生物化学:蛋白质的生物合成
生物化学-生化知识点_第十一章 蛋白质的生物合成

第十一章蛋白质的生物合成11-1 遗传密码(下册 P504,37章)蛋白质是生物主要的功能分子,它参与所有的生命活动过程,并起着主导作用。
蛋白质的合成由核酸所控制,决定蛋白质结构的遗传信息编码在核酸分子中。
遗传密码:编码氨基酸的核苷酸序列,通常指核苷酸三联体决定氨基酸的对应关系。
一一一三联密码:核酸分子中只有四种碱基,要为蛋白质分子20种氨基酸编码。
三个碱基编码64个,又称三联密码。
密码子:mRNA上有三个相邻核苷酸组成一个密码子,代表某种氨基酸、肽链合成的起始或终止信号。
蛋白质翻译:在RNA控制下根据核酸链上每3个核苷酸决定一种氨基酸的规则,合成出具有特定氨基酸顺序的蛋白质过程。
全部64个密码子破译后,编写出的遗传密码字典。
见P511 表37-5。
一一一遗传密码的基本特性一1一密码的基本单位遗传密码按5‘→3‘方向编码,为不重叠、无标点的三联体密码子。
起始密码子兼Met:AUG。
终止密码子:UAA、UAG和UGA。
其余61个密码子对应20种氨基酸。
一2一密码的简并性同一种氨基酸有两个或更多密码子的现象称为密码的简并性。
同一种氨基酸不同密码子称为同义密码子,氨基酸密码子的简并见P512表37-6。
简并可以减少有害突变,对物种稳定有一定作用。
一3一密码的变偶性(摆动性)编码同一个氨基酸的密码子前两位碱基都相同,第三位碱基不同,为变偶性。
即密码简并性往往表现在密码子第三位碱基上,如Gly的密码子为GGU、GGC、和GGA。
一4一密码的通用性和变异性通用性:各种低等和高等生物,包括病毒、细菌及真核生物基本上共用一套遗传密码。
变异性:已知线粒体DNA(mtDNA),还有原核生物支原体等少数生物基因密码有一定变异。
一5一密码的防错系统密码的编排方式使得密码子中一个碱基被置换,其结果常常是编码相同的氨基酸或是为物理化学性质接近的氨基酸取代。
11-2 蛋白质合成及转运下册 P5171、氨基酸是怎样被选择及掺入到多肽链当中去的。
生物化学第十一章 蛋白质的生物合成(共65张PPT)全

原核、真核生物各种起始因子的生物功能
起始因子
生物功能
IF-1
占 据 A 位 防 止 结 合 其 他 tRN A
原核
生物
EIF-2
促进起始tRNA与小亚基结合
EIF-3
促 进 大 小 亚 基 分 离 , 提 高 P位 对 结 合 起 始 tRNA 敏 感 性
eIF-2
促进起始tRNA与小亚基结合
eIF-2B,eIF-3
eEF-1-A
EF-Ts 再生EF-Tu
eEF-1-B
EFG
有转位酶活性,促进mRNA肽酰-tRNA由A位前移到P位, 促进卸载tRNA释放
eEF-2
(一)进位(P607 609)
又称注册(registration)
指根据mRNA下一组遗传密 三
码指导,使相应氨基酰-tRNA进 元
入核蛋白体A位。
第一节 蛋白质合成体系
一、翻译模板mRNA及遗传密码
二、核蛋白体是多肽链合成的装置 三、tRNA与氨基酸的活化
P602
一、翻译模板mRNA及遗传密码
(一) mRNA是遗传信息的携带者
1.顺反子(cistron):将编码一个多肽的遗传单位称为顺反
子。
2. 开放阅读框架(open reading frame, ORF):从mRNA 5 端起始密码子AUG到3端终止密码子之间的核苷酸序列。
mRNA 的结构
原核生物的多顺反子
5 PPP
ORF
ORF
真核生物的单顺反子
5 mG - PPP
3
ORF
蛋白质
3
蛋白质
非编码序列
核蛋白体结合位点
编码序列
起始密码子
大学生物化学课件蛋白质的生物合成

