高中数学公式大全、高考数学解题方法汇总总结

高中数学公式大全、高考数学解题方法汇总总结
高中数学公式大全、高考数学解题方法汇总总结

高中数学公式大全、高考数学解题方法思路总结

高中数学常用公式及结论

1 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠?

B B A B A A B A =???= ,()()()()()()

C C C C C C U U U U U U A B A B A B A B ==,

2 集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集

有22n -个.

3 复合命题的真值表 4

5 四种命题的相互关系原命题与逆否命题同真同假;逆命题与否命题同真同假)

充要条件: (1)、p q ?,则P 是q 的充分条件,反之,q 是p 的必要条件;

(2)、p q ?,且q ≠> p ,则P 是q 的充分不必要条件;小范围推大范围 (3)、p ≠> p ,且q p ?,则P 是q 的必要不充分条件; (4)、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。 6 函数单调性:

增函数:数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212

,,x x D x x ∈<且,都有

12()()

f x f x <成立,则就叫f (x )在x ∈D 上是增函数。D 则就是f (x )的递增区间。

减函数:数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212

,,x x D x x ∈<且,都有

12()()

f x f x >成立,则就叫f (x )在x ∈D 上是减函数。D 则就是f (x )的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;

(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;

注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。

复合函数的单调性:同增异减。若)(x f 是定义域D 上的单调函数,且方程x x f f =)]([在D 上有解为

0x ,则00)(x x f =

等价关系:

(1)设[]1212,,,x x a b x x ∈≠那么

[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数; []1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数.

(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 7函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)

奇函数:定义:在前提条件下,若有()()()()0f x f x f x f x -=--+=或,则f (x )就是奇函数。 性质:(1)、奇函数的图象关于原点对称;

(2)、奇函数在x >0和x <0上具有相同的单调区间; (3)、定义在R 上的奇函数,有f (0)=0 .

偶函数:定义:在前提条件下,若有()()f x f x -=或)(|)(|x f x f =,则f (x )就是偶函数。 性质:(1)、偶函数的图象关于y 轴对称;

(2)、偶函数在x >0和x <0上具有相反的单调区间; 奇偶函数间的关系:

(1)、奇函数·偶函数=奇函数; (2)、奇函数·奇函数=偶函数;

(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的) (5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数 (7)复合函数的奇偶性:内偶则偶,两奇则奇

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 8函数的周期性:定义:对函数f (x ),若存在T ≠0,使得f (x+T )=f (x ),则就叫f (x )是周期函数,

其中,T 是f (x )的一个周期。

周期函数几种常见的表述形式:

(1)、f (x+T )= - f (x ),此时周期为2T ;

(2)、 f (x+m )=f (x+n ),此时周期为2m n - ;

(3)、1

()()

f x m f x +=±

,此时周期为2m 。 9常见函数的图像:一次函数,反比例函数,二次函数,双勾函数,指数、对数函数 10 二次函数的解析式的三种形式: (1) 一般式2

()(0)f x ax bx c a =++≠;

(2) 顶点式2

()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,

设为此式)

(4)切线式:02

()()(()),0x kx d f x a x a =-+≠+。(当已知抛物线与直线y kx d =+相切且切点的

横坐标为0x 时,设为此式)①“三个二次”(二次函数、二次方程、二次不等式)的关系。②求闭区间[m ,n ]上的最值。③求区间定(动),对称轴动(定)的最值问题。 ④一元二次方程根的分布问题。

11对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2

b

a x +=;两个

函数)(a x f y +=与)(x b f y -= 的图象关于直线2

b a

x -=对称.

f x f x y ()()与的图象关于轴对称-; f x f x x ()()与的图象关于轴对称-

f x f x ()()与的图象关于原点对称--; f x f x y x ()()与的图象关于直线对称-=1

f x f a x x a ()()与的图象关于直线对称2-=; f x f a x a ()()()与的图象关于点,对称--20

将图象左移个单位右移个单位

y f x a a a a y f x a y f x a =>?→

????????>=+=-()()()()()00上移个单位下移个单位b b b b y f x a b y f x a b ()()()()>?→????????>=++=+-00 注意如下“翻折”变换:

f x f x f x f x ()()()(||)

?→??→?

12 分数指数幂与根式的性质:

(1)m

n

a

=0,,a m n N *>∈,且1n >).

(2

)1m n

m n

a

a

-

=

=

(0,,a m n N *

>∈,且1n >).(3

)n a =.

(4)当n

a =;当n

,0

||,0a a a a a ≥?==?

-

.

13 指数式与对数式的互化式: log b a N b a N =?=(0,1,0)a a N >≠>.

