七年级数学实数PPT教学课件

合集下载

(人教版)七年级下册数学:《实数》ppt课件PPT17页

(人教版)七年级下册数学:《实数》ppt课件PPT17页

(人教版)七年级下册数学:《实数》 ppt课件
51、没有哪个社会可以制订一部永远 适用的 宪法, 甚至一 条永远 适用的 法律。 ——杰 斐逊 52、法律源于人的自卫本能。——英 格索尔
53、人们通常会发现,法律就是这样 一种的 网,触 犯法律 的人, 小的可 以穿网 而过, 大的可 以破网 而出, 只有中 等的才 会坠入 网中。 ——申 斯通 54、法律就是法律它是一座雄伟的大 夏,庇 护着我 们大家 ;它的 每一块 砖石都 垒在另 一块砖 石上。 ——高 尔斯华 绥 55、今天的法律未必明天仍是法律。 ——罗·伯顿
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛

人教版《实数》优秀课件初中数学ppt

人教版《实数》优秀课件初中数学ppt
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方

-实数ppt课件

-实数ppt课件

新课引入
但后来,这学派的一位年轻成员希伯索斯 (Hippasus) 发现边长为1的正方形的对角线的长 不能用有理数来表示,这就动摇了毕达哥拉斯 学派的信条,引起了信徒们的恐慌,他们试图 封锁这一发现,然而希伯索斯偷偷将这一发现 传播出去,这为他招来了杀身之祸,在他逃回 家的路上,遭到毕氏成员的围捕,被投入大海.
3
-5
0
5
2.如果将所有有理数都标到数轴上,那么数轴被填满了吗?
没有
新课讲解
B
1
C
-1
0
A
1
2
如图:OA=OB,数轴上A、C点对应的数分别是什么?
A点对应的数是 2 C点对应的数是 2
通过画图中正方形的边长,就能准确的把 2 和 2 表示在数轴上.
新课讲解 在实数范围内,每一个数都可以用数轴上
做一做
5.填空:
(1) 3 的相反数是____3______
(2) 3
的相反数是
3
(3) 5 _____5______
(4)绝对值等于 6 的数是 _____6____
新课讲解
我们已经知道,每一个有理数都可以用数轴
上的点表示出来.
1.请把-2,-0.5,
1 4
和3在数轴表示出来.1-2 -0.5 4无限不循 环小数
正实数 实数 零
负实数
正有理数 正无理数
负有理数 负无理数
注意: 零既不是正实数也不是负实数
小结 3.无理数
我们把这种无限不循环小数叫做无理数.
4.无理数的形式
(1)圆周率 π 及一些含有 π 的数都是无理数.
(2)像√-2,√-3,﹣√-12…开不尽方的数是无理数.
(3)有一定的规律,但不循环的无限小数都是无理数.

初中实数ppt课件

初中实数ppt课件
为分数。
实数具有完备性,即实数集在加 法、减法、乘法和除法(除数不
为0)下是封闭的。
实数的分类
有理数
有理数包括整数和分数,其中整 数包括正整数、0和负整数。分数
则可以表示为两个整数的比,如 1/2、2/3等。
无理数
无理数是无法表示为分数的数,常 见的无理数有无限不循环小数,如 π、√2等。
实数的其他分类
实数还可以根据其性质进行分类, 如正数、负数、零、正有理数、负 有理数等。
实数的性质
实数的顺序性
对于任意两个不同的实数a和b,如果 a小于b,那么在它们之间一定存在一 个实数c,使得a小于c且c小于b。
实数的四则运算性质
实数的完备性
实数集在加法、减法、乘法和除法( 除数不为0)下是封闭的,即任何两 个实数的这四种运算的结果仍然是实 数。
减法运算
总结词
掌握减法运算的基本概念和规则
详细描述
实数的减法可以通过加法来实现,即将减数变为相反数,然后进行加法运算。例如,a - b = a + (-b) 。
乘法运算
总结词
理解乘法运算的基本概念和规则
详细描述
实数的乘法运算需要考虑正负数的特殊情况。例如,正数与正数相乘、负数与负数相乘、正数与负数相乘等。
详细描述
在建筑、工程、机械制造等领域,需要使用实数来表示物体的长度、宽度、高度等参数 。例如,在设计一座桥梁时,需要精确地测量各个部分的长度,并使用实数来表示,以
确保桥梁的安全性和稳定性。
重量测量中的实数应用
总结词
在购买商品时,我们经常需要测量物体 的重量,而实数在重量测量中的应用也 是必不可少的。
值的取值范围。
解决几何问题
在解决与几何图形相关的面积、 体积等问题时,需要比较实数的 大小,以确定相关参数的取值范

