高等数学题集第十章

高等数学题集第十章
高等数学题集第十章

三、典型例题解析

例1 判定下列级数的收敛性,若收敛,求其和. (1

)221(0)n a ∞

=>∑;

(2)111

16611

(54)(51)

n n +++

+

??-+;

(3)

22

111111232323n n

-+-++

-+.

分析 (1)一般项是两项之差,前n 项的和n s 可以通过消项来求得;(2)一般项需先拆项,然后前n 项的和n s 可以通过消项来求得;(3)级数前n 项的和n s 不容易求得,因此,lim n

n s →∞

不易求出.但级数前2n 项的部分和2n s 和前(21)n -项的部分和21n s -却容易求出,于是可求出2lim n n s →∞

和21lim n n s -

→∞

,从而可求出lim n n s

→∞

(1)由于

2122

2 ) ((n n

n s a a -=+

++

++2=a .

故2lim lim()n n n s a →∞

→∞

=2lim n a →∞

=1a =-,即原级数收敛且其和为1a -.

(2)由于 11

1

16611

(54)(51)

n s n n =

+++

??-+

=11111111

(1)()()56561155451

n n -+-++--+ =111111(1)566115451n n -+-++--+ =1111(1)55155(51)

n n -=-++. 故111lim lim 55(51)5n n n s n →∞

→∞=

-=+,即原级数收敛且和为1

5

. (3)级数

22

1111

11232323n n

-+-++

-+前2n 项的部分和为

222111111232323

n n n s -+-+-=

+ =2211

111122

2333n n ????+++-+++ ? ?????

=

111111223311112

3

n

n ????--

? ?????-

--=11

12223n n -+?,

故21lim 2n n s →∞

=

,又因为2121lim lim()3n n n n n s s -→∞→∞=-12=,从而1lim 2n n s →∞=.故原级数收敛且和为12

例2 设级数1

n n a ∞

=∑收敛,问级数21

n n a ∞

=∑是否收敛?为什么?

解 级数1

n n a ∞

=∑收敛,级数2

1

n n a ∞

=∑

可能收敛也可能发散.如级数1

(1)n

n ∞

=-∑收敛,但级

数11n n ∞

=∑却发散;又如级数11(1)n n n ∞=-∑收敛,级数211n n

=∑也收敛.

错误解答 由于级数1n n a ∞

=∑收敛,所以lim 0n n a →∞

=,故2

lim

0n n n

a a →∞=,从而由比较审敛法知级数21

n n a ∞

=∑收敛.

错解分析 比较审敛法只适用于正项级数,而题目中并未告知级数1

n n a ∞

=∑是正项级数,

故此种解法是错误的.

例3 判别下列级数是否收敛?

(1)12(1)2n

n n ∞=+-∑; (2

)1n e ∞

=∑; (3)22tan

2n

n n π

=∑; (4

)n ∞

=.

分析 (1)所给级数是正项级数,其一般项是2(1)2n

n n

u +-=,由于

112()()22n n n u =?+-,211

3()22

n n n u +≤=?,

故此级数的收敛性可用收敛级数的性质、比较审敛法或根值审敛法等方法来判别.

(2

)所给级数是正项级数,其一般项是n u e =

01lim lim lim 1n n n n n

u

e

e u ρ+→∞→∞

→∞

=====,

故比值审敛法失效,可用比较审敛法.

(3)所给级数是正项级数,其一般项是2tan

2n n

u n π

=,注意到当n →∞时,

2

2

tan

22n n

n

n u n π

π=,

因此原级数与级数2

22n

n n π∞

=∑

同时收敛同时发散.故只需判别级数2

2

2n

n n π∞

=∑

的收敛性就可以了.

(4

)所给级数是正项级数,其一般项是n u =

故用比较审敛法来判别其收敛性为宜.

解 (1)解法1 由于112()()22n n

n u =?+-,而级数112()2n n ∞=?∑和11()2n n ∞

=-∑都收敛,由

收敛级数的性质可知所给级数收敛.

解法2 由于2(1)0 (1,2,)2n

n n

u n +-=>=,故所给级数是正项级数.又由于

211

3()22

n n n u +≤=?,

且正项级数1

1

3()2n n ∞

=?∑收敛,故由比较审敛法知所给级数收敛.

解法3 由于2(1)0 (1,2,)2n

n n

u n +-=>=,故所给级数是正项级数.又由于

1

12

n n ρ=<,

故由根值审敛法知原级数收敛.

错误解答 因为极限

11

112(1)212(1)lim lim lim 22(1)22(1)n n n n n n n n n n n

u u ++++→∞→∞→∞+-+-=?=+-+- 不存在.(因为,若令12(1)2(1)n n n

x ++-=+-,则它有两个子数列:213k x -→,21

3k x →(k →+∞).因此,1

2(1)lim lim 2(1)n n n

n n x +→∞→∞+-=+-不存在.)由比值审敛法可知原级数的收敛性不能确定.

错解分析 在比值审敛法中,极限1lim n n n

u

u +→∞存在仅仅是判别正项级数收敛性的充分条件,

而不是必要条件.

(2

)由于0 (1,2,)n u e n =>=,故所给级数是正项级数.由幂级数展开式:

21... ()2!!

n

x

x x e x x n =+++++

-∞<<+∞,

可得

2

24

n u n =

<

, 而正项级数2

124

n n

=∑

收敛,由比较审敛法知原级数收敛. (3)由于2tan

0 (2,3,4,)2

n n

u n n π

=>=,故所给级数是正项级数.又由于当n →∞

2

2

tan

22n n

n

n u n π

π=,

令2

2n n

n v π=

,由比较审敛法知原级数与正项级数2

n n v ∞=∑同时收敛同时发散.注意到

2112(1)2lim lim 2n n n n n n

v n v n πρπ++→∞→∞+==?22(1)1

lim 122n n n →∞+==<, 可知级数2

n n v ∞

=∑

收敛,因此原级数也收敛.