指数性质: (1)1、1p

p

a

a

-=

; (2)、0

1a =(0a ≠) ; (3)、()mn m n a a = (4)、(0,,)r

s

r s

a a a a r s Q +?=>∈ ; (5)

、m n

a = ;

指数函数:

(1)、 (1)x

y a a =>在定义域内是单调递增函数;

(2)、 (01)x

y a a =<<在定义域内是单调递减函数。注: 指数函数图象都恒过点(0,1) 对数性质:

(1)、 log log log ()a a a M N MN += ;(2)、 log log log a a a M

M N N

-= ;

(3)、 log log m a a b m b =? ;(4)、 log log m n

a a n

b b m

=? ; (5)、 log 10a =

(6)、 log 1a a = ; (7)、 log a b

a b =

(8)、对数的换底公式 :log log log m a m N

N a

= (0a >,且1a ≠,0m >,且1m ≠, 0N >)

对数函数:

(1)、 log (1)a y x a => 在定义域内是单调递增函数;

(2)、log (01)a y x a =<<在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0) (3)、 log 0,(0,1),(1,)a x a x a x >?∈∈+∞或

(4)、log 0(0,1)(1,)a x a x

通项公式: (1) 1(1)n a a n d =+- ,其中1a 为首项,d 为公差,n 为项数,n a 为末项。

(2)推广: ()n k a a n k d =+- 推导方法:累积法

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和: (1)1()

2

n n n a a S +=

;其中1a 为首项,n 为项数,n a 为末项。 (2)1(1)

2

n n n S na d -=+ 推导方法:倒序相加法

(3)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) (4)12n n S a a a =++

+ (注:该公式对任意数列都适用)

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a +=+ ;

注:若,m n p a a a 是的等差中项,则有2m n p a a a =+?n 、m 、p 成等差。

(2)、若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列。

(3)、{}n a 为等差数列,n S 为其前n 项和,则232,,m m m m m S S S S S --也成等差数列。 (4)、,,0p q p q a q a p a +===则 ; (5) 1+2+3+…+n=2

)

1(+n n (6)若{}n a 、{}n b 是等差数列,n n T S ,为前n 项和,则

1

21

2--=m m m m T S b a 。

15等比数列:

通项公式:(1) 1

*11()n n

n a a a q

q n N q

-==

?∈ ,其中1a 为首项,n 为项数,q 为公比。 (2)推广:n k

n k a a q

-=? 推导方法:累积法

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和:(1)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用)

(2)12n n S a a a =++

+ (注:该公式对任意数列都适用)

(3)1

1(1)(1)

(1)

1n n na q S a q q q =??

=-?≠?-?

推导方法:错位相减法

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a ?=? ;

注:若,m n p a a a 是的等比中项,则有 2m n p a a a =??n 、m 、p 成等比。

(2)、若{}n a 、{}n b 为等比数列,则{}n n a b ?为等比数列。

16三角不等式:(1)若(0,

)2x π

∈,则sin tan x x x <<.(2) 若(0,)2

x π

,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.

17 同角三角函数的基本关系式 :2

2

sin cos 1θθ+=,tan θ=

θ

θ

cos sin , 18 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 19 和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβ

αβ±=;

tan tan tan()1tan tan αβαβαβ

±±=

. ααααcos sin 21)cos (sin

2

±=±

sin cos a b αα+)α?+

(辅助角?所在象限由点(,)a b 的象限决定,tan b

a

?= ).

20 二倍角公式及降幂公式

sin 2sin cos ααα=2

2tan 1tan α

α

=

+. 2

2

2

2

cos 2cos sin 2cos 112sin ααααα=-=-=-221tan 1tan α

α

-=+.

2

2tan tan 21tan ααα=-. sin 21cos 2tan 1cos 2sin 2αα

ααα

-==+ 221cos 21cos 2sin ,cos 22

αα

αα-+=

=

21 三角函数的周期公式

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0)的周期

2||T πω=

;函数tan()y x ω?=+,,2

x k k Z π

π≠+∈(A,ω,?为常数,且A ≠0)的周期||T πω=. 三角函数的图像:

22 正弦定理 :

2sin sin sin a b c

R A B C

===(R 为ABC ?外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ?===::sin :sin :sin a b c A B C ?=

23余弦定理:

2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.

24面积定理:

1)111

222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 222S ab C bc A ca B ===.

(3)OAB S ?=2,2

a b c S r r a b c ?

??+==++斜边内切圆直角内切圆-

25三角形常用结论 :(1)B A B A B A b a cos cos sin sin ?>?>

(2)在△ABC 中,有()A B C C A B ππ++=?=-+222

C A B π+?

=-222()C A B π?=-+. (3)C B A C B A tan tan tan tan tan tan =++

(4)在锐角三角形中,任意角的正弦值都大于其他角的余弦值。

26共线问题:(1)a 与b (0≠b )1221//y x y x b a b a =??=?λ,其中a =11(,)x y ,b =22(,)x y (2)三点A ,B ,C 共线1,=++=?=?μλμλm (3)与共线的单位向量为±

27a 与b 的数量积(或内积):a ·b =|a ||b |cos θ。投影概念

31

38 两向量的夹角公式:

1221

1

cos ||||

a b

a b x y θ?=

=

?+?a =11(,)x y ,b =22(,)x y ).

