c 、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B 的匀强磁场,均匀的金属棒pq 和gh 垂直导轨放置且与导轨接触良好。
gh 静止在cd 、导轨上,pq 从圆弧导轨的顶端由静止释放,进入磁场后与gh 没有接触。
当pq 运动到时,回路中恰好没有电流,已知pq 的质量为2m ,长度为2L ,电阻为2r ,gh 的质量为m ,长度为L ,电阻为r ,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g ,求:(1)金属棒pq 到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq 运动到时,金属棒gh 的速度大小;(3)金属棒gh 产生的最大热量。
法拉第电磁感应定律压轴题综合题附答案

法拉第电磁感应定律压轴题综合题附答案一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,两根间距L=1.0m、电阻不计的足够长平行金属导轨ab、cd水平放置,一端与阻值R=2.0Ω的电阻相连.质量m=0.2kg的导体棒ef在恒定外力F作用下由静止开始运动,已知导体棒与两根导轨间的最大静摩擦力和滑动摩擦力均为f=1.0N,导体棒电阻为r=1.0Ω,整个装置处于垂直于导轨平面向上的匀强磁场B中,导体棒运动过程中加速度a 与速度v的关系如图乙所示(取g=10m/s2).求:(1)当导体棒速度为v时,棒所受安培力F安的大小(用题中字母表示).(2)磁场的磁感应强度B.(3)若ef棒由静止开始运动距离为S=6.9m时,速度已达v′=3m/s.求此过程中产生的焦耳热Q.【答案】(1);(2);(3)【解析】【详解】(1)当导体棒速度为v时,导体棒上的电动势为E,电路中的电流为I.由法拉第电磁感应定律由欧姆定律导体棒所受安培力联合解得:(2)由图可以知道:导体棒开始运动时加速度 ,初速度 ,导体棒中无电流.由牛顿第二定律知计算得出:由图可以知道:当导体棒的加速度a=0时,开始以做匀速运动此时有:解得:(3)设ef棒此过程中,产生的热量为Q,由功能关系知 :带入数据计算得出故本题答案是:(1);(2);(3)【点睛】利用导体棒切割磁感线产生电动势,在结合闭合电路欧姆定律可求出回路中的电流,即可求出安培力的大小,在求热量时要利用功能关系求解。
2.如图所示,两条平行的金属导轨相距L =lm ,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中.金属棒MN 和PQ 的质量均为m =0.2kg ,电阻分别为R MN =1Ω和R PQ =2Ω.MN 置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ 置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好.从t =0时刻起,MN 棒在水平外力F 1的作用下由静止开始以a =1m /s 2的加速度向右做匀加速直线运动,PQ 则在平行于斜面方向的力F 2作用下保持静止状态.t =3s 时,PQ 棒消耗的电功率为8W ,不计导轨的电阻,水平导轨足够长,MN 始终在水平导轨上运动.求: (1)磁感应强度B 的大小;(2)t =0~3s 时间内通过MN 棒的电荷量; (3)求t =6s 时F 2的大小和方向;(4)若改变F 1的作用规律,使MN 棒的运动速度v 与位移s 满足关系:v =0.4s ,PQ 棒仍然静止在倾斜轨道上.求MN 棒从静止开始到s =5m 的过程中,系统产生的焦耳热.【答案】(1)B = 2T ;(2)q = 3C ;(3)F 2=-5.2N (负号说明力的方向沿斜面向下)(4)203Q J【解析】 【分析】t =3s 时,PQ 棒消耗的电功率为8W ,由功率公式P =I 2R 可求出电路中电流,由闭合电路欧姆定律求出感应电动势.已知MN 棒做匀加速直线运动,由速度时间公式求出t =3s 时的速度,即可由公式E =BLv 求出磁感应强度B ;根据速度公式v =at 、感应电动势公式E =BLv 、闭合电路欧姆定律和安培力公式F =BIL 结合,可求出PQ 棒所受的安培力大小,再由平衡条件求解F 2的大小和方向;改变F 1的作用规律时,MN 棒做变加速直线运动,因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比,可根据安培力的平均值求出安培力做功,系统产生的热量等于克服安培力,即可得解. 