人教版七年级数学下册课件:63第1课时实数的概念及
人教版七年级数学下册第6章习题课件6.3.1 实数及其分类

6.3 实数 第1课时 实数及其分类
提示:点击 进入习题
1 无理数 (1)开不尽 2D
3D 4B 5 见习题
6D 7A 8 见习题
答案显示
9 一一对应;实数;实数
10 D
提示:点击 进入习题
11 C 12 C 13 见习题 14 见习题 15 见习题
16 见习题 17 见习题
答案显示
12.(2019·包头) 实数 a,b 在数轴上的对应点的位置如图所示,
下列结论正确的是( C )
A.a>b C.-a>b
B.a>-b D.-a<b
13.面积为 7 的正方形的边长为 x. 请你回答下列问题: (1)x 的整数部分是多少? (2)把 x 的值精确到十分位是多少?精确到百分位呢? (3)x 是有理数吗? 解:设正方形的面积为 S,则 S=x2=7. 当 2<x<3 时,4<S<9; 当 2.6<x<2.7 时,6.76<S<7.29;
16.小明同学在学习了本章的内容后设计了如下问题: 定义:把形如 a+b m和 a-b m (a,b 为有理数且 b≠0,m 为正整数且开方开不尽)的两个实数称为共轭实数.
(1)请你写出一对共轭实数. 解:答案不唯一,如:3+2 2与 3-2 2等.
(2)3 2与-2 3是共轭实数吗?-2 3与 2 3是共轭实数吗? 解:因为 3 2与-2 3的被开方数不相同, 所以 3 2与-2 3不是共轭实数; 而-2 3与 2 3的被开方数都是 3,且 a=0,b=2 或 b=-2, 所以-2 3与 2 3是共轭实数.
所以 b=-2,a=3. 所以 ba=(-2)3=-8. 问题:设 x,y 都是有理数,且满足 x2-2y+ 5y=10+3 5, 求 x+y 的值. 解:原式可化为(x2-2y-10)+ 5(y-3)=0, 因为 x,y 都是有理数,所以 x2-2y-10,y-3 也是有理数. 因为 5是无理数,所以 y-3=0,x2-2y-10=0. 解得 y=3,x=±4,故 x+y=7 或-1.
新人教版七年级数学下册《无理数、实数概念》PPT教学课件

1 , 5 , 42
4 9
,
0,
3 8,
有理数集合
3 2, 7, , 2, 20 , 3
5, 0.3737737773
无理数集合
合作探究 达成目标 2
实数与数轴的对应关系 我们知道,每个有理数都可以用数轴上的点来表示,那么 无理数是否也可以用数轴上的点表示出来呢?你能在数轴 上找到表示无理数的点吗?
引入 把下列各数写成小数的形式:
3 3.0
有 限 小
47 5.875 8
数 3 0.6
5
无 限 循
11= 0.12
90
9 0.81
环 11
小 数
5 0.5
9
整数和分数统称为有理数
有限小数和无限循环小数叫有理数
任何一个有理数都能写成有限小数或无限循环小数的形式
反过来任何有限小数或无限循环小数也都是有理数;
中,有理数的个数有( C ) A 2个 B 3个 C 4个 D 5个
2、在 0, 0.100100010000 , 3 ,3 8
3 1 ,3 9 中,无理数分别
是 0.100100010000 3 3 9 。
3. 判断题
1. 无理数是无限小数,无限小数就是无理数。 ×
2. 无理数包括正无理数,0,负无理数.
新人教版 七年级数学下册
6.3实数
第一课时
复习:你认识下列各数吗?它们都是什么数?
3
3 5
9 11
5
0.875
0
有理数的分类: 有理数
正整数
正整数
整数 零
有 理
负整数
数 分数 正分数
负分数
正数
有
正分数
人教版数学七年级下册6.3.1 实数的概念、分类、与数轴的关系

希伯斯很不服气.他想,不承 认这是数,岂不等于是说正方形的对 角线没有长度吗?为了坚持真理, 捍卫真理,希伯斯将自己的发现传扬 了开去.直到最近几百年,数学家们 才弄清楚,它确实不是整数,也不是 分数,而是一种新的数,那是什么呢?
3. 了解实数和数轴上的点一一对应,能用数轴 上的点表示无理数.