(4)由于0 (1,2,3,)n u n =

>

=,故所给级数是正项级数.又由于

20

1

2

n n

u n

xdx

=

=

=?

, 且正项级数2

12

n n

=∑

收敛,故由比较审敛法知原级数收敛. 注1 用比较审敛法来判别正项级数的收敛性时

a .若用不等式形式,则应该将原级数的一般项放大为一个收敛级数的一般项(此时可断定原级数收敛),或者将原级数的一般项缩小为一个发散级数的一般项(此时可断定原级数发散).

b .若用极限形式,则应该考察级数一般项趋于无穷小时的阶.当它是1

n

的 (1)k k >阶无穷小时,则可断定原级数收敛;当它是

1

n

的同阶或低阶无穷小时,则断定原级数发散. 注2 判别级数收敛性时必须先确定级数的类型,然后用相应的审敛法. 例4 判别下列级数的收敛性:

(1)2

1(!)(2)!n n n ∞=∑; (2)2n n n αβ∞

=∑(α为任意实数,0β≥);

(3)1

!

n n n a n n ∞

=∑ (0a >).

分析(1)所给级数是正项级数,其一般项是2

(!)(2)!

n n u n =,含有阶乘,故用比值审敛法比

较好.

(2)所给级数是正项级数,其一般项是n n u n αβ=,含有n 次幂,故可用根值审敛法也可用比值审敛法来判别.

(3)所给级数是正项级数,其一般项是!

n n n a n u n =,含有阶乘,故用比值审敛法判别收

敛性比较好.

解 (1)由于2

(!)>0(2)!

n n u n =,

(1,2,3,n =),故所给级数是正项级数.又由于

2212[(1)!](2)!(1)1

lim lim lim 1[2(1)]!(!)(22)(21)4n n n n n

u n n n u n n n n ρ+→∞→∞→∞++=?==<+++=, 故由比值审敛法知原级数收敛.

(2)由于0 (2,3,4,)n n u n n αβ=≥=,故所给级数是正项级数.又由于

n n n ρββ===,

11(1)1lim lim lim ()n n n n n n n

u n n u n n αα

αβρβββ++→∞→∞→∞++====, 故由根值审敛法(或比值审敛法)知:当01β≤<时,原级数收敛;当>1β时,原级数发散;而当=1β时,原级数变为1n n α∞

=∑,当1α<-时,级数收敛;当1α≥-时,级数发散.

综上所述:当01β≤<,α为任意实数时,原级数收敛;当1β>,α为任意实数时,原级数发散;当=1β,1α<-时,原级数收敛;当=1β,1α≥-时,原级数发散.

(3)由于!

>0 (0,1,2,3,)n n n a n u a n n

=>=,故所给级数是正项级数.又由于

111(1)!lim lim lim 1(1)!(1)

n n n n n n n n n n u a n n a a

u n a n e n

ρ+++→∞→∞→∞+==?==++, 故由比值审敛法知当0a e <<时,原级数收敛;当a e >时,原级数发散;当a e =时,考察

1 (1,2,3,)1(1)

n n n

u e

n u n

+==+,

的值.由极限1lim(1)n n e n →∞+=的推导过程可知:数列1

(1)(1,2,3,)n n n +=是单调增加的,并且

有上界e ,即有

1

(1) (1,2,3,)n e n n

+<=,

因此有

111(1)

n n n

u e

u n

+=>+,

由此可得1 (1,2,3,)n n u u n +>=.而1u e =,故lim 0n n u →∞

≠,由级数收敛的必要条件可知原级

数发散.

综上所述:当0a e <<时,原级数收敛;当a e ≥时,原级数发散.

例5 证明级数 2111(1)3n n n n ∞

=+∑收敛,并由此证明2

1111lim (1)03

n k k x k n k →∞=+=∑.

分析 所给级数是正项级数,其一般项是211(1)3n n n u n

=+,含有n 次幂,故用根值审敛法来判别其收敛性.注意到2111(1)3n k k k k =+∑刚好是级数2

111(1)3n n n n ∞

=+∑的部分和n s ,若级数收

敛,则n s 有界,从而可得所要证的结论.

证明 由于

211(1)>0 (1,2,3,)3n n n u n n

=

+=, 故所给级数是正项级数.又由于

11lim (1)133

n n n n e

n ρ→∞=+=<,

故由根值审敛法知所给级数收敛.由此可知该级数的部分和数列{}n s 有界,所以

211111

lim (1)lim 03

n k n k n n k s n k n →∞→∞=+==∑. 注 在证明级数2111(1)3

n n

n n ∞

=+∑

收敛时,若用比值审敛法,则求ρ时较复杂. 例6 (1)下列说法正确的是( ). A .若1n n u ∞

=∑收敛,则1n n u ∞

=∑收敛.

B .若1n n u ∞

=∑收敛,则21

n n u ∞

=∑收敛.

C .若1n n u ∞

=∑收敛,则lim 0n n nu →∞

=.

D .若1n n u ∞

=∑收敛且lim 1n

n n

u v →∞=,则1n n v ∞=∑不一定收敛.

(2)(06研)若级数1

n n a ∞

=∑收敛,则级数( ).

A .1n n a ∞=∑收敛.

B .1(1)n n n a ∞

=-∑收敛.

C .11

n n n a a ∞

+=∑收敛.