29 向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0,则:

1+r 2

r 2-r a ||b ?b =λa 12210x y x y ?-=.(交叉相乘差为零)

a ⊥

b (a ≠0)? a ·b =012120x x y y ?+=.(对应相乘和为零)

30三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC

的重心的坐标是123123

(,)33

x x x y y y G ++++.

31三角形五“心”向量形式的充要条件:

设O 为ABC ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则

(1)O 为ABC ?的外心2

2

2

OA OB OC ?==.

(2)O 为ABC ?的重心0OA OB OC ?++=)(3

1

OC OB OA OG ++=?. (3)O 为ABC ?的垂心OA OB OB OC OC OA ??=?=?.

(4)O 为ABC ?的内心0aOA bOB cOC ?++=.(+

=λ.

(5)O 为ABC ?的A ∠的旁心aOA bOB cOC ?=+. 32常用不等式:

(1),a b R ∈?2

2

2a b ab +≥(

当且仅当a =b 时取“=”号).

(2),a b R +

∈?

2

a b

+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>ca bc ab c b a ++≥++2

22

(4)b a b a b a +≤+≤-.(5)a b m n >>>>000,,,则b a b m a m a

n b n a

b

<+

+<<++<1

(6)22ab a b a b +≤≤

+当且仅当a =b 时取“=”号)。 33极值定理:已知y x ,都是正数,则有

(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值24

1s . (3)已知,,,a

b x y R +

∈,若1ax by +

=则有

21111()()by ax ax by a b a b x y x y x y

+=++=+++≥++=。 (4)已知,,,a b x

y R +

,若1a b x

y

+=则有

2()()a b ay bx

x y x y a b a b x y x y +=++=+++≥++=

34 一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠?=->,如果a 与2

ax bx c ++同号,则

其解集在两根之外;如果a 与2

ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.即:

121212()()0()x x x x x x x x x <?--><或. 35 含有绝对值的不等式 :当a> 0时,有

22x a x a a x a ?>?>或x a <-.

36 斜率公式 :21

21

y y k x x -=-(111(,)P x y 、222(,)P x y ).

37 直线的五种方程:

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).

(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121

y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (1212,x x y y ≠≠)).

两点式的推广:211211()()()()0x x y y y y x x -----=(无任何限制条件!)

(4)截距式 1x y

a b

+=(a b 、分别为直线的横、纵截距,00a b ≠≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

直线0Ax By C ++=的法向量:(,)l A

B '=,方向向量:(,)l B A =-

38 点到直线的距离 :d =(点00(,)P x y ,直线l :0Ax By C ++=).

39 圆的四种方程:

(1)圆的标准方程 2

2

2

()()x a y b r -+-=.

(2)圆的一般方程 2

20x y Dx Ey F ++++=(22

4D E F +->0).

(3)圆的参数方程 cos sin x a r y b r θ

θ=+??

=+?

.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).

40点与圆的位置关系:点00(,)P x y 与圆

2

2

2

)()(r b y a x =-+-的位置关系有三种:

若d =d r >?点P 在圆外;

d r =?点P 在圆上; d r

41直线与圆的位置关系:直线0=++C By Ax 与圆2

22)()(r b y a x =-+-的位置关系有三种

(22B

A C Bb Aa d +++=):

0相离r d ;0=???=相切r d ;0>???<相交r d .

42 两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21,则:

条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ; 条公切线内切121??-=r r d ; 无公切线内含??-<<210r r d .

43 椭圆22221(0)x y a b a b +=>

>的参数方程是cos sin x a y b θθ

=??=?. 离心率c e a ==

过焦点且垂直于长轴的弦叫通经,其长度为:2

2b a

.

44 椭圆22

221(0)x y a b a b

+=>>焦半径公式及两焦半径与焦距构成三角形的面积:

1221

||tan 2

F PF P F PF

S c y b ?∠==。 45椭圆的的内外部:

(1)点00(,)P x y 在椭圆22

221(0)x y

a b a b +=>>的内部220022

1x y

a b ?+<. (2)点00(,)P x y 在椭圆22

221(0)x y a b a b

+=>>的外部2200

22

1x y a b ?

+>. 46 椭圆的切线方程:

(1) 椭圆

2

2

221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是002

21x x y y

a b +=. (2)过椭圆22221x y a b +=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y

a b +=.

(3)椭圆22221(0)x y a b a b

+=>>与直线0Ax By C ++=相切的条件是22222

A a

B b c +=.

47 双曲线22221(0,0)x y a b a b -=>>

的离心率c e a ==过焦点且垂直于实轴的弦叫通经,其长

度为:2

2b a

.

两焦半径与焦距构成三角形的面积122

1cot 2

F PF F PF S b ?∠=(注意余弦定理的运用)。

48 双曲线的方程与渐近线方程的关系:

(1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a

b

y ±=.