【详解】(1)当t =3s 时,设MN 的速度为v 1,则v 1=at =3m/s 感应电动势为:E 1=BL v 1 根据欧姆定律有:E 1=I (R MN + R PQ )根据P =I 2 R PQ 代入数据解得:B =2T(2)当t =6 s 时,设MN 的速度为v 2,则 速度为:v 2=at =6 m/s 感应电动势为:E 2=BLv 2=12 V 根据闭合电路欧姆定律:224MN PQE I A R R ==+安培力为:F 安=BI 2L =8 N规定沿斜面向上为正方向,对PQ 进行受力分析可得: F 2+F 安cos 37°=mg sin 37°代入数据得:F 2=-5.2 N(负号说明力的方向沿斜面向下)(3)MN 棒做变加速直线运动,当x =5 m 时,v =0.4x =0.4×5 m/s =2 m/s 因为速度v 与位移x 成正比,所以电流I 、安培力也与位移x 成正比, 安培力做功:12023MN PQ BLv W BL x J R R =-⋅⋅=-+安 【点睛】本题是双杆类型,分别研究它们的情况是解答的基础,运用力学和电路.关键要抓住安培力与位移是线性关系,安培力的平均值等于初末时刻的平均值,从而可求出安培力做功.3.如图甲所示,光滑且足够长的平行金属导轨MN 和PQ 固定在同一水平面上,两导轨间距L=0.2m ,电阻R=0.4Ω,导轨上停放一质量m=0.1kg 、电阻r=0.1Ω的金属杆,导轨电阻忽略不计,整个装置处在磁感应强度B=0.5T 的匀强磁场中,磁场的方向竖直向下,现用一外力F 沿水平方向拉杆,使之由静止开始运动,若理想电压表示数U 随时间t 变化关系如图乙所示。
高考物理电磁感应现象压轴难题培优题及答案解析

高考物理电磁感应现象压轴难题培优题及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
(3)AB 边产生的焦耳热。
【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图所示,一阻值为R 、边长为l 的匀质正方形导体线框abcd 位于竖直平面内,下方存在一系列高度均为l 的匀强磁场区,与线框平面垂直,各磁场区的上下边界及线框cd 边均磁场方向均与线框平面垂水平。
第1磁场区的磁感应强度大小为B 1,线框的cd 边到第1磁区上场区上边界的距离为h 0。
线框从静止开始下落,在通过每个磁场区时均做匀速运动,且通过每个磁场区的速度均为通过其上一个磁场区速度的2倍。
重力加速度大小为g ,不计空气阻力。
求: (1)线框的质量m ;(2)第n 和第n +1个磁场区磁感应强度的大小B n 与B n+1所满足的关系;(3)从线框开始下落至cd 边到达第n 个磁场区上边界的过程中,cd 边下落的高度H 及线框产生的总热量Q 。
【答案】22112B l gh gR ;(2)+12n n B B =;23112(1)2n B l gh - 【解析】 【分析】 【详解】(1)设线框刚进第一个磁场区的速度大小为v 1,由运动学公式得2112v gh =,设线框所受安培力大小为F 1,线框产生的电动势为E 1,电流为I ,由平衡条件得1F mg =由安培力的表达式得11F B Il =,111=E Blv ,1E I R=联立解得 22112B l m gh gR=(2)设线框在第n 和第n +1个磁场区速度大小分别为v n 、v n +1,由平衡条件得22n nB l v mg R=22+1+1n n B l v mg R=且12n n v v +=联立解得12n n B B +=(3)设cd 边加速下落的总距离为h ,匀速下落的总距离为L ,由运动学公式得22nv h g=112n n v v -==2(1)L n l -联立解得2(1)122(1)n H h L h n l -=+=+-由能量守恒定律得2(1)Q mg n l =-联立解得23112(1)2n B l gh Q R-=3.如图所示,光滑导线框abfede 的abfe 部分水平,efcd 部分与水平面成α角,ae 与ed 、bf 与cf 连接处为小圆弧,匀强磁场仅分布于efcd 所在平面,方向垂直于efcd 平面,线框边ab 、cd 长均为L ,电阻均为2R ,线框其余部分电阻不计。
高考物理电磁感应现象压轴题专项复习及答案解析

高考物理电磁感应现象压轴题专项复习及答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。
(2)线圈中的电流大小。
(3)AB 边产生的焦耳热。