D .1

1

2n n n a a ∞

+=+∑

收敛. 解 (1)

取(1)n

n u =-,则可知A ,B 及C 错误.故选D .另外,

如果取(1)n

n u =-

1

(1)

n

n v n =-+,则可知虽然级数1n n u ∞=∑收敛且有lim 1n n n

u v →∞=,但级数1n

n v ∞

=∑

发散;若级数1n n u ∞

=∑收敛且lim 1n

n n

u v →∞=,当1n n u ∞=∑和1n n v ∞

=∑都是正项级数时,由比较审敛可

知1

n n v ∞

=∑也收敛。这从另一方面说明了D 是正确的.

(2)因为级数1

n n a ∞=∑收敛,故级数11

n n a ∞

+=∑也收敛,由收敛级数的性质可知D 正确.另外,

如果取(1)n

n a =-A ,B 及C 错误.

例7 判别下列级数是否收敛?如果收敛,是绝对收敛还是条件收敛?

(1)1

1(1)n p

n n -∞=-∑; (2

)1

(1)n n ∞

=-∑; (3)1

1(1)(1)!n n

n n n +∞

=-+∑; (4

)n n ∞

=.

分析 这些级数都是交错级数,属任意项级数范畴.判别其收敛性的一般方法是:先根据正项级数的审敛法来判定是否绝对收敛,若是,则该级数本身收敛,判别工作完成;若不是,再判别该级数本身是否收敛.若它满足莱布尼茨定理的两个条件,则它本身收敛,即条件收敛,判别工作完成;若它不满足莱布尼茨定理的两个条件,则需要另找方法判别它的收敛性.值得注意的是,在用比值审敛法或根值审敛法判别绝对收敛的过程中,若1ρ>,则该级数不仅不绝对收敛,而且其本身一定发散.

解 (1)1(1)n n p u n --=,1

n p u n =.故当1p >时,1n n u ∞

=∑收敛,即原级数绝对收敛;当

01p <≤时,1

n n u ∞

=∑发散,但由莱布尼茨定理知1

n n u ∞

=∑收敛,即原级数条件收敛;当0p ≤时,

lim 0n n u →∞

≠,原级数发散.

(2

)(1)n n u =-

,2n u n

=

=

(n →∞),而

n ∞

=发散,故由比较审敛法知1

n n u ∞=∑发散.注意到1

n n u ∞

=∑收敛(满足莱布尼茨定理条件),

故原级数条件收敛.

(3)1(1)(1)!n n

n n u n +=-+,1

(1)!

n n n u n +=+.由于

21

111

(1)(1)!1(1)lim

lim lim (2)!2n n n n n n n n n

u n n n n u n n n n ρ+++++→∞

→∞→∞++++==?=?++ 111

lim

(1)(1)12n n n e n n n

→∞+=?++=>+,

故由比值审敛法知1

n n u ∞

=∑发散,注意到1lim

1n n n

u u +→∞

>,lim 0n n u →∞

≠,因此原级数发散.

(4) 解法

1 1(1)1+o()]2n n

n

n n u n n -=

-

1

)n

n

n ,

因为n

n ∞

=

条件收敛,级数n ∞

=

和1

)n

n n ∞

=绝对收敛,故原级数条件收敛. 解法2 因为

n n u =

n u =

1

(2,3,)1

n n >

=+, 故级2

n n u ∞

=∑发散.(虽然原级数是交错级数,但不满足莱布尼茨定理条件,因此不能用莱布

尼茨定理来判别其收敛性),下面用收敛定义来判别

.

2

2

n s n =-

+

+

(

2

n =

+++

+

+

由此可见2{}n

s 是单调减少的.注意到

2

2

n s n

=-

-

-+

(

2n =++

++

- >,

故数列2{}n s 有界,因而存在极限,不妨设2lim n n s s →∞

=.又21lim 0n n u +→∞

=,因此有

21221lim lim()n n n n n s s u s ++→∞

→∞

=+=,

从而数列{}n s

有极限lim n n s s →∞

=,即原级数条件收敛.

例8 设正项级数1

n n a ∞=∑与1

n n b ∞=∑均收敛,证明级数n ∞

=

证明 正项级数1

n n a ∞=∑与1

n n b ∞

=∑均收敛,故由收敛级数的性质知级数1

2n n

n a b ∞

=+∑

收敛.由于>0, >0n n a b ,则

高等数学下试题及参考答案

高等数学下试题及参考 答案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

华南农业大学期末考试试卷(A 卷 ) 2016~2017学年第2 学期 考试科目:高等数学A Ⅱ 考试类型:(闭卷)考试 考试时间: 120 分钟 学号 姓名 年级专业 一、填空题(本大题共5小题,每小题3分,共15分) 1.二元函数2ln(21)z y x =-+的定义域为 。 2. 设向量(2,1,2)a =,(4,1,10)b =-,c b a λ=-,且a c ⊥,则λ= 。 3.经过(4,0,2)-和(5,1,7)且平行于x 轴的平面方程为 。 4.设yz u x =,则du = 。 5.级数11 (1)n p n n ∞ =-∑,当p 满足 条件时级数条件收敛。 二、单项选择题(本大题共5小题,每小题3分,共15分) 1.微分方程2()'xy x y y +=的通解是 ( ) A .2x y Ce = B .22x y Ce = C .22y y e Cx = D .2y e Cxy =

2 .求极限(,)(0,0)lim x y →= ( ) A .14 B .12- C .14- D .12 3.直线:3 27 x y z L = =-和平面:32780x y z π-+-=的位置关系是 ( ) A .直线L 平行于平面π B .直线L 在平面π上 C .直线L 垂直于平面π D .直线L 与平面π斜交 4.D 是闭区域2222{(,)|}x y a x y b ≤+≤ ,则D σ= ( ) A .33()2 b a π- B .332()3 b a π- C .334()3 b a π - D . 3 33()2 b a π- 5.下列级数收敛的是 ( ) A .11(1)(4)n n n ∞ =++∑ B .2111n n n ∞=++∑ C .1 1 21n n ∞ =-∑ D .n ∞ = 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求微分方程'x y y e +=满足初始条件0x =,2y =的特 解。 2. 计算二重积分22 D x y dxdy x y ++?? ,其中22 {(,):1,1}D x y x y x y =+≤+≥。