(2)若渐近线方程为x a

b

y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x .

(3)若双曲线与12222=-b

y a x 有公共渐近线,可设为λ=-22

22b y a x

(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 。

49双曲线的切线方程:

(1)双曲线22221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y

a b -=.

(2)过双曲线22221x y a b -=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y

a b -=.

(3)双曲线22221x y a b -=与直线0Ax By C ++=相切的条件是22222

A a

B b c -=.

50抛物线px y 22

=的焦半径公式:

抛物线2

2(0)y px p =>焦半径02

p CF x =+

. 过焦点弦长p x x p

x p x CD ++=+++=21212

2.221221,4p y y p x x -==

;p DF CF 2||1||1=+ 51 直线与圆锥曲线相交的弦长公式

AB =

或1212|||AB x x y y ==-=-

(弦端点A ),(),,(2211y x B y x ,由方程???=+=0)y ,x (F b kx y 消去y 得到02

=++c bx ax

0?>,α为直线AB 的倾斜角,k

为直线的斜率,12||x x -=52证明直线与平面的平行的思考途径:

(1)转化为直线与平面无公共点;(2)转化为线线平行;(3)转化为面面平行. 53证明直线与平面垂直的思考途径:

(1)转化为该直线与平面内任一直线垂直;(2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行;(4)转化为该直线垂直于另一个平行平面。 54证明平面与平面的垂直的思考途径:

(1)转化为判断二面角是直二面角;(2)转化为线面垂直;(3) 转化为两平面的法向量平行。 55 空间中线线角、线面角、二面角的向量表示:

设a =123(,,)a a a ,b =123(,,)b b b ,则2cos ,a b a <>=.

56 异面直线间的距离 :

||

||

CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、是12,l l 上任一点,d 为12,l l 间的距离). 57点B 到平面α的距离:

||

||

AB n d n ?=

(n 为平面α的法向量,A α∈,AB 是α的一条斜线段). 58球的半径是R ,则其体积3

43

V R π=,

其表面积24S R π=.

59球的组合体:

(1)

球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.

(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体

的面对角线长, 正方体的外接球的直径是正方体的体对角线长.

(3)球与正四面体的组合体: 棱长为a

(的14),(的34

). 60 分类计数原理(加法原理):12n N m m m =+++.分步计数原理(乘法原理):

12n N m m m =???.

61排列数公式 :m n A =)1()1(+--m n n n =!

!)(m n n -.(n ,m ∈N *

,且m n ≤).规定1!0=.

62 组合数公式:m n C

=

m n m

m

A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N *

,m N ∈,且m n ≤). 组合数的两个性质:(1)m

n C =m

n n C - ;(2) m

n C +1

-m n

C =m n C 1+.规定10

=n C .

63解排列与组合问题的规律是:相邻问题捆绑法;相间隔问题插空法;定位问题优先法;多元问题分类法;至多至少问题间接法;相同元素分组可采用隔板法,数量不大时可以逐一排出结果。

64 二项式定理 n

n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;

二项展开式的通项公式r

r n r n r b a C T -+=1)210(n r ,,,

=. 2

012()()n n

n f x ax b a a x a x a x =+=+++

+的展开式的系数关系:

012(1)n a a a a f ++++=; 012(1)(1)n

n a a a a f -+++-=-;0(0)a f =。

65 互斥事件A ,B 分别发生的概率的和:P(A +B)=P(A)+P(B).

n 个互斥事件分别发生的概率的和:P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 66 独立事件A ,B 同时发生的概率:P(A ·B)= P(A)·P(B).

n 个独立事件同时发生的概率:P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ).

67 n 次独立重复试验中某事件恰好发生k 次的概率:()(1)

.k k n k

n n P k C P P -=- 68 数学期望:1122n n E x P x P x P ξ=++++

数学期望的性质

(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=. (3) 若ξ服从几何分布,且1

()(,)k P k g k p q p ξ-===,则1

E p

ξ=.

69方差:()()()2

2

2

1122n n D x E p x E p x E p ξξξξ=-?+-?+

+-?+

标准差:σξ=ξD . 方差的性质:

(1)()2

D a b a D ξξ+=;

(2)若ξ~(,)B n p ,则(1)D np p ξ=-.

(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ

-===,则2q D p

ξ=

. 方差与期望的关系:()2

2

D E E ξξξ=-.

70正态分布密度函数:(

)()()2

2

26,,x f x x μ--

=

∈-∞+∞,

式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差. 对于2

(,)N μσ,取值小于x 的概率:()x F x μσ-??

???

. ()()()12201x x P x x P x x x P <-<=<<

71 函数)(x f y =在点0x 处的导数的几何意义:

函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.瞬时速度:()s t υ'=.瞬时加速度:()a v t '=。

72 几种常见函数的导数:

(1) 0='C (C 为常数).(2) 1

()()n n x nx

n Q -'=∈.(3) x x cos )(sin ='.