【答案】(1)22FR v B L =;(2)F I BL=;(3)4FL Q =【解析】 【分析】 【详解】(1)线圈向右匀速进入匀强磁场,则有F F BIL ==安又电路中的电动势为E BLv =所以线圈中电流大小为==E BLvI R R 联立解得22FRv B L =(2)根据有F F BIL ==安得线圈中的电流大小F I BL=(3)AB 边产生的焦耳热22()4AB F R L Q I R t BL v==⨯⨯ 将22FRv B L =代入得 4FL Q =2.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。
已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。
将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。
导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。
高考物理电磁感应现象压轴题专项复习及答案

高考物理电磁感应现象压轴题专项复习及答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。
导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。
空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。
质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。
【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。
由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EIR r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+ 计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin 372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.3.如图()a ,平行长直导轨MN 、PQ 水平放置,两导轨间距0.5L m =,导轨左端MP 间接有一阻值为0.2R =Ω的定值电阻,导体棒ab 质量0.1m kg =,与导轨间的动摩擦因数0.1μ=,导体棒垂直于导轨放在距离左端 1.0d m =处,导轨和导体棒电阻均忽略不计.整个装置处在范围足够大的匀强磁场中,0t =时刻,磁场方向竖直向下,此后,磁感应强度B 随时间t 的变化如图()b 所示,不计感应电流磁场的影响.当3t s =时,突然使ab 棒获得向右的速度08/v m s =,同时在棒上施加一方向水平、大小可变化的外力F ,保持ab 棒具有大小为恒为24/a m s =、方向向左的加速度,取210/g m s =.()1求0t =时棒所受到的安培力0F ;()2分析前3s 时间内导体棒的运动情况并求前3s 内棒所受的摩擦力f 随时间t 变化的关系式;()3从0t =时刻开始,当通过电阻R 的电量 2.25q C =时,ab 棒正在向右运动,此时撤去外力F ,此后ab 棒又运动了2 6.05s m =后静止.求撤去外力F 后电阻R 上产生的热量Q .【答案】(1)0 0.025F N =,方向水平向右(2) ()0.01252?f t N =-(3) 0.195J【解析】 【详解】 解:()1由图b 知:0.20.1T /s 2B t == 0t =时棒的速度为零,故回路中只有感生感应势为:0.05V B E Ld t tΦ===感应电流为:0.25A EI R==可得0t =时棒所受到的安培力:000.025N F B IL ==,方向水平向右;()2ab 棒与轨道间的最大摩擦力为:00.10.025N m f mg N F μ==>=故前3s 内导体棒静止不动,由平衡条件得: f BIL = 由图知在03s -内,磁感应强度为:00.20.1B B kt t =-=- 联立解得: ()0.01252(3s)f t N t =-<;()3前3s 内通过电阻R 的电量为:10.253C 0.75C q I t =⨯=⨯=设3s 后到撤去外力F 时又运动了1s ,则有:11BLs q q I t R RΦ-=== 解得:16m s =此时ab 棒的速度设为1v ,则有:221012v v as -=解得:14m /s v =此后到停止,由能量守恒定律得: 可得:21210.195J 2Q mv mgs μ=-=4.如图,光滑金属轨道POQ 、´´´P O Q 互相平行,间距为L ,其中´´O Q 和OQ 位于同一水平面内,PO 和´´P O 构成的平面与水平面成30°。