同济大学2009-高数B期末考试题

同济大学2009-2010学年第一学期高等数学B(上)期终试卷 一. 填空题(4'416'?=) 1. 设函数()f x 具有二阶导数, 且1'0, 'dx y dy y ≠=, 则223 " 'd x y dy y =- . 2. 设函数()f u 为可导函数, 且'(0)0f ≠, 由参数方程3(sin 2)(1) t x f t y f e π =-?? =-?所确定的函数的 导数 32 t dy dx ==. 3. 极限111lim( )ln 2 12 n n n n n →∞ +++ =+++. 4. 微分方程22"5'6sin x y y y xe x -++=+的特解形式为(不需确定系数) 2()cos2sin 2x x Ax B e C x D x E -++++. 二. 选择题(4'416'?=) 5. 设函数sin ()bx x f x a e =+在(,)-∞+∞内连续, 且lim ()0x f x →-∞=, 则常数,a b 满足: [D ]. ()0,0A a b <>; ()0,0B a b ><; ()0,0C a b ≤>; ()0,0D a b ≥< 6. 曲线 1 ln(1)x y e x -= ++, [D ] ()A 没有水平渐近线但有铅直渐近线; ()B 没有铅直渐近线但有水平渐近线; ()C 没有水平和铅直渐近线; ()D 有水平和铅直渐近线 7. 将0x + →时的无穷小量2 sin ,,(1)x x t tdt tdt e dt αβγ= ==-? ?排列起来, 使 得后面的是前一个的高阶无穷小, 则正确的排列顺序是: [C ] (),,A αβγ; (),,B αγβ; (),,C βαγ;

高等数学(下册)期末复习试题及答案

一、填空题(共21分 每小题3分) 1.曲线???=+=0 12x y z 绕z 轴旋转一周生成的旋转曲面方程为122++=y x z . 2.直线35422:1z y x L =--=-+与直线?? ???+=+-==t z t y t x L 72313:2的夹角为2π. 3.设函数22232),,(z y x z y x f ++=,则=)1,1,1(grad f }6,4,2{. 4.设级数∑∞=1n n u 收敛,则=∞→n n u lim 0. 5.设周期函数在一个周期内的表达式为???≤<+≤<-=, 0,10,0)(ππx x x x f 则它的傅里叶级数在π=x 处收敛于21π +. 6.全微分方程0d d =+y x x y 的通解为 C xy =. 7.写出微分方程x e y y y =-'+''2的特解的形式x axe y =*. 二、解答题(共18分 每小题6分) 1.求过点)1,2,1(-且垂直于直线???=+-+=-+-0 2032z y x z y x 的平面方程. 解:设所求平面的法向量为n ,则{}3,2,11 11121=--=k j i n (4分) 所求平面方程为 032=++z y x (6分) 2.将积分???Ω v z y x f d ),,(化为柱面坐标系下的三次积分,其中Ω是曲面 )(222y x z +-=及22y x z +=所围成的区域. 解: πθ20 ,10 ,2 :2 ≤≤≤≤-≤≤Ωr r z r (3分)

???Ωv z y x f d ),,(???-=221020d ),sin ,cos (d d r r z z r r f r r θθθπ (6分) 3.计算二重积分??+-=D y x y x e I d d )(22,其中闭区域.4:22≤+y x D 解 ??-=2020d d 2r r e I r πθ??-- =-20220)(d d 212r e r πθ?-?-=202d 221r e π)1(4--=e π 三、解答题(共35分 每题7分) 1.设v ue z =,而22y x u +=,xy v =,求z d . 解:)2(232y y x x e y ue x e x v v z x u u z x z xy v v ++=?+?=?????+?????=?? (3分) )2(223xy x y e x ue y e y v v z y u u z y z xy v v ++=?+?=?????+?????=?? (6分) y xy x y e x y y x x e z xy xy d )2(d )2(d 2332+++++= (7分) 2.函数),(y x z z =由方程0=-xyz e z 所确定,求y z x z ????,. 解:令xyz e z y x F z -=),,(, (2分) 则 ,yz F x -= ,xz F y -= ,xy e F z z -= (5分) xy e yz F F x z z z x -=-=??, xy e xz F F y z z z y -=-=??. (7分) 3.计算曲线积分 ?+-L y x x y d d ,其中L 是在圆周22x x y -=上由)0,2(A 到点)0,0(O 的有 向弧段. 解:添加有向辅助线段OA ,有向辅助线段OA 与有向弧段OA 围成的闭区域记为D ,根据格林 公式 ????+--=+-OA D L y x x y y x y x x y d d d d 2d d (5分) ππ=-? =022 (7分) 4.设曲线积分?++L x y x f x y x f e d )(d )]([与路径无关,其中)(x f 是连续可微函数且满足1)0(=f ,

大学高等数学期末考试题及答案详解(计算题)