(4) x x sin )(cos -='. (5) x x 1

)(ln =';1(log )log a a x e x

'=.

(6) x x e e =')(; a a a x

x ln )(='.

73 导数的运算法则:

(1)'

'

'

()u v u v ±=±.(2)'

'

'

()uv u v uv =+.(3)''

'2

()(0)u u v uv v v v

-=≠. 74 判别)(0x f 是极大(小)值的方法:

当函数)(x f 在点0x 处连续时,

(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 75经典不等式:(1)对数形式:)1()1ln(->≤+x x x ,当且仅当0=x 时取得等号;

(2)指数形式:)(1R x x e x

∈+≥当且仅当0=x 时取得等号。 76 复数的相等:,a bi c di a c b d +=+?==.(,,,a b c d R ∈) 复数z a bi =+的模(或绝对值)||z =||a bi +

复平面上的两点间的距离公式:

12||d z z =-=111z x y i =+,222z x y i =+).

高中数学公式提升

一、集合、简易逻辑、函数

1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合

B={0,|x |,y},且A=B,则x+y=

2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y |y=x 2 ,x ∈R},N={y |

y=x 2+1,x ∈R},求M ∩N ;与集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2+1,x ∈R}求M ∩N 的区别。 3. 集合 A 、B ,?=?B A 时,你是否注意到“极端”情况:?=A 或?=B ;求集合的子集B

A ?时是否忘记?. 例如:()()012222

<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨

论了a =2的情况了吗?

4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n 2,

12-n

,12-n .22-n

如满足条件}4,3,2,1{}1{??M 的集合M 共有多少个

5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==

7. (C U A)∩( C U B) = C U (A ∪B) (C U A)∪( C U B) = C U (A ∩B);B B A = A B ??; 8、可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”.

p 、q 形式的复合命题的真值表: (真且真,同假或假)

9、

原命题与逆否命题同真同假;逆命题与否命题同真同假.

10、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,哪

几种对应能够成映射? 11、函数的几个重要性质:

①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数

()x f y =的图象关于直线a x =对称.

②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称;

函数()x f y =与函数()x f y --=的图象关于坐标原点对称.

③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数. ④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数. ⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函

数()a x f y +=()0(

a 个单位得到的;

函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数

()x f y =+a )0(

12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗?函数y=

2

)3lg()4(--x x x 的定义域是 ;

复合函数的定义域弄清了吗?函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域. 函数)(x f 的定义域

是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域

14、一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共

定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;

15、据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数

单调性的一种重要方法。 16、函数()0>+

=a x

a x y 的单调区间吗?(该函数在(]a -

∞-,和

[

)+∞,a 上单调递增;在[)

0,a -

和(]

a ,0上单调递减)这可是一个应用广泛的函数!

17、函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀. 18、换底公式及它的变形,你掌握了吗?(b b a

b

b a n a

c c a n log log ,log log log ==) 19、你还记得对数恒等式吗?(b a

b

a =log )

20、“实系数一元二次方程02=++c bx ax 有实数解”转化为“042

≥-=?ac b ”,你是否注意到必

须0≠a ;当a=0时,“方程有解”不能转化为042

≥-=?ac b .若原题中没有指出是“二次”方

程、函数或不等式,你是否考虑到二次项系数可能为零的情形? 二、三角、不等式

21、三角公式记住了吗?两角和与差的公式________________; 二倍角公式:________________;解题

时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,

化切割为弦,用倍角公式将高次降次, 22、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是否为单

调函数?你注意到正弦函数、余弦函数的有界性了吗? 23、在三角中,你知道1等于什么吗?(x x x x 2

2

2

2

tan sec cos sin 1-=+=

====?=0cos 2

sin

4

tan

cot tan π

π

x x 这些统称为1的代换) 常数 “1”的种种代换有着广

泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系; 诱导公试:奇变偶不变,符号看象限)

24、在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=

??

?

??--??? ??-=+βαβαβ

α222

等)

25、你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值

的式子,一定要算出值来)

26、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同

角,异名化同名,高次化低次);你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2

x=(1-cos2x)/2 27、你还记得某些特殊角的三角函数值吗?

(4

1

518sin ,42615cos 75sin ,4

2

675cos 15sin -=?+=?=?-=?=?) 28、你还记得在弧度制下弧长公式和扇形面积公式吗?(lr S r l 2

1

,==扇形α)

29、 辅助角公式:()θ++=

+x b a x b x a sin cos sin 22(其中θ角所在的象限由a,

b 的符号确定,θ角的值由a

b

=θtan 确定)在求最值、化简时起着重要作用.