电磁感应现象压轴题知识点及练习题含答案

电磁感应现象压轴题知识点及练习题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根粗细均匀的金属棒M N 、,用两根等长的、不可伸长的柔软导线将它们连接成闭合回路,并悬挂在光滑绝缘的水平直杆上,并使两金属棒水平。
在M 棒的下方有高为H 、宽度略小于导线间距的有界匀强磁场,磁感应强度为B ,磁场方向垂直纸面向里,此时M 棒在磁场外距上边界高h 处(h <H ,且h 、H 均为未知量),N 棒在磁场内紧贴下边界。
已知:棒M 、N 质量分别为3m 、m ,棒在磁场中的长度均为L ,电阻均为R 。
将M 棒从静止释放后,在它将要进入磁场上边界时,加速度刚好为零;继续运动,在N 棒未离开磁场上边界前已达匀速。
导线质量和电阻均不计,重力加速度为g : (1)求M 棒将要进入磁场上边界时回路的电功率;(2)若已知M 棒从静止释放到将要进入磁场的过程中,经历的时间为t ,求该过程中M 棒上产生的焦耳热Q ;(3)在图2坐标系内,已定性画出从静止释放M 棒,到其离开磁场的过程中“v -t 图像”的部分图线,请你补画出M 棒“从匀速运动结束,到其离开磁场”的图线,并写出两纵坐标a 、b 的值。
【答案】(1)22228Rm g B L ;(2)222222412⎛⎫- ⎪⎝⎭Rm g mR t B L B L ;(3),图见解析,224mgR a B L =,22mgRb B L =【解析】 【分析】 【详解】(1)由牛顿第二定律得3mg mg BIL -=M 棒将要进入磁场上边界时回路的电功率2222282Rm g P I R B L== (2)N 棒产生的感应电动势2E IR BLv ==由动量守恒得(3)4mg mg t BLIt mv --=通过N 棒的电荷量2BLhIt q R==根据能量守恒得21(3)422mg mg h mv Q -=⨯+联立得222222412Rm g mR Q t B L B L ⎛⎫=- ⎪⎝⎭(或223222244448Rm g m g R Q t B L B L=-) (3)对M 棒受力分析2232B L vmg mg R-=解得224mgRa B L = 由2'322BLv mg mg BLR-= 解得22mgRb B L =2.如图所示,CDE 和MNP 为两根足够长且弯折的平行金属导轨,CD 、MN 部分与水平面平行,DE 和NP 与水平面成30°,间距L =1m ,CDNM 面上有垂直导轨平面向下的匀强磁场,磁感应强度大小B 1=1T ,DEPN 面上有垂直于导轨平面向上的匀强磁场,磁感应强度大小B 2=2T 。
高考物理电磁感应现象压轴题综合题含答案

高考物理电磁感应现象压轴题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图甲所示,相距d 的两根足够长的金属制成的导轨,水平部分左端ef 间连接一阻值为2R 的定值电阻,并用电压传感器实际监测两端电压,倾斜部分与水平面夹角为37°.长度也为d 、质量为m 的金属棒ab 电阻为R ,通过固定在棒两端的金属轻滑环套在导轨上,滑环与导轨上MG 、NH 段动摩擦因数μ=18(其余部分摩擦不计).MN 、PQ 、GH 相距为L ,MN 、PQ 间有垂直轨道平面向下、磁感应强度为B 1的匀强磁场,PQ 、GH 间有平行于斜面但大小、方向未知的匀强磁场B 2,其他区域无磁场,除金属棒及定值电阻,其余电阻均不计,sin 37°=0.6,cos 37°=0.8,当ab 棒从MN 上方一定距离由静止释放通过MN 、PQ 区域(运动过程中ab 棒始终保持水平),电压传感器监测到U -t 关系如图乙所示.(1)求ab 棒刚进入磁场B 1时的速度大小. (2)求定值电阻上产生的热量Q 1.(3)多次操作发现,当ab 棒从MN 以某一特定速度进入MNQP 区域的同时,另一质量为2m ,电阻为2R 的金属棒cd 只要以等大的速度从PQ 进入PQHG 区域,两棒均可同时匀速通过各自场区,试求B 2的大小和方向.