(新人教版)数学七年级下册:《实数》PPT课件

(新人教版)数学七年级下册:《实数》PPT课件
4
(2) (15)2 ( 15)2
15 15 0
(3) (2)3 (2)2 2 (9)2 3 (8)2
8 2 9 4 29
(4) 225 196 3 64 15 14 4 5
(5) ( 2 3)2 (1 2)2
3 2 2 1 3 1
(6) 2 5 2( 7 1 5) (2 5 7) 2
(2) 7 的整数部分是__2_,小数部分是
___7___2___;
(3)已知x是 3 2 的整数部分,则
x2-2x+8的平方根是_1_1__.
1 6.(1)|-5 |的倒数是___5____;
(2)若 x 2,y 3,且xy>0,x+y=_5_或__-__5_;
(3)点A在数轴上对应的数为 2 7 ,点B在 数轴上对应的数为 3 7 ,则A,B两点的距 离为__5__7__.
2 0.6& 0.666 666 666L 3
13.3.2 实数与数轴 B
A
C
E
D
F
提问:若以点D为圆心,CD为半径 画圆与数轴交于点E、F,则点E、F分 别表示什么数? 无理数.
{ 实数 }: 数 a
实数与数轴上的点一一对应
-2
-1
0A 1
2
(数点)每一个实数(有理数、无理数)都
可以用数轴上的一个点来表示.
4.(1)0.65;(2)-2.74.
5.(1)5 2 ;(2)0.
6.(1)4> 15 ;(2)π<3.1416;
(3)
32

3 2
;(4)
2 2

3 3

7.有,没有,没有,没有,没有,有.
8.1.4s.

人教版七年级数学下册 6.3 第1课时 实数 (共19张PPT)

人教版七年级数学下册 6.3 第1课时 实数 (共19张PPT)
有理数都可以写成有限小数或无限循环 小数的形式.
反过来,任何有限小数或无限循环小数 也都是有理数.
想一想:所有的数都可以写成有限小数或无限循环 小数的形式吗?
在前面的学习中,我们知道:
π=3.1415926535897932384626… 1.01001000100001…(两个1之间依次多一个0) 你有什么发现呢? 无限不循环小数,叫做无理数.
4
9
负实数: 16, 3 8, 5
方法 对每个数都要进行判断,分类标准不同结果不同.
练一练
把下列各数分别填入相应的集合内:
22 , 7
64,
3,
4,
0.101,
π ,
3
2, 5
2.121, 0.3737737773
...
有理数集合
...
无理数集合
二、实数与数轴上的点
思考1: 如图,直径为1个单位长度的圆从原点沿数 轴向右滚动一周,圆上一点从原点到达A点,则数轴 上表示点A的数是多少?
2、判断快枪手——看谁最快最准!
(1)实数不是有理数就是无理数. ( )
(2)无理数都是无限不循环小数. (

(3)带根号的数都是无理数.
(× )
(4)无理数都是无限小数.
()
(5)无理数一定都带根号.
(× )
3、把下列各数填入相应的括号内:
9 35
64
π

0. 6
3 4
3 9
0.13
(1)有理数: {
典例精析
例1 将下列各数分别填入下列相应的括号内:
3 9, 1, 7 , π, 16, 5, 3 8,
4
4 , 0, 25, 0.3232232223

实数ppt课件

实数ppt课件

原点
数轴上的零点,表示0。
正半轴
数轴上右边的点表示正实数。
负半轴
数轴上左边的点表示负实数。
实数在数轴上的表示
实数
在数轴上有唯一确定的点与之对 应。
相反数
在数轴上与原点对称的点表示相反 数。
绝对值
在数轴上到原点的距离表示绝对值 。
数轴上的点与实数的关系
点与实数一一对应
数轴上的每一个点都表示一个唯一的实数。
实数的四则运算
01
总结词:实数的四则运算是加 法、减法、乘法和除法的统称

02
详细描述
03
04
1. 加法和减法:实数的加法 和减法满足交换律、结合律和
相反律。
2. 乘法和除法:实数的乘法 和除法满足交换律、结合律和
分配律。
03
实数与数轴
数轴的定义
01
02
03
04
数轴
一条水平的直线,用来表示实 数的连续范围。
实数还可以根据其正 负性分为正实数、负 实数和零。
无理数:无限不循环 小数,如π、根号2 等。
02
实数的运算
加法与减法
详细描述
2. 结合律:加法或减法的结合律 是指括号如何结合不会影响结果 。例如,a+(b+c)=(a+b)+c和a(b+c)=a-(b+c)。
总结词:实数的加法与减法是基 础运算,它们具有交换律、结合 律和相反律。
2. 结合律:乘法或除法的结合律是指括 号如何结合不会影响结果。例如, a(bc)=(ab)c。
详细描述
1. 交换律:乘法或除法的交换律是指改 变运算顺序不会影响结果。例如, ab=ba和a/b=b/a。