大学数学期末高等数学试卷(计算题) 一、解答下列各题 (本大题共16小题,总计80分) 1、(本小题5分) .d )1(22x x x ? +求 2、(本小题5分) 求极限 lim x x x x x x →-+-+-2332121629124 3、(本小题5分) 求极限lim arctan arcsin x x x →∞?1 4、(本小题5分) ? -.d 1x x x 求 5、(本小题5分) .求dt t dx d x ?+2 021 6、(本小题5分) ??.d csc cot 46x x x 求 7、(本小题5分) .求?ππ 2 1 21cos 1dx x x 8、(本小题5分) 设确定了函数求.x e t y e t y y x dy dx t t ==?????=cos sin (),22 9、(本小题5分) . 求dx x x ?+3 01 10、(本小题5分) 求函数 的单调区间y x x =+-422 11、(本小题5分) .求? π +2 02sin 8sin dx x x 12、(本小题5分) .,求设 dx t t e t x kt )sin 4cos 3()(ωω+=- 13、(本小题5分) 设函数由方程所确定求.y y x y y x dy dx =+=()ln ,226 14、(本小题5分) 求函数的极值y e e x x =+-2 15、(本小题5分) 求极限lim ()()()()()()x x x x x x x →∞++++++++--121311011011112222 16、(本小题5分) .d cos sin 12cos x x x x ? +求 二、解答下列各题

2019最新高等数学(下册)期末考试试题(含答案)ABI

2019最新高等数学(下册)期末考试试题(含答 案) 一、解答题 1.建立以点(1,3,-2)为中心,且通过坐标原点的球面方程. 解:球的半径为R == 设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程. 2.求下列线性微分方程满足所给初始条件的特解: πd 11(1)sin ,1d x y y x y x x x =+== ; 解: 11d d 11sin e sin d [cos ]e d x x x x x y x x c c x x c x x x -??????==+=-+?????? ?? 以π,1x y ==代入上式得π1c =-, 故所求特解为 1(π1cos )y x x =--. 2311(2)(23)1,0x y x y y x ='+-== . 解:2 2323d 3ln x x x x c x --=--+? 2 2 223323d 23 +3ln d 3ln e e e d e d x x x x x x x x x x y x c x c -------??????∴==++???????? 2223311e .e e 22x x x x x c c ----????=?=++ ? ????? 以x =1,y =0代入上式,得12e c =-. 故所求特解为 2311e 22e x y x -??=- ??? . 3.设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比,若质点由(a ,0)沿椭圆移动到B (0,b ),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t =??=?,t :0→π2

大学高等数学(微积分)下期末考试卷(含答案)

大学高等数学(微积分)<下>期末考试卷 学院: 专业: 行政班: 姓名: 学号: 座位号: ----------------------------密封-------------------------- 一、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末 的括号中,本大题分4小题, 每小题4分, 共16分) 1、设lim 0n n a →∞ =,则级数 1 n n a ∞ =∑( ); A.一定收敛,其和为零 B. 一定收敛,但和不一定为零 C. 一定发散 D. 可能收敛,也可能发散 2、已知两点(2,4,7),(4,6,4)A B -----,与AB 方向相同的单位向量是( ); A. 623(, , )777 B. 623(, , )777- C. 623( ,, )777-- D. 623(, , )777-- 3、设3 2 ()x x y f t dt = ? ,则dy dx =( ); A. ()f x B. 32()()f x f x + C. 32()()f x f x - D.2323()2()x f x xf x - 4、若函数()f x 在(,)a b 内连续,则其原函数()F x ( ) A. 在(,)a b 内可导 B. 在(,)a b 内存在 C. 必为初等函数 D. 不一定存在

二、填空题(将正确答案填在横线上, 本大题分4小题, 每小题4分, 共16分) 1、级数1 1 n n n ∞ =+∑ 必定____________(填收敛或者发散)。 2、设平面20x By z -+-=通过点(0,1,0)P ,则B =___________ 。 3、定积分1 21sin x xdx -=?__________ _。 4、若当x a →时,()f x 和()g x 是等价无穷小,则2() lim () x a f x g x →=__________。 三、解答题(本大题共4小题,每小题7分,共28分 ) 1、( 本小题7分 ) 求不定积分sin x xdx ? 2、( 本小题7分 ) 若()0)f x x x =+>,求2'()f x dx ?。

大一第二学期高数期末考试题(含答案)

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 2 21 n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--??? ??≤<-≤=1 32 )(1020)(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且 →=0 () lim x f x A x ,A 为常数. 求'() g x

高等数学下册期末考试题及答案

高等数学(下册)考试试卷(一) 一、填空题(每小题3分,共计24分) 1、 z =)0()(log 2 2>+a y x a 的定义域为D= 。 2、二重积分 ?? ≤++1 ||||22)ln(y x dxdy y x 的符号为 。 3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。 4、设曲线L 的参数方程表示为),() () (βαψ?≤≤?? ?==x t y t x 则弧长元素=ds 。 5、设曲面∑为92 2 =+y x 介于0=z 及3=z 间的部分的外侧,则=++?? ∑ ds y x )12 2( 。 6、微分方程x y x y dx dy tan +=的通解为 。 7、方程04) 4(=-y y 的通解为 。 8、级数 ∑∞ =+1 )1(1 n n n 的和为 。 二、选择题(每小题2分,共计16分) 1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续; (B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在; (C ) y y x f x y x f z y x ?'-?'-?),(),(0000当0)()(2 2→?+?y x 时,是无穷小; (D )0) ()(),(),(lim 2 2 00000 =?+??'-?'-?→?→?y x y y x f x y x f z y x y x 。 2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222y u y x u x ??+??等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。 3、设Ω:,0,12 2 2 ≥≤++z z y x 则三重积分???Ω = zdV I 等于( ) (A )4 ? ??2 201 3 cos sin π π ???θdr r d d ;(B )???20 1 2 sin π π??θdr r d d ;

高等数学下册期末考试

高等数学 A( 下册 ) 期末考试试题 大题一二三四五六七 小题 1 2 3 4 5 得分 一、填空题:(本题共 5 小题,每小题 4 分,满分 20 分,把答案直接填在题中 横线上) 1 、已知向量、满足,,,则. 2 、设,则. 3 、曲面在点处的切平面方程为. 4 、设是周期为的周期函数,它在上的表达式为,则 的傅里叶级数 在处收敛于,在处收敛于. 5 、设为连接与两点的直线段,则. ※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题 纸写上:姓名、学号、班级. 二、解下列各题:(本题共 5 小题,每小题 7 分,满分 35 分) 1 、求曲线在点处的切线及法平面方程. 2 、求由曲面及所围成的立体体积. 3 、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛? 4 、设,其中具有二阶连续偏导数,求.