【答案】(1)11.5U B d (2)2221934-mU mgL B d;(3)32B 1 方向沿导轨平面向上 【解析】 【详解】(1)根据ab 棒刚进入磁场B 1时电压传感器的示数为U ,再由闭合电路欧姆定律可得此时的感应电动势:1 1.52UE U R U R=+⋅= 根据导体切割磁感线产生的感应电动势计算公式可得:111E B dv =计算得出:111.5Uv B d=. (2)设金属棒ab 离开PQ 时的速度为v 2,根据图乙可以知道定值电阻两端电压为2U ,根据闭合电路的欧姆定律可得:12222B dv R U R R⋅=+计算得出:213Uv B d=;棒ab 从MN 到PQ ,根据动能定理可得: 222111sin 37cos3722mg L mg L W mv mv μ︒︒⨯-⨯-=-安 根据功能关系可得产生的总的焦耳热 :=Q W 总安根据焦耳定律可得定值电阻产生的焦耳热为:122RQ Q R R=+总 联立以上各式得出:212211934mU Q mgL B d=-(3)两棒以相同的初速度进入场区匀速经过相同的位移,对ab 棒根据共点力的平衡可得:221sin 37cos3702B d vmg mg Rμ︒︒--=计算得出:221mgRv B d =对cd 棒分析因为:2sin372cos370mg mg μ︒︒-⋅>故cd 棒安培力必须垂直导轨平面向下,根据左手定则可以知道磁感应强度B 2沿导轨平面向上,cd 棒也匀速运动则有:1212sin 372cos37022B dv mg mg B d R μ︒︒⎛⎫-+⨯⨯⨯= ⎪⎝⎭将221mgRv B d =代入计算得出:2132B B =. 答:(1)ab 棒刚进入磁场1B 时的速度大小为11.5UB d; (2)定值电阻上产生的热量为22211934mU mgL B d-; (3)2B 的大小为132B ,方向沿导轨平面向上.2.如图甲所示,一对足够长的平行光滑轨道固定在水平面上,两轨道间距 l= 0.5m ,左侧接一阻值 为R 的电阻。
电磁感应现象压轴题知识归纳总结附答案

电磁感应现象压轴题知识归纳总结附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图1所示,一个圆形线圈的匝数1000n =匝,线圈面积20.02S m =,线圈的电阻1r =Ω,线圈外接一个阻值4R =Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图2所示.求()1在04s ~内穿过线圈的磁通量变化量; ()2前4s 内产生的感应电动势; () 36s 内通过电阻R 的电荷量q .【答案】(1)4×10﹣2Wb (2)1V (3)0.8C 【解析】试题分析:(1)依据图象,结合磁通量定义式BS Φ=,即可求解;(2)根据法拉第电磁感应定律,结合磁感应强度的变化率求出前4s 内感应电动势的大小.(3)根据感应电动势,结合闭合电路欧姆定律、电流的定义式求出通过R 的电荷量.(1)根据磁通量定义式BS Φ=,那么在0~4s 内穿过线圈的磁通量变化量为:()()3210.40.20.02410B B S Wb Wb -∆Φ=-=-⨯=⨯(2)由图象可知前4 s 内磁感应强度B 的变化率为:0.40.2/0.05?/4B T s T s t ∆-==∆ 4 s 内的平均感应电动势为:10000.020.05?1BE nSV V t∆==⨯⨯=∆ (3)电路中的平均感应电流为:E I R =总,又q It =,且E n t∆Φ=∆ 所以()0.020.40.210000.841q n C C R 总⨯-∆Φ==⨯=+ 【点睛】本题考查了法拉第电磁感应定律的应用,由法拉第电磁感应定律求出感应电动势,由欧姆定律求出感应电流,最后由电流定义式的变形公式求出感应电荷量.2.在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20cm 2.螺线管导线电阻r=1.0Ω,R 1=3.0Ω,R 2=4.0Ω,C=30μF .在一段时间内,穿过螺线管的磁场的磁感应强度B 按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势; (2)S 断开后,求流经R 2的电量. 【答案】(1)0.8V ;(2)41.210C -⨯ 【解析】 【分析】 【详解】(1)感应电动势:10.210000.00200.82B E n n S V t t ∆Φ∆-===⨯⨯=∆∆; (2)电路电流120.80.1134E I A r R R ===++++,电阻2R 两端电压220.140.4U IR V ==⨯=,电容器所带电荷量65230104 1.210Q CU C --==⨯⨯=⨯,S 断开后,流经2R 的电量为41.210C -⨯;【点睛】本题是电磁感应与电路的综合,知道产生感应电动势的那部分相当于电源,运用闭合电路欧姆定律进行求解.3.如图所示,竖直固定的足够长的光滑金属导轨MN 、PQ ,间距L =0.2m ,其电阻不计.完全相同的两根金属棒ab 、cd 垂直导轨放置,每棒两端都与导轨始终良好接触.