2. 熟练掌握实数大小的比较方法.
-2 -1 0 1 2 3
解: -2<- 3< 1< 2 < 5
5.试在数轴上标出π, - 5 , 3 的大致位置,并借助数轴比 较它们的大小.
解析:因为π≈3.14, - 5 ≈-2.24, 3 ≈1.73,所以可以近似地标 出它们在数轴上的位置,如图(其中点A表示π,点B表示- 5 ,点 C表示 3).
知识点 2 实数与数轴的关系 问题1 无理数能在数轴上表示出来吗?
如图,直径为1个单位长度的圆从原点沿数轴向右滚动一 周,圆上一点从原点到达A点,则点A的坐标为多少?
-4 -3 -2 -1 0 1 2 3A 4
无理数 可以用数轴上的点来表示.
问题2(1)你能在数轴上表示出 2 吗?
-2
-2 -1
不用计算器, 5 与2比较哪个大?与3比较呢?
5 ,2可以分别看作是
面积为5,4的正方形的边 长,容易说明:面积较大
的正方形,它的边长也较 大,因此
5 2.
同样,因为5<9,所以 5 3.
素养考点 1 比较实数的大小
例3 在数轴上表示下列各点,比较它们的大小, 并用“<”连接
它们.
1 2 -2
5 3
∴-1-x=1+ 3,
∴x=-2- 3
3.如果以2为边长画一个正方形,以原点为圆心,正方形的对角 线 为 半 径 画 弧 , 与 正 半 轴 的 交 点 就 表 示 _ _2_ _2_ _ , 与 负 半 轴 的 交 点就表示___2__2 ___.
人教版七年级数学下册全册第六章《实数》PPT课件

规律:被开方数的小数点向右每移动 2 位,它的 算术平方根的小数点就向右移动 1 位;被开方数 的小数点向左每移动 2 位,它的算术平方根的小 数点就向左移动 1 位.
(2)用计算器计算 3(精确到0.001),并利用你在(1) 中发现的规律说出 0.03, 300, 30 000 的近似值,你 能根据 3 的值说出 30 是多少吗?
2.会求非负数的算术平方根,掌握算术平方根的非负 性.(重点、难点)
导入新课
历史感悟
毕达哥拉斯(公元前570年~公元前500年) 公元前500多年古希腊的哲学家、数学家、天文学家。
导入新课
万物皆数
导入新课
情境引入 学校要举行美术作品比赛,小明很高兴,他想
裁出一块面积为25dm2的正方形画布,画上自己的得 意之作参加比赛,这块正方形画布的边长应取多少? 你能帮小明算一算吗?
所以这个数是3或-3. 会不会是巧合呢?
解:设每块地板砖的边长为x m.由题意得
240x2 60, x2 1 . 4
x 1 1 0.5 42
故每块地板砖的边长是0.5 m.
拓展提升
已知:|x+2y|+ 3x 7 (5y z)2 0
求x-3y+4z的值. 解:由题意得:
3x 7 0, x 2y 0,5y z 0,
所以正数 t 4 2 (秒). 即铁球到达地面需要2秒.
当堂练习
1.填空:(看谁算得又对又快) (1) 一个数的算术平方根是3,则这个数是 9 . (2) 一个自然数的算术平方根为a,则这个自然数 是_a_2_;和这个自然数相邻的下一个自然数是 a2+1 .