30、三角函数(正弦、余弦、正切)图象的草图能迅速画出吗?能写出他们的单调区、对称轴,取最值

时的x 值的集合吗?(别忘了k ∈Z )

三角函数性质要记牢。函数y=++?)sin(?ωx A k 的图象及性质:

振幅|A|,周期T=

ω

π

2, 若x=x 0为此函数的对称轴,则x 0是使y 取到最值的点,反之亦然,使y 取

到最值的x 的集合为 , 当0,0>>A ω时函数的增区间为 ,减区间为 ;当0<ω时要利用诱导公式将ω变为大于零后再用上面的结论。

五点作图法:令?ω+x 依次为ππ

ππ

2,2

3,,20 求出x 与y ,依点()y x ,作图

31、三角函数图像变换还记得吗?

平移公(1)如果点 P (x ,y )按向量()k h a ,=→ 平移至P ′(x ′,y ′),则 ?????+=+=.

,

'

'

k y y h x x (2) 曲线f (x ,y )=0沿向量()k h a ,=→

平移后的方程为f (x-h ,y-k )=0

32、有关斜三角形的几个结论:(1) 正弦定理: (2) 余弦定理: (3)面积公式

33、在用三角函数表示直线的倾斜角、两条异面直线所成的角等时,你是否注意到它们各自的取值范围

及意义?

①异面直线所成的角、直线与平面所成的角、向量的夹角的取值范围依次是],0[],2,0[,2,0πππ??

?

??.

②直线的倾斜角、1l 到2l 的角、1l 与2l 的夹角的取值范围依次是]2

,0(),,0[),,0[π

ππ.

34、不等式的解集的规范书写格式是什么?(一般要写成集合的表达式) 35、分式不等式

()()

()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变

为正值,奇穿偶回)

36、含有两个绝对值的不等式如何去绝对值?(一般是根据定义分类讨论)

37、利用重要不等式ab b a 2≥+ 以及变式2

2??

? ??+≤b a ab 等求函数的最值时,

你是否注意到a ,b +

∈R (或a ,b 非负),且“等号成立”时的条件,积ab 或和a +b 其中之一应是定值?(一正二定三相等)

38、) R b , (a , b

a 2a

b 2222+∈+≥≥+≥+ab b a b a (当且仅当

c b a ==时,

取等号); a 、b 、c ∈R ,ca bc ab c b a ++≥++222(当且仅当c b a ==时,取等号)

; 39、在解含有参数的不等式时,怎样进行讨论?(特别是指数和对数的底10<a )讨论完之后,要写出:综上所述,原不等式的解集是…….

40、解含参数的不等式的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.” 41、对于不等式恒成立问题,常用的处理方式?(转化为最值问题) 三、数列

42、等差数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a +=+;(2)

仍成等差数列数列}{ka },{a },{n 2n 12b a n +-;仍成等差数列n 23n n 2n n S S , S S , S --

(3)若三数成等差数列,则可设为a-d 、a 、a+d ;若为四数则可设为a-d 2

3、a-d 2

1、a+d 2

1、a+d 2

3; (4)在等差数列中,求S n 的最大(小)值,其思路是找出某一项,使这项及它前面的项皆取正(负)值或0,而它后面各项皆取负(正)值,则从第一项起到该项的各项的和为最大(小).即:当a 1 >0,d<0,解不等式组 a n ≥0 a n+1 ≤0 可得S n 达最大值时的n 的值;当a 1 <0,d>0,解不等式组 a n ≤0 a n+1 ≥0 可得S n 达最小值时的n 的值;(5).若a n ,b n 是等差数列,S n ,T n 分别为a n ,b n 的前n 项和,则

1

m 21

m 2m m T S b a --=。.(6).若{n a }是等差数列,则{n a a }是等比数列,若{n a }是等比数列且0>n a ,则{n a a log }是等差数列.

43、等比数列中的重要性质:(1)若q p n m +=+,则q p n m a a a a ?=?;(2)k S ,k k S S -2,k

k S S 23-成等比数列

44、你是否注意到在应用等比数列求前n 项和时,需要分类讨论.(1=q 时,1na S n =;1≠q 时,

q

q a S n

n --=

1)

1(1)

45、等比数列的一个求和公式:设等比数列{}n a 的前n 项和为n S ,公比为q , 则

n m m n m S q S S +=+.

46、等差数列的一个性质:设n S 是数列{}n a 的前n 项和,{}n a 为等差数列的充要条件是

bn an S n +=2 (a, b 为常数)其公差是2a.

47、你知道怎样的数列求和时要用“错位相减”法吗?(若n n n b a c =,其中{}n a 是等差数列,{}n b 是

等比数列,求{}n c 的前n 项的和)

48、用1--=n n n S S a 求数列的通项公式时,你注意到11S a =了吗? 49、你还记得裂项求和吗?(如

1

1

1)1(1+-=+n n n n .)

四、排列组合、二项式定理

50、解排列组合问题的依据是:分类相加,分步相乘,有序排列,无序组合.

51、解排列组合问题的规律是:相邻问题捆绑法;不邻问题插空法;多排问题单排法;定位问题优先法;

多元问题分类法;有序分配问题法;选取问题先排后排法;至多至少问题间接法,还记得什么时候用隔板法?