5 、计算曲面积分其中是球面被平面截出的顶部. 三、(本题满分 9 分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值. (本题满分 10 分) 计算曲线积分, 其中为常数,为由点至原点的上半圆周. 四、(本题满分 10 分) 求幂级数的收敛域及和函数. 五、(本题满分 10 分) 计算曲面积分, 其中为曲面的上侧. 六、(本题满分 6 分) 设为连续函数,,,其中是由曲 面与所围成的闭区域,求. ------------------------------------- 备注:①考试时间为 2 小时; ②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。 高等数学 A( 下册 ) 期末考试试题【 A 卷】 参考解答与评分标准 2009 年 6 月

最新高数期末考试题.

往届高等数学期终考题汇编 2009-01-12 一.解答下列各题(6*10分): 1.求极限)1ln(lim 1 x x e x ++ →. 2.设?? ? ??++++=22222ln a x x a a x x y ,求y d . 3.设?????-=-=3 232t t y t t x ,求22d d x y . 4.判定级数()()0!1 2≥-∑∞ =λλλn n n n n e 的敛散性. 5.求反常积分() ?-10 d 1arcsin x x x x . 6.求?x x x d arctan . 7.?-π 03d sin sin x x x . 8.将?????≤≤<=ππ πx x x x f 2,02,)(在[]ππ,-上展为以π2为周期的付里叶级数,并指出收敛于()x f 的区间. 9.求微分方程0d )4(d 2=-+y x x x y 的解. 10.求曲线1=xy 与直线0,2,1===y x x 所围平面图形绕y 轴旋转一周所得旋转体的体积. 二.(8分)将()()54ln -=x x f 展开为2-x 的幂级数,并指出其收敛域. 三.(9分)在曲线()10sin 2≤≤=x x y 上取点() ()10,sin ,2≤≤a a a A ,过点A 作平行于ox 轴的直线L ,由直线L ,oy 轴及曲线()a x x y ≤≤=0sin 2所围成的图形记为1S ,由直线L ,直线1=x 及曲线 ()1sin 2≤≤=x a x y 所围成的图形面积记为2S ,问a 为何值时,21S S S +=取得最小值. 四.(9分)冷却定律指出,物体在空气中冷却的速度与物体和空气温度之差成正比,已知空气温度为30℃时,物体由100℃经15分钟冷却至70℃,问该物体冷却至40℃需要多少时间? 五.(8分)(学习《工科数学分析》的做(1),其余的做(2)) (1)证明级数∑∞ =-02n nx e x 在[),0+∞上一致收敛. (2)求幂级数()∑ ∞ =-----1 221 21212)1(n n n n x n 的收敛域及和函数. 六.(6分)设()[]b a C x f ,2∈,试证存在[]b a ,∈ξ,使()()()()?''-+ ??? ??+-=b a f a b b a f a b dx x f ξ324 1 2

合肥工业大学大一上学期高数期末考试题

高数期末考试 一、填空题(本大题有4小题,每小题4分,共16分) 1. = +→x x x sin 2 ) 31(lim . 2. ,)(cos 的一个原函数是已知x f x x = ??x x x x f d cos )(则 . 3. lim (cos cos cos )→∞ -+++=2 2 221L n n n n n n π π ππ . 4. = -+? 2 12 12 211 arcsin - dx x x x . 二、单项选择题 (本大题有4小题, 每小题4分, 共16分) 5. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 6. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 7. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且'>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 三、解答题(本大题有5小题,每小题8分,共40分) 8. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 9. 设函数)(x f 连续, =?1 ()()g x f xt dt ,且→=0 () lim x f x A x ,A 为常数. 求'() g x 并讨论' ()g x 在=0x 处的连续性. 10. 求微分方程2ln xy y x x '+=满足 =- 1 (1)9y 的解. 四、 解答题(本大题10分)

大一第二学期高数期末考试题(含答案)讲课稿

大一第二学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. )时( ,则当,设133)(11)(3→-=+-= x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无 穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x , 则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =??x x x x f d cos )(则 . 7. lim (cos cos cos )→∞ -+++=2 2 221L n n n n n n π π ππ . 8. = -+? 2 1 2 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求 11. .  求,, 设?--?????≤<-≤=1 32 )(1020 )(dx x f x x x x xe x f x 12. 设函数 )(x f 连续, =?1 ()()g x f xt dt ,且→=0() lim x f x A x ,A 为常数. 求'() g x

2016年下半年《高等数学(下)》期末考试试卷及答案

2016年下半年《高等数学(下)》期末考试试卷及答案 (河南工程学院) 1. ( 单选题) 若函数 f(x) 在点 x0 处可导且,则曲线 y=f(x) 在 点( x 0, f(x0) )处的法线的斜率等于()(本题3.0分) A、 B、 C、 D、 2. ( 单选题) 无穷小量是(本题 3.0分) A、比0稍大一点的一个数 B、一个很小很小的数 C、以0为极限的一个变量 D、数0 3. ( 单选题) 设函数,则其间断点的个数是()。 (本题3.0分) A、0 B、 1

C、 2 D、 3 4. ( 单选题) 设则(本题3.0分) A、 B、 C、 D、 5. ( 单选题) 极限 (本题3.0分) A、-2 B、0 C、 2 D、 1 6. ( 单选题) 设则(本题3.0分) A、 B、 C、 D、 7. ( 单选题) 设函数f(x)=(x+1)Cosx,则f(0)=( ).(本题3.0分)