已知两棒质量均为m =0.01kg ,电阻均为R =0.2Ω,棒cd 放置在水平绝缘平台上,整个装置处在垂直于导轨平面向里的匀强磁场中,磁感应强度B =1.0T.棒ab 在竖直向上的恒力F 作用下由静止开始向上运动,当ab 棒运动位移x =0.1m 时达到最大速度,此时cd 棒对绝缘平台的压力恰好为零,重力加速度g 取10m/s 2.求: (1)恒力F 的大小;(2)ab 棒由静止到最大速度通过ab 棒的电荷量q ; (3)ab 棒由静止到达到最大速度过程中回路产生的焦耳热Q .【答案】(1)0.2N(2)0.05C(3)5×10-3J 【解析】 【详解】(1)当棒ab 达到最大速度时,对ab 和cd 的整体:20.2N F mg ==(2) ab 棒由静止到最大速度通过ab 棒的电荷量q It = 22BLx E tI R R== 解得10.20.1C 0.05C 220.2BLx q R ⨯⨯===⨯ (3)棒ab 达到最大速度v m 时,对棒cd 有 BIL=mg由闭合电路欧姆定律知2EI R=棒ab 切割磁感线产生的感应电动势E=BLv m代入数据解得v m =1m/sab 棒由静止到最大速度过程中,由能量守恒定律得()212m F mg x mv Q -+=代入数据解得Q =5×10-3J4.如图,两根相距l =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连.导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T .一根质量m =0.1kg 、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:(1)同路中的电流;(2)金属棒在x=2m处的速度;(3)金属棒从x=0运动到x=2m过程中安培力做功的大小;(4)金属棒从x=0运动到x=2m过程中外力的平均功率.【答案】(1)2(2)(3)1.6(4)0.71【解析】【分析】【详解】(1)因为运动过程中电阻上消耗的功率不变,所以回路中电流不变,感应电动势不变x=0处导体棒切割磁感线产生电动势电流(2) x=2m处解得(3)F-X图像为一条倾斜的直线,图像围成的面积就是二者的乘积即x=0时,F=0.4N x=2m时,F=1.2N(4)从x=0运动到x=2m,根据动能定理解得解得所以【点睛】(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x=0与x=2m处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.5.如图所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为.磁场的磁感强度为B ,方向垂直纸面向里.现有一段长度为、电阻为的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定速度υ向b 端滑动,滑动中始终与ac 平行并与线框保持良好接触.当MN 滑过的距离为时,导线ac 中的电流是多大?方向如何?【答案】方向a →c【解析】 【分析】 【详解】 试题分析:MN 滑过的距离为L/3时,它与bc 的接触点为P ,如下图所示由图可知MP 长度为L/3, MP 中的感应电动势为:1E 3BL V BLV 有== MP 段的电阻为:r=3R MacP 和MbP 两电路的并联电阻为121212233r 12933r r R R r r 并⨯===++由欧姆定律,PM 中的电流为:EI r r =+并由分流得ac 中的电流为:ac 23I I =, 解得考点:本题考查瞬时感应电动势,闭合电路欧姆定律点评:电磁感应与电路的结合问题,关键是弄清电源和外电路的构造,然后根据电学知识进一步求解6.如图甲所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应现象压轴题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= , cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L =- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgR v B L=(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L=-3.如图,两足够长的平行金属导轨平面与水平面间夹角为=30θ︒,导轨电阻忽略不计,二者相距l =1m ,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m =0.1kg 的光滑导体棒ab ,并通过细线、光滑滑轮与一质量为2m 、边长为2l正方形线框相连,金属框下方h =1.0m 处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R 上产生的热量为1Q =0.318J ,且金属框刚好能匀速通过有界磁场。