52、排列数公式是: 组合数公式是: 排列数与组合数的关系是:m

n m n C m P ?=!

组合数性质:m

n C

=

m n n

C

- m n C

+

1

-m n

C

=m

n C

1

+

∑=n

r r n

C

=n

2

1

121++++=++++r n r n r r r r r r C C C C C

二项式定理: n n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)(

二项展开式的通项公式:r

r n r n r b a C T -+=1)210(n r ,,,

= 五、立体几何

53、有关平行垂直的证明主要利用线面关系的转化:线//线?线//面?面//面,线⊥线?线⊥面?

面⊥面,垂直常用向量来证。

54、作出二面角的平面角主要方法是什么?(定义法、三垂线法)三垂线法:一定平面,二作垂线,三

作斜线,射影可见.

55、二面角的求法主要有:解直角三角形、余弦定理、射影面积法、法向量 56、求点到面的距离的常规方法是什么?(直接法、等体积变换法、法向量法) 57、你记住三垂线定理及其逆定理了吗?

58、有关球面上两点的球面距离的求法主要是找球心角,常常与经度及纬度联系在一起,你还记得经度

及纬度的含义吗?(经度是面面角;纬度是线面角)

59、你还记得简单多面体的欧拉公式吗?(V+F-E=2,其中V 为顶点数,E 是棱数,F 为面数),棱的两种

算法,你还记得吗?(①多面体每面为n 边形,则E=

2nF ;②多面体每个顶点出发有m 条棱,则E=2

mV ) 六、解析几何

60、设直线方程时,一般可设直线的斜率为k ,你是否注意到直线垂直于x 轴时,斜率k 不存在的情况?

(例如:一条直线经过点??

? ??

-

-23,3,且被圆252

2=+y x 截得的弦长为8,求此弦所在直线的方程。该题就要注意,不要漏掉x+3=0这一解.)

61、定比分点的坐标公式是什么?(起点,中点,分点以及λ值可要搞清)

线段的定比分点坐标公式

设P (x ,y ) ,P 1(x 1,y 1) ,P 2(x 2,y 2) ,且→

=21PP P P λ ,则

???

????++=++=λλλλ112

121y y y x x x 中点坐标公式???

???

?

+=+=222121y y y x x x 62、若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是??

?

??++++33321321y y y x x x ,在利

用定比分点解题时,你注意到1-≠λ了吗?

63、在解析几何中,研究两条直线的位置关系时,有可能这两条直线重合,而在立体几何中一般提到的

两条直线可以理解为它们不重合.

64、直线方程的几种形式:点斜式、斜截式、两点式、截矩式、一般式.以及各种形式的局限性.(如点

斜式不适用于斜率不存在的直线)

65、对不重合的两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l ,有:

???≠=?1

2211

22121//C A C A B A B A l l ; 0212121=+?⊥B B A A l l .

66、直线在坐标轴上的截矩可正,可负,也可为0. 67、直线在两坐标轴上的截距相等,直线方程可以理解为

1=+b

y

a x ,但不要忘记当 a=0时,直线y=kx 在两条坐标轴上的截距都是0,也是截距相等.

68、两直线01=++C By Ax 和02=++C By Ax 的距离公式d=——————————

69、直线的方向向量还记得吗?直线的方向向量与直线的斜率有何关系?当直线L 的方向向量为=(x 0,y 0)时,直线斜率k=———————;当直线斜率为k 时,直线的方向向量=————— 70、到角公式及夹角公式———————,何时用? 71、处理直线与圆的位置关系有两种方法:(1)点到直线的距离;(2)直线方程与圆的方程联立,判别

式. 一般来说,前者更简捷.

72、处理圆与圆的位置关系,可用两圆的圆心距与半径之间的关系.

73、在圆中,注意利用半径、半弦长、及弦心距组成的直角三角形并且要更多联想到圆的几何性质. 74、在利用圆锥曲线统一定义解题时,你是否注意到定义中的定比的分子分母的顺序?两个定义常常结

伴而用,有时对我们解题有很大的帮助,有关过焦点弦问题用第二定义可能更为方便。(焦半径公式:椭圆:|PF 1|=———— ;|PF 2|=———— ;双曲线:|PF 1|=———— ;|PF 2|=———— (其中F 1为左焦点F 2为右焦

点 );抛物线:|PF|=|x 0|+

2

p

) 75、在用圆锥曲线与直线联立求解时,消元后得到的方程中要注意:二次项的系数是否为零?判别式

0≥?的限制.

(求交点,弦长,中点,斜率,对称,存在性问题都在0>?下进行). 76、椭圆中,a ,b ,c 的关系为————;离心率e=————;准线方程为————;焦点到相应准线距离为———— 双

曲线中,a ,b ,c 的关系为————;离心率e=————;准线方程为————;焦点到相应准线距离为———— 77、通径是抛物线的所有焦点弦中最短的弦.