A、-1 B、0 C、 1 D、无定义 8. ( 单选题) 若,则f(x)=()。(本题3.0分) A、 B、 C、 D、 9. ( 单选题) 微分方程是一阶线性齐次方程。 (本题3.0分) A、正确 B、错误 10. ( 单选题) 曲线在点处的切线方程为(本题3.0分) A、 B、 C、 D、 11. ( 单选题) 极限(本题3.0分)

A、 1 B、-1 C、0 D、不存在 12. ( 单选题) 极限(本题3.0分) A、-2 B、0 C、 2 D、 1 13. ( 单选题) 设,则( )。 (本题3.0分) A、 B、6x C、 6 D、0 14. ( 单选题) 极限 (本题3.0分)

同济大学大一 高等数学期末试题 (精确答案)

学年第二学期期末考试试卷 课程名称:《高等数学》 试卷类别:A 卷 考试形式:闭卷 考试时间:120 分钟 适用层次: 适用专业; 阅卷须知:阅卷用红色墨水笔书写,小题得分写在每小题题号前,用正分表示,不 得分则在小题 大题得分登录在对应的分数框内;考试课程应集体阅卷,流水作业。 课程名称:高等数学A (考试性质:期末统考(A 卷) 一、单选题 (共15分,每小题3分) 1.设函数(,)f x y 在00(,)P x y 的两个偏导00(,)x f x y ,00(,)y f x y 都存在,则 ( ) A .(,)f x y 在P 连续 B .(,)f x y 在P 可微 C . 0 0lim (,)x x f x y →及 0 0lim (,)y y f x y →都存在 D . 00(,)(,) lim (,)x y x y f x y →存在 2.若x y z ln =,则dz 等于( ). ln ln ln ln .x x y y y y A x y + ln ln .x y y B x ln ln ln .ln x x y y C y ydx dy x + ln ln ln ln . x x y y y x D dx dy x y + 3.设Ω是圆柱面2 2 2x y x +=及平面01,z z ==所围成的区域,则 (),,(=??? Ω dxdydz z y x f ). 21 2 cos .(cos ,sin ,)A d dr f r r z dz π θθθθ? ? ? 21 2 cos .(cos ,sin ,)B d rdr f r r z dz π θθθθ? ? ? 212 2 cos .(cos ,sin ,)C d rdr f r r z dz π θπθθθ-?? ? 21 cos .(cos ,sin ,)x D d rdr f r r z dz πθθθ?? ? 4. 4.若1 (1)n n n a x ∞ =-∑在1x =-处收敛,则此级数在2x =处( ). A . 条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定 5.曲线2 2 2x y z z x y -+=?? =+?在点(1,1,2)处的一个切线方向向量为( ). A. (-1,3,4) B.(3,-1,4) C. (-1,0,3) D. (3,0,-1) 二、填空题(共15分,每小题3分) 系(院):——————专业:——————年级及班级:—————姓名:——————学号:————— ------------------------------------密-----------------------------------封----------------------------------线--------------------------------

大学高数期末考试题

高等数学(上)期中测试题 一 填空题:(每小题4分,共32分,要求:写出简答过程,并且把答案填在横线上) 1.设 1 (1) ,0 (),0 x x x f x x a x ?? -<=??+≥?在 (,)-∞+∞上处处连续,则a =---。 解 ()()1 11 10 lim 1lim 1x x x x x x e - - ---→→????-=+-=?????? ()0 lim x x a a + →+=,有连续性有a =-1 e 2. 已 知 (3)2f '=,则 0 (3)(3)lim 2h f h f h →--=1-。 解 已知 ()0(3)(3) 3lim 2h f f h f h →--'== 则 00(3)(3)1(3)(3)lim lim 22h h f h f f f h h h →→----=- 3.函数()2cos f x x x =+在[0, ] 2 π 上的最大值为6 π+解 令 ()12sin 0f x x '=-=得6 x π = 则最大值为 6 π + 4. 设 5(sin )5(1cos ) x t t y t =+?? =-? , 则 t dy dx =0,2 2t d y dx ==120 解 () 5sin 0 51cos t t t dy dy t dt dx dx t dt ===== =+ 5. 设 1(0)x y x x +=>,则y '= ()1ln x x x x x ++ 解 两边取对数有 ()ln 1ln y x x =+

两边关于 x 求导得1ln y x x y x ' +=+,整理后即得结果 6. 设函数 ()y y x =由方程 cos()0 x y xy ++=确定,则 dy =sin 1 1sin y xy dx x xy --。 解 对方程两边关于x 求导 得: sin 11sin y xy y x xy -'=- 则dy = sin 11sin y xy dx x xy -- 7. 曲线 2x y e -=在点(0,1)M 处的曲率K =25 解 200 22x x x y e -=='=-=- 200 44x x x y e -==''== 则 () ( )3 3 222 2 4 25 112y k y '' = = =??'++-?? 8.函数()x f x xe =在0 1x =处的二阶泰勒公式为()f x = 解 由 () ()()n x f x n x e =+,代入泰勒公式即得 二.选择题:(每小题4分,共32分,每小题的四个选项中只有一个是正确的,要求写出简答过程,并且将答案对应的选项的字母填入题后括号里) 1.当 0x →时,下列函数中为无穷小的函数是(D ) 。