七年级数学下册(人教版)6.3.1实数的相关概念及分类(第一课时)说课稿

2. 接着讲解实数的性质,如有序性、稠密性和连续性,通过具体的例子和数学证明让学生理解这些性质。
3. 然后讨论实数的表示方法,包括小数、分数和根式等,让学生学会如何用不同方式表达同一个实数。
4. 最后,通过实际应用问题,让学生将所学知识应用到解决实际问题中,加深对实数的理解。
1. 使用具体的例子和生活情境来解释无理数的概念,帮助学生建立直观感受。
2. 提供数轴的实际操作活动,让学生通过实践来加深对数轴的理解。
课后,我将通过学生的课堂表现、作业完成情况和反馈来评估教学效果。具体的反思和改进措施包括:
1. 分析学生的作业和测试结果,找出普遍存在的问题,针对性地调整教学方法。
本节课我将主要采用以下教学方法:
1. 启发式教学:通过提问和引导,激发学生的思维,让学生在探索中发现实数的概念和性质。
2. 案例教学:通过具体案例,让学生在实际情境中理解实数的应用,增强学习的直观性。
3. 互动式教学:通过小组讨论和课堂提问,促进学生之间的交流与合作,提高学生的参与度。
选择这些方法的理论依据是,启发式教学能够调动学生的主观能动性,案例教学有助于将理论与实践相结合,而互动式教学则能够培养学生的团队协作能力和沟通能力。
1. 通过一个有趣的实际问题,如测量一根绳子的长度,让学生意识到无法用有理数精确表示的情况,从而引出无理数的概念。
2. 展示数轴模型,让学生观察并猜测数轴上的点与实数的关系,激发他们的好奇心。
3. 利用多媒体课件播放一段关于数学家探索实数概念的短视频,引起学生的兴趣和思考。
(二)新知讲授
在新知讲授阶段,我会按照以下步骤逐步呈现知识点,引导学生深入理解:
人教版七年级下册数学:6.3实数的运算 (共17张PPT)

课堂小结
1 实数的运算法则及运算律 2 实数的综合运用 在进行实数的运算时,有理数的远算法则及运算性质、运算律等同样适用。
布置作业
•
课本57页习题6.3第4、5、6、7题
谢谢观看
THANK YOU
在我的印象里,他一直努力而自知,每天从食堂吃饭后,他总是习惯性地回到办公室看厚厚的专业书不断提升和充实自己,他的身上有九零后少见的沉稳。同事们恭喜他,大多看 到了他的前程似锦,却很少有人懂得他曾经付出过什么。就像说的:“如果这世上真有奇迹,那只是努力的另一个名字,生命中最难的阶段,不是没有人懂你,而是你不懂自已。” 而他的奇迹,是努力给了挑选的机会。伊索寓言中,饥饿的狐狸想找一些可口的食物,但只找到了一个酸柠檬,它说,这只柠檬是甜的,正是我想吃的。这种只能得到柠檬,就说 柠檬是甜的自我安慰现象被称为:“甜柠檬效应”。一如很多人不甘平庸,却又大多安于现状,大多原因是不知该如何改变。看时,每个人都能从角色中看到自已。高冷孤独的安 迪,独立纠结的樊胜美,乐观自强的邱莹莹,文静内敛的关睢尔,古怪精灵的曲筱绡。她们努力地在城市里打拼,拥有幸或不幸。但她依然保持学习的习惯,这样无论什么事她都 有最准确的判断和认知;樊胜美虽然虚荣自私,但她努力做一个好HR,换了新工作后也是拼命争取业绩;小蚯蚓虽没有高学历,却为了多卖几包咖啡绞尽脑汁;关睢尔每一次出镜 几乎都是在房间里戴着耳机听课,处理文件;就连那个嬉皮的曲筱潇也会在新年之际为了一单生意飞到境外……其实她们有很多路可以走:嫁人,啃老,安于现状。但每个人都像 个负重的蜗牛一样缓缓前行,为了心中那丁点儿理想拼命努力。今天的努力或许不能决定明天的未来,但至少可以为明天积累,否则哪来那么多的厚积薄发和大器晚成?身边经常 有人抱怨生活不幸福,上司太刁,同事太蛮,公司格局又不大,但却不想改变。还说:“改变干嘛?这个年龄了谁还能再看书考试,混一天是一天吧。”一个“混”字就解释了他 的生活态度。前几天我联系一位朋友,质问为什么好久不联系我?她说自已每天累的像一条狗,我问她为什么那么拼?她笑:“如果不努力我就活得像一条狗了。”恩,新换的上 司,海归,虽然她有了磨合几任领导的经验,但这个给她带来了压力。她的英语不好,有时批阅文件全是大段大段的英文,她心里很怄火,埋怨好好的中国人,出了几天国门弄得 自己像个洋鬼子似的。