78、你知道吗?解析几何中解题关键就是把题目中的几何条件代数化,特别是一些很不起眼的条件,有

时起着关键的作用:如:点在曲线上、相交、共线、以某线段为直径的圆经过某点、夹角、垂直、平行、中点、角平分线、中点弦问题等。圆和椭圆参数方程不要忘,有时在解决问题时很方便。数形结合是解决解几问题的重要思想方法,要记得画图分析哟!

79、你注意到了吗?求轨迹与求轨迹方程有区别的。求轨迹方程可别忘了寻求范围呀!

80、在解决有关线性规划应用问题时,有以下几个步骤:先找约束条件,作出可行域,明确目标函数,

其中关键就是要搞清目标函数的几何意义,找可行域时要注意把直线方程中的y 的系数变为正值。如:求2<5a-2b<4,-3<3a+b<3求a+b 的取值范围,但也可以不用线性规划。 七、向量

81、两向量平行或共线的条件,它们两种形式表示,你还记得吗?注意b a λ=是向量平行的充分不必要

条件。(定义及坐标表示) 82、向量可以解决有关夹角、距离、平行和垂直等问题,要记住以下公式:||2

=·,

cos θ2

22221212

121y x y x y y x x +++=

83、利用向量平行或垂直来解决解析几何中的平行和垂直问题可以不用讨论斜率不存在的情况,要注意

0

84、向量的运算要和实数运算有区别:如两边不能约去一个向量,向量的乘法不满足结合律,即

)()(?≠?,切记两向量不能相除。

85、你还记得向量基本定理的几何意义吗?它的实质就是平面内的任何向量都可以用平面内任意不共线

的两个向量线性表示,它的系数的含义与求法你清楚吗?

86、一个封闭图形首尾连接而成的向量和为零向量,这是题目中的天然条件,要注意运用,对于一个向

量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以 一个向量,但不能两边同除以一个向量。 87、 向量的直角坐标运算

设()()321321,,,,,b b b b a a a a ==→

,则()332211,,b a b a b a b a +++=+→

()332211,,b a b a b a b a ---=-→→

()

()R a a a a ∈=→

λλλλλ321,,

332211b a b a b a b a ++=?→

→ 232221a a a a a a ++=?=→

→→

23

222123

22

2

1

332211,cos b

b b a

a a

b a b a b a b a ++++++>=

<→

()R b a b a b a b a ∈===?→

λλλλ,,,//332211, 0332211=++?⊥→

b a b a b a b a

设A=()111,,z y x , B=()222,,z y x ,

则=-=→

OA OB AB ()222,,z y x - ()111,,z y x =()121212,,z z y y x x --- ()()()212212212z z y y x x AB AB AB -+-+-+

?=

→→

八、导数

88、导数的几何意义即曲线在该点处的切线的斜率,学会定义的多种变形。 89、几个重要函数的导数:①0'

=C ,(C 为常数)②()()Q n nx x n n

∈=-1

'

导数的四运算法则()'

'

'

υμυμ±=±

90、利用导数可以证明或判断函数的单调性,注意当f ’(x)≥0或f ’(x)≤0,带上等号。

91、f '(x 0)=0是函数f(x)在x 0处取得极值的非充分非必要条件,f(x)在x 0处取得极值的充分要条件是

什么? 92、利用导数求最值的步骤:(1)求导数()x f

'

(2)求方程()x f '=0的根n x x x ,,,21

(3)计算极值及端点函数值的大小

(4)根据上述值的大小,确定最大值与最小值.

93、求函数极值的方法:先找定义域,再求导,找出定义域的分界点,根据单调性求出极值。告诉函数

的极值这一条件,相当于给出了两个条件:①函数在此点导数值为零,②函数在此点的值为定值。 九、概率统计

94、有关某一事件概率的求法:把所求的事件转化为等可能事件的概率(常常采用排列组合的知识),转

化为若干个互斥事件中有一个发生的概率,利用对立事件的概率,转化为相互独立事件同时发生的概率,看作某一事件在n 次实验中恰有k 次发生的概率,但要注意公式的使用条件。 (1)若事件A 、B 为互斥事件,则P (A+B )=P (A )+P (B )

(2)若事件A 、B 为相互独立事件,则P (A ·B )=P (A )·P (B ) (3)若事件A 、B 为对立事件,则P (A )+P (B )=1一般地,()

()A P A p -=1

(4)如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事恰好发生K 次的概率: ()()

k

n k

k

n n p p C K P --=1

95、抽样方法主要有:简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征

是从总体中逐个抽取;系统抽样,常常用于总体个数较多时,它的主要特征就是均衡成若干部分,每一部分只取一个;分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异。它们的共同特征是每个个体被抽到的概率相等。

96、用总体估计样本的方法就是把样本的频率作为总体的概率。

相关主题
相关文档
最新文档