高数 下 期末考试试卷及答案

2017学年春季学期 《高等数学Ⅰ(二)》期末考试试卷(A ) 注意: 1、本试卷共 3 页; 2、考试时间110分钟; 3、姓名、学号必须写在指定地方 一、单项选择题(8个小题,每小题2分,共16分)将每题的正确答案的代号A 、B 、C 或D 填入下表中. 1.已知a 与b 都是非零向量,且满足-=+a b a b ,则必有( ). (A)-=0a b (B)+=0a b (C)0?=a b (D)?=0a b 2.极限2 2 22 00 1 lim()sin x y x y x y →→+=+( ). (A) 0 (B) 1 (C) 2 (D)不存在 3.下列函数中,d f f =?的是( ). (A )(,)f x y xy = (B )00(,),f x y x y c c =++为实数 (C )(,)f x y = (D )(,)e x y f x y += 4.函数(,)(3)f x y xy x y =--,原点(0,0)是(,)f x y 的( ). (A )驻点与极值点 (B )驻点,非极值点 (C )极值点,非驻点 (D )非驻点,非极值点 5.设平面区域2 2 :(1)(1)2D x y -+-≤,若1d 4D x y I σ+= ??,2D I σ=,3D I σ=,则有( ). (A )123I I I << (B )123I I I >> (C )213I I I << (D )312I I I << 6.设椭圆L : 13 42 2=+y x 的周长为l ,则22(34)d L x y s +=?( ). (A) l (B) l 3 (C) l 4 (D) l 12 7.设级数 ∑∞ =1 n n a 为交错级数,0()n a n →→+∞,则( ). (A)该级数收敛 (B)该级数发散 (C)该级数可能收敛也可能发散 (D)该级数绝对收敛 8.下列四个命题中,正确的命题是( ). (A )若级数1n n a ∞ =∑发散,则级数21n n a ∞ =∑也发散 (B )若级数21n n a ∞ =∑发散,则级数1n n a ∞=∑也发散 (C )若级数 21 n n a ∞ =∑收敛,则级数 1 n n a ∞ =∑也收敛 (D )若级数 1 ||n n a ∞ =∑收敛,则级数2 1 n n a ∞ =∑也收敛 二、填空题(7个小题,每小题2分,共14分). 1.直线34260 30 x y z x y z a -+-=?? +-+=?与z 轴相交,则常数a 为 . 2.设(,)ln(),y f x y x x =+则(1,0)y f '=______ _____. 3.函数(,)f x y x y =+在(3,4)处沿增加最快的方向的方向导数为 . 4.设2 2 :2D x y x +≤,二重积分 ()d D x y σ-??= . 5.设()f x 是连续函数,22{(,,)|09}x y z z x y Ω=≤≤--,22()d f x y v Ω +???在柱面坐标系下 的三次积分为 . 6.幂级数11 (1)!n n n x n ∞-=-∑ 的收敛域是 . 7.将函数2 1,0 ()1,0x f x x x ππ--<≤??=?+<≤?? 以2π为周期延拓后,其傅里叶级数在点x π=处收敛 于 . 三峡大学 试卷纸 教学班号 序号 学号 姓名 …………………….……答 题 不 要 超 过 密 封 线………….………………………………

同济大学版高等数学期末考试试卷

同济大学版高等数学期 末考试试卷 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 2.函数() 00x f x a x ≠=?? =? 在0x =处连续,则a =( ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4y x =的( ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7.211 f dx x x ??' ????的结果是( ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ??+ ??? (D )1f C x ?? -+ ???

高等数学(下)期末复习题(附答案)

《高等数学(二)》期末复习题 一、选择题 1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=?b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--. 2、在空间直角坐标系中,方程组2201x y z z ?+-=?=? 代表的图形为 ( ) (A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22 ()D I x y dxdy =+?? ,其中区域D 由222x y a +=所围成,则I =( ) (A) 2240 a d a rdr a π θπ=? ? (B) 2240 2a d a adr a π θπ=? ? (C) 2230 02 3 a d r dr a π θπ=? ? (D) 2240 01 2 a d r rdr a π θπ=? ? 4、 设的弧段为:2 3 0,1≤ ≤=y x L ,则=? L ds 6 ( ) (A )9 (B) 6 (C )3 (D) 2 3 5、级数 ∑∞ =-1 1 ) 1(n n n 的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑??=→?=n i i i i D f d y x f 1 0),(lim ),(σηξσλ中的λ代表的是( ) (A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分??-1 010 d ),(d x y y x f x 等于 ( ) (A )??-1010 d ),(d x x y x f y (B) ??-1010d ),(d y x y x f y (C) ? ?-x x y x f y 10 1 0d ),(d (D) ?? 1 010 d ),(d x y x f y 8、方程2 2 2z x y =+表示的二次曲面是 ( ) (A )抛物面 (B )柱面 (C )圆锥面 (D ) 椭球面

大一上学期(第一学期)高数期末考试题

大一上学期高数期末考试 一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )( 0),sin (cos )( 处有则在设=+=x x x x x f . (A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导. 2. ) 时( ,则当,设133)(11)(3→-=+-=x x x x x x βα. (A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()() x x αβ与是等价无穷小; (C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小. 3. 若 ()()()0 2x F x t x f t dt =-?,其中()f x 在区间上(1,1)-二阶可导且 '>()0f x ,则( ). (A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值; (C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。 4. ) ( )( , )(2)( )(1 =+=?x f dt t f x x f x f 则是连续函数,且设 (A )22x (B )2 2 2x +(C )1x - (D )2x +. 二、填空题(本大题有4小题,每小题4分,共16分) 5. = +→x x x sin 2 ) 31(lim . 6. ,)(cos 的一个原函数是已知 x f x x =? ?x x x x f d cos )(则 . 7. lim (cos cos cos )→∞-+++= 2 2 221 n n n n n n ππ ππ . 8. = -+? 2 12 12 211 arcsin - dx x x x . 三、解答题(本大题有5小题,每小题8分,共40分) 9. 设函数=()y y x 由方程 sin()1x y e xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(17 7 x x x x ?+-求

相关文档
最新文档