上司也不舒服,流露出了嫌弃她的意思,甚至在一次交待完工作后建议她是否要调一个合适的部门?她的脸红到了脖子,想着自己怎么也算是老员工,由她 羞辱?两个人很不愉快。但她有一股子倔劲,不服输,将近40岁的人了,开始拿出发狠的学习态度,报了个英语培训班。回家后捧着英文书死啃,每天要求上中学的女儿和自己英 语对话,连看电影也是英文版的。功夫不负有心人,当听力渐渐能跟得上上司的语速,并流利回复,又拿出漂亮的英文版方案,新上司看她的眼光也从挑剔变柔和,某天悄悄放了 几本英文书在她桌上,心里突然发现上司并没那么讨厌。心态好了,她才发现新上司的优秀,自从她来了后,部门业绩翻了又翻,奖金也拿到手软,自己也感觉痛快。她说:这个 社会很功利,但也很公平。别人的傲慢一定有理由,如果想和平共处,需要同等的段位,而这个段位,自己可能需要更多精力,但唯有不断付出,才有可能和优秀的人比肩而立。 人为什么要努力?一位长者告诉我:“适者生存。”这个社会讲究适者生存,优胜劣汰。虽然也有潜规则,有套路和看不见的沟沟坎坎,但一直努力的人总会守得云开见月明。有 些人明明很成功了,但还是很拼。比如剧中的安迪,她光环笼罩,商场大鳄是她的男闺蜜,不离左右,富二代待她小心呵护,视若明珠,加上她走路带风,职场攻势凌历,优秀得 让身边人仰视。这样优秀的人,不管多忙,每天都要抽出两个小时来学习。她的学习不是目的,而是能量,能让未来的自己比过去更好一些。现实生活中,努力真的重要,它能改 变一个人的成长轨迹,甚至决定人生成败。有一句鸡汤:不着急,你想要的,岁月都会给你。其实,岁月只能给你风尘满面,而希望,唯有努力才能得到!9、懂得如何避开问题的 人,胜过知道怎样解决问题的人。在这个世界上,不知道怎么办的时候,就选择学习,也许是最佳选择。胜出者往往不是能力而是观念!在家里看到的永远是家,走出去看到的才 是世界。把钱放在眼前,看到的永远是钱,把钱放在有用的地方,看到的是金钱的世界。给人金钱是下策,给人能力是中策,给人观念是上策。财富买不来好观念,好观念能换来 亿万财富。世界上最大的市场,是在人的脑海里!要用行动控制情绪,不要让情绪控制行动;要让心灵启迪智慧,不能让耳朵支配心灵。人与人之间的差别,主要差在两耳之间的 那块地方!人无远虑,必有近忧。人好的时候要找一条备胎,人不好的时候要找一条退路;人得意的时候要找一条退路,人失意的时候要找一条出路!孩子贫穷是与父母的有一定 的关系,因为他小的时候,父母没给他足够正确的人生观。家长的观念是孩子人生的起跑线!有什么信念,就选择什么态度;有什么态度,就会有什么行为;有什么行为,就产生 什么结果。要想结果变得好,必须选择好的信念。播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行
人教版七年级下册 第六章 《实数》教材分析 课件 (共23张PPT)
9 , 16
9 , 16
9 的含义 16
9= 3的错因分析
13
4.明确平方根和算术平方根的区别和联系;
区别在于正数的平方根有两个,而它的算术平方根只有一个;
联系在于正数的两个平方根互为相反数,根据它的算术平方根 可以立即写出它的另一个平方根,
零的平方根和算术平方根都是零;
理解平方与开平方互为逆运算,明确三级运算中的互逆关系. 平方根是偶次方根的特例.
么用数轴上点来表示,比如 2
、
动手操作 增强对无理数的感受 和认识
3.区分易混淆的概念: 无理数、有理数、实数的区别;无限不循 环小数与有限小数、无限循环小数的区别; 无限不循环小数、开方开不尽的数的区别 等。 4.理解有理数的运算律及运算性质在实数 范围内同样成立.
22
《实数》教材分析
1
一、本章的地位和作用
本章的主要内容:算术平方根、平方根、立方根的 概念和求法,实数的有关概念和运算. 本章的特点:内容不多,篇幅不大,但是本章的概 念教学任务较重,数学知识的抽象性较强.
本章内容学习的意义:是后面学习二次根式、一元 二次方程以及解三角形等知识的基础,也为学习高 中数学中不等式、函数以及解析几何等的大部分知 识作好准备.