实数ppt课件

实数ppt课件

方程可以看作是实数之间的一种 约束关系,实数则是满足这种约
束条件的数值解。
通过解方程,我们可以找到实数 之间的特定关系和条件。
实数与不等式的关系
不等式是表达数学大小关系的一种形 式,而实数是这些不等式中的变量。
通过解不等式,我们可以找到实数之 间的特定范围和界限。
不等式可以看作是实数之间的一种限 制关系,实数则是满足这种限制条件 的数值。
02
实数的运算规则
实数的加法运算
定义
实数的加法运算是指将两个或多个实数合并成一 个实数的运算。
规则
实数的加法运算满足交换律和结合律,即 a+b=b+a和(a+b)+c=a+(b+c)。
例子
2+3=5,(-1)+(-2)=-3。
实数的减法运算
定义
实数的减法运算是指将一个实数减去另一个实数的运算。
规则
实数的减法运算可以通过加法运算进行转化,即a-b=a+(-b)。
例子
5-3=2,(-1)-(-2)=1。
实数的乘法运算
定义
实数的乘法运算是指将两个或多个实数相乘得到一个实数的运算 。
规则
实数的乘法运算满足交换律、结合律和分配律,即ab=ba和 (a+b)c=ac+bc。
例子
2×3=6,(-1)×(-2)=2。
03
1欧元=100欧分
时间单位的换算
小时与分钟换算:1 小时=60分钟
天与小时换算:1天 =24小时
小时与秒换算:1小 时=3600秒
其他应用举例
01
02
03
温度换算
摄氏度与华氏度换算,例 如:2摄氏度=3.6华氏度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(5)分数集合:

0.6
(6)实数集合: 9 3 5
64 3
3 9
3 0.13
4
64

0.6
3 4
3 9
3
0.13
直径为1个单位长度的圆从原点沿数轴向右
实滚数动与一数周轴,圆上上的的点一一点一由对原应点。到达即点每O一,,个实 数点都O可,的以坐用标数是轴多上少?的一个点来表示;反之 数轴上的每一点都表示一个实数。
7 的平方 是
7.
正实数的绝对值是 它本身 ;
0的反数 。
在实数范围内,相反数、倒数、绝对 值的意义和有理数范围内的相反数、 倒数、绝对值的意义完全一样。
(1)a是一个实数,它的相反数为
绝对值为 a

(2)如果a 0,那么它的倒数为
a ,
1 a。
例:求下列各式的值。 (1)( 3 2) 2 (2) 3 3 2 3
2, 4
,
4 , 0,
9
7 , , 5 ,
2
2,
20 3
,
5, 3 8,
(相邻两个3之间
0.373773777 3的7的个数逐次加1)
1 , 5 , 42
4, 9
0,
3 8,
3 2 , 7 , , 2 , 20 , 3
5, 0.373773777
有理数集合
无理数集合
有 理实 数数 和 无 理 数 统 称实 实数 数
6.两个无理数之积不一定是无理数。( )
7.两个无理数之和一定是无理数。(× )
例:计算。 (1) 5( 精 确0到 .01) (2) 3• 2( 结 果 保 留 三 个 有 字效 )数
随堂练习
一、判断:
1.实数不是有理数就是无理数。( ) 2.无理数都是无限不循环小数。( )
3.无理数都是无限小数。( )
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×)
8
11
反过来,任何有限小数或无限循环小数也都是
有理数无除还限了有不有什限 么循小其环数它的和类无型小限的数循小环数小吗数?,
----------叫做无理数
1.圆周率
2 34
2.开不尽的方根
0.1010010001
(每两1个 之间依次增加0) 一个3.人为构造的数
把下列各数分别填入相应的集合内:
3
1
有理数
无理数 正实数
0 负实数
整数 分数
正有理数 正无理数 负有理数 负无理数
把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合: 9

0.6 •
64 0.6
3
4
3
0 3
3 9 3 0.13 0.13
4
(2)无理数集合: 3 5
3 9
(3)整数集合: 9
(4)负数集合:
3 4
把下列各数写成小数的形式,你有什么发现?
3,3,47 , 9,11 ,5 5 8 11909
33.0, 30.6, 4 75.87,5
5
8
90.8••,1 1 10.12•, 5 0.5•
11
90
9
事实上,任何一个有理数都可以写成有限小数或
无限循环小数。
5.87547 , 0 .8•• 1 9,
2
2
如 图 ,A、B两 点 的 坐 标 分 别 是 A(1,2)、B( 5,0), 求OAB的 面 积 ( 精 确0.1到 ) 。
平面直角坐标系内的点与有序实数对是一一对应的。
随堂练习
1、 3 的相反数是 3 ,绝对值是 3 .
2、绝对值等于 5 的数是 5 ,
3、比较大小:-7
4 3
4、 3 64 的绝对值是 4 。
相关文档
最新文档