已知两磁场区域的磁感应强度大小相等。
定值电阻R =1Ω。
导体棒ab 和金属框单位长度电阻r =1Ω/m ,g =10m/s 2,求(1)两磁场区域的磁感应强度为多大?(2)金属框刚离开磁场时,系统损失的机械能是多大? (3)金属框下方没有磁场时,棒的最大速度是多少?【答案】(1)1T(2)2.136J(3)3m/s 【解析】 【详解】(1)由题意知,导体棒ab 接入电路的电阻为11ΩR rl ==与定值电阻R 相等,故金属框由静止释放到刚进入磁场过程重金属导轨回路产生的总热量为120.636J Q Q ==此过程由动能定理得212sin 30(2)2mgh mgh Q m m v ︒--=+解得v =2.4m/s金属框的总电阻为2142Ω2R l r =⨯⨯=金属框在磁场中做匀速运动时导体棒ab 产生的电动势为1E Blv =,则有111E I R R=+ 金属框产生的电动势212E Blv =222E I R =金属框在磁场中做匀速运动时由平衡条件得1212sin 3002mg mg BI l BI l ︒---=得B =1T(2)由于金属框刚好能做匀速通过有界磁场,说明磁场宽度与线框边长相等0.52ld m == 根据能量守恒得212(2)(2)sin 30(2)2mg h d mg h d E m m v ︒+-+=∆++得2.136J E ∆=(3)金属框下没有磁场,棒的速度达到最大后做匀速运动,设此时速度为m v ,则m1Blv I R R=+ 根据平衡条件得2sin 300mg mg BIl ︒--=解得m 3m/s v =。
4.如图所示,粗糙斜面的倾角37θ︒=,斜面上直径0.4m D =的圆形区域内存在着垂直于斜面向下的匀强磁场(图中只画出了磁场区域,未标明磁场方向),一个匝数为100n =的刚性正方形线框abcd ,边长为0.5m ,通过松弛的柔软导线与一个额定功率2W P =的小灯泡L 相连,圆形磁场的一条直径恰好过线框bc 边,已知线框质量2kg m =,总电阻02R =Ω,与斜面间的动摩擦因数0.5μ=,灯泡及柔软导线质量不计,从0t =时刻起,磁场的磁感应强度按21(T)B t π=-的规律变化,开始时线框静止在斜面上,T 在线框运动前,灯泡始终正常发光,设最大静摩擦力等于滑动摩擦力,210m/s g =,370.6sin ︒=, 370.8cos ︒=.(1)求线框静止时,回路中的电流I ;(2)求在线框保持不动的时间内,小灯泡产生的热量Q ;(3)若线框刚好开始运动时即保持磁场不再变化,求线框从开始运动到bc 边离开磁场的过程中通过小灯泡的电荷量q .(柔软导线及小灯泡对线框运动的影响可忽略,且斜面足够长)【答案】(1)1A (2)2.83J (3)0.16C 【解析】 【详解】(1)由法拉第电磁感应定律可得线框中产生的感应电动势大小为214V 22B D E n n t t π∆Φ∆⎛⎫==⨯⨯= ⎪∆∆⎝⎭设小灯泡电阻为R ,由220E P I R R R R ⎛⎫== ⎪+⎝⎭可得2R =Ω解得2A 1A 2P I R === (2)设线框保持不动的时间为t ,根据共点力的平衡条件可得2sin 1cos mg n t ID mg θμθπ⎛⎫=-+ ⎪⎝⎭解得0.45t s π=产生的热量为2.J 83Q Pt ==(3)线框刚好开始运动时210.45T 0.1T B ππ⎛⎫=-⨯= ⎪⎝⎭根据闭合电路的欧姆定律可得000BnsE t I R R R R -∆==++ 根据电荷量的计算公式可得0.16C nBSq I t R R =⋅∆==+5.如图所示,间距为l 的平行金属导轨与水平面间的夹角为α,导轨间接有一阻值为R 的电阻,一长为l 的金属杆置于导轨上,杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ,导轨处于匀强磁场中,磁感应强度大小为B ,方向垂直于斜面向上,当金属杆受到平行于斜面向上大小为F 的恒定拉力作用,可以使其匀速向上运动;当金属杆受到平行于斜面向下大小为2F的恒定拉力作用时,可以使其保持与向上运动时大小相同的速度向下匀速运动,重力加速度大小为g ,求:(1)金属杆的质量;(2)金属杆在磁场中匀速向上运动时速度的大小。
【答案】(1)4sin F m g α=;(2)2222344tan RE RFv B l B l μα=-。