2
7.让学生经历用夹逼的办法估计 2 的大小
1)感受 2)会估计无理数的大小
2
的特征
关注课本p41探究,课本p58阅读:为什么 不是有理数
2
2
6.2 立方根
1.学习立方根的意义 立方根有着广泛的应用,因为空间形体都是三维的, 有关体积等的计算经常涉及开立方的问题; 立方根是奇次方根的特例,它对进一步研究奇次方根 的性质有典型的代表意义.
(人教版)七年级下册数学配套说课稿:6.3第1课时《实数》
(人教版)七年级下册数学配套说课稿:6.3 第1课时《实数》一. 教材分析人教版七年级下册数学第6.3节《实数》是学生在学习了有理数和无理数的基础上,进一步对实数进行系统的认识和理解。
本节课的主要内容是实数的定义、性质以及实数与数轴的关系。
教材通过丰富的例题和习题,使学生能够熟练掌握实数的概念,并能够运用实数解决一些实际问题。
二. 学情分析七年级的学生已经学习了有理数和无理数,对数的运算和性质有一定的了解。
但是,学生对实数的认识还比较模糊,对实数与数轴的关系还没有直观的感受。
因此,在教学过程中,需要引导学生通过观察、思考、探究,从而深入理解实数的内涵,建立实数与数轴的联系。
三. 说教学目标1.知识与技能目标:理解实数的定义,掌握实数的性质,能够运用实数解决一些实际问题。
2.过程与方法目标:通过观察、思考、探究,培养学生抽象思考和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和创新精神。
四. 说教学重难点1.教学重点:实数的定义和性质。
2.教学难点:实数与数轴的关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、数轴模型等辅助教学。
六. 说教学过程1.导入新课:通过复习有理数和无理数的概念,引出实数的定义。
2.探究实数的性质:学生分组讨论,每组探究实数的一个性质,如:实数的加减乘除运算规律、实数的平方根等。
3.实数与数轴的关系:引导学生观察数轴,发现实数与数轴的对应关系,如:正实数对应数轴上的右半部分,负实数对应数轴上的左半部分等。
4.巩固练习:布置一些有关实数的练习题,让学生巩固所学知识。
5.课堂小结:教师引导学生总结本节课的主要内容和实数的应用。
七. 说板书设计板书设计如下:实数的定义和性质1.实数的定义:有理数 + 无理数2.实数的性质:a.加减乘除运算规律b.实数的平方根c.实数与数轴的对应关系八. 说教学评价教学评价主要包括以下几个方面:1.学生对实数的定义和性质的掌握程度。
七年级数学下册 第六章 实数 6.3 实数 第1课时 实数的概念
第二十二页,共二十六页。
课时 第1
(kèshí)
实数的概念
解:因为 a,b 互为倒数,所以 ab=1. 因为 c,d 互为相反数,所以 c+d=0. 因为 e 的绝对值为 2,所以 e=± 2, 所以 e2=(± 2)2=2. 因为 f 的算术平方根是 8, 所以 f=64,所以3 f=3 64=4,所以12ab+c+5 d+e2+3 f=21+0+2+4=612.
A.1a<a<-a B.-a<1a<a
C.a<1a<-a D.1a<-a<a
图 6-3-2
[解析] 采用特殊值法来解决.不妨设 a=-12,则-a=21,1a=-2. 因为-2<-12<12,所以1a<a<-a.故选 A.
第十五页,共二十六页。
课时 第1
(kèshí)
实数的概念
17.已知 a 为实数,则下列四个数中一定为非负数的是( C )
6.按大小分,实数可分为__正_实__数___、__0______、__负_实__数___三类.
(shìshù)
(shìshù)
第六页,共二十六页。
第1课时 实数(shìshù)的概念
7.把下列各数分别填入相应的数集里.
-13π,-2123, 7,3 27,0.324371,0.5,3 9,- 0.4, 16,
第1课时(kèshí) 实数的概念 2.任何一个有理数都可以写成_有_限_小__数_或__无_限_(_wú_xià_n)_循_环_小__数_的形式,反 过来,任何_有__限_小_数__或_无__限_(w_úx_ià_n)循__环_小_数__都是有理数. 3.下列各数中:-14,3.14159,-π,ππ5 ,0,0.3,15,5.2·01·, 2.121122111222…,其中无理数有__-_π__,__5_,__2._1_21_1_2_2_11_1_2_22_…____.