【解析】 【分析】 【详解】(1)金属杆在平行于斜面向上大小为F 的恒定拉力作用下可以保持匀速向上运动,设金属杆的质量为m ,速度为v ,由力的平衡条件可得sin cos F mg mg BIl αμα=++,同理可得sin cos 2Fmg mg BIl αμα+=+, 由闭合电路的欧姆定律可得E IR =,由法拉第电磁感应定律可得E BLv =,联立解得4sin Fm g α=,(2)金属杆在磁场中匀速向上运动时速度的大小2222344tan RE RFv B l B l μα=-。
6.如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .【答案】(1)0Bdv R ;(2)220B d v mR ;(3)2220()B d v v R-;【解析】 【分析】本题的关键在于导体切割磁感线产生电动势E =Blv ,切割的速度(v )是导体与磁场的相对速度,分析这类问题,通常是先电后力,再功能.(1)根据电磁感应定律的公式可得知产生的电动势,结合闭合电路的欧姆定律,即可求得MN 刚扫过金属杆时,杆中感应电流的大小I ;(2)根据第一问求得的电流,利用安培力的公式,结合牛顿第二定律,即可求得MN 刚扫过金属杆时,杆的加速度大小a ;(3)首先要得知,PQ 刚要离开金属杆时,杆切割磁场的速度,即为两者的相对速度,然后结合感应电动势的公式以及功率的公式即可得知感应电流的功率P .【详解】(1)感应电动势 0E Bdv =感应电流E I R =解得0Bdv I R= (2)安培力 F BId = 牛顿第二定律 F ma =解得220B d v a mR=(3)金属杆切割磁感线的速度0=v v v '-,则感应电动势 0()E Bd v v =-电功率2E P R= 解得2220()B d v v P R -=【点睛】该题是一道较为综合的题,考查了电磁感应,闭合电路的欧姆定律以及电功电功率.对于法拉第电磁感应定律是非常重要的考点,经常入选高考物理压轴题,平时学习时要从以下几方面掌握. (1)切割速度v 的问题切割速度的大小决定了E 的大小;切割速度是由导体棒的初速度与加速度共同决定的.同时还要注意磁场和金属棒都运动的情况,切割速度为相对运动的速度;不难看出,考电磁感应的问题,十之八九会用到牛顿三大定律与直线运动的知识. (2)能量转化的问题电磁感应主要是将其他形式能量(机械能)转化为电能,可由于电能的不可保存性,很快又会想着其他形式能量(焦耳热等等)转化. (3)安培力做功的问题电磁感应中,安培力做的功全部转化为系统全部的热能,而且任意时刻安培力的功率等于系统中所有电阻的热功率. (4)动能定理的应用动能定理当然也能应用在电磁感应中,只不过同学们要明确研究对象,我们大多情况下是通过导体棒的.固定在轨道上的电阻,速度不会变化,显然没有用动能定理研究的必要.7.如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值R 的电阻,一质量m 、长度L 的金属棒MN 放置在导轨上,棒的电阻为r ,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B ,棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P 不变,经过时间t 导体棒最终做匀速运动.求:(1)导体棒匀速运动时的速度是多少? (2)t 时间内回路中产生的焦耳热是多少?【答案】(1);(2)【解析】【分析】(1)金属棒在功率不变的外力作用下,先做变加速运动,后做匀速运动,此时受到的安培力与F二力平衡,由法拉第定律、欧姆定律和安培力公式推导出安培力与速度的关系式,再由平衡条件求解速度;(2)t时间内,外力F做功为Pt,外力F和安培力对金属棒做功,根据动能定理列式求出金属棒克服安培力做功,即可得到焦耳热.【详解】(1)金属棒匀速运动时产生的感应电动势为 E=BLv感应电流I=金属棒所受的安培力 F安=BIL联立以上三式得:F安=外力的功率 P=Fv匀速运动时,有F=F安联立上面几式可得:v=(2)根据动能定理:W F+W安=其中 W F=Pt,Q=﹣W安可得:Q=Pt﹣答:(1)金属棒匀速运动时的速度是.(2)t时间内回路中产生的焦耳热是Pt﹣.【点睛】金属棒在运动过程中克服安培力做功,把金属棒的动能转化为焦耳热,在此过程中金属棒做加速度减小的减速运动;对棒进行受力分析、熟练应用法拉第电磁感应定律、欧姆定律、动能定理等正确解题.8.如图所示,在竖直平面内有间距L=0.2 m的足够长的金属导轨CD、EF,在C、E之间连接有阻值R=0.05 Ω的电阻。