核糖体结合的分子伴侣
非核糖体结合性分子伴侣— 热休克蛋白 伴侣蛋白
(1)热休克蛋白(heat shock protein, HSP ):
属于应激反应性蛋白,高温应激可诱导该蛋白 合成增加。
在大肠杆菌中包括HSP70, HSP40和GrpE三族
Peptidyl site (P Site)
E位
Aminoacyl site (A Site)
mRNA
肽链合成需要酶类和蛋白质因子
• 蛋白质因子: • (1)起始因子 • 原核生物 IF; 真核生物 eIF • (2)延长因子 • 原核生物 EF; 真核生物 eEF • (3)释放因子 • 原核生物 RF; 真核生物 eRF
第二节 蛋白质生物合成的过程
翻译过程从阅读框架的5’-AUG开始,按mRNA 模板三联体密码的顺序延长肽链,直至终止密码 出现。
整个翻译过程可分为三个阶段:
起始(initiation)
延长(elongation)
终止(termination)
一、肽键合成的起始(Initiation)
多肽链合成后需要逐步折叠成天然空间构象才成为有 功能的蛋白质。
时间: 新生肽链N端在核蛋白体上一出现,肽链的折叠
即开始,折叠在肽链合成中、合成后完成。
细胞中大多数天然蛋白质折叠都不是自动完 成,而需要其他酶、蛋白质辅助 :
•
分子伴侣
•
蛋白二硫键异构酶
•
肽-脯氨酰顺反异构酶
1.分子伴侣*(molecular chaperon)
需要:
转位酶(原核生物中是EFG,真核生物中是eEF-2), GTP 结果:
【生物化学】蛋白质的生物合成

嘌 呤 霉 素
酯键
(3)转位(translocation)
•转位酶 (translocase): •原核:延长因子G(EF-G),真核:EF-2 • GTP
可结合并水解1分子GTP,促进核 蛋白体向mRNA的3’侧移动
进 位
成肽 转 位
合成
3、肽链终止阶段:
核蛋白体沿mRNA链滑动,不断使多 肽链延长,直到终止信号进入受位。
四、蛋白质生物合成的干扰和抑制
1、抗生素(antibiotics)
名称
作用机制
四环素类 氯霉素类 链霉素类 嘌呤霉素
抑制氨酰-tRNA与原核生物核糖体结合,抑制细菌 蛋白质合成
结合原核生物核糖体大亚基,阻断翻译延长过。高 浓度时,对真核生物线粒体内的蛋白质合成也有阻 断作用 结合原核生物核糖体小亚基,改变其构象,引起读 码错误
,IF)
有抗病毒作
用的蛋白质
1、诱导一种蛋白激酶,使eIF2磷酸 化,从而抑制病毒蛋白质的生物合 成。
2、诱导生成一种寡核苷酸(2’5’A),活化核酸内切酶RNaseL, 可降解病毒RNA。
谢 谢!
(1)识别:释放因子(RF)识别终 止密码,进入核蛋白体的受位。
(2)水解:RF使转肽酶变为水解酶, 多肽链与tRNA之间的酯键被水解, 多肽链释放。
(3)解离:通过水解GTP,使核蛋 白体与mRNA分离,tRNA、RF脱落, 核蛋白体解离为大、小亚基。
进位
肽链的形成 移位
蛋白质 合成过程
肽链合成终止
结构与Tyr-tRNAtyr相似,阻止肽链正常合成
放线菌酮 抑制核糖体转肽酶。且只对真核生物有特异性作用
2、干扰蛋白质生物合成的生物活性物质
名称
生物化学第十三章蛋白质生物合成习题含答案

一、判断题一、判断题 1. 细胞中三种主要的多聚核苷酸tRNA 、mRNA 和rRNA 都参与蛋白质生物合成。
都参与蛋白质生物合成。
2. 蛋白质分子中的氨基酸顺序是由氨基酸与mRNA 携带的密码子之间互补作用决定的。
携带的密码子之间互补作用决定的。
3. fMet -tRNA fMet 是由对fMet 专一的氨酰tRNA 合成酶催化形成的。
合成酶催化形成的。
4. 一条新链合成开始时,fMet -tRNA fMet 与核糖体的A 位结合。
位结合。
5. 每一个相应的氨酰tRNA 与A 位点结合。
都需要一个延伸因子参加并需要消耗一个GTP 。
6. 蛋白质合成时从mRNA 的5′→3′端阅读密码子,肽链的合成从氨基端开始。
′端阅读密码子,肽链的合成从氨基端开始。
7. tRNA fMet 反密码子既可以是反密码子既可以是pUpApC 也可以是也可以是 pCpApU 。
8. 人工合成一段多聚尿苷酸作模板进行多肽合成时,只有一种氨基酸参入。
人工合成一段多聚尿苷酸作模板进行多肽合成时,只有一种氨基酸参入。
9. 氨酰tRNA 上的反密码子与mRNA 的密码子相互识别,以便把它所携带的氨基酸连接在正确位置上。
正确位置上。
10. 每个氨基酸都能直接与mRNA 密码子相结合。
密码子相结合。
11. 每个tRNA 上的反密码子只能识别一个密码子。
上的反密码子只能识别一个密码子。
12. 多肽或蛋白质分子中一个氨基酸被另一个氨基酸取代是由于基因突变的结果。
13. 蛋白质正确的生物合成取决于携带氨基酸的tRNA 与mRNA 上的密码子正确识别。
二、填空题二、填空题1. 原核细胞中新生肽链N 端的第一个氨基酸是端的第一个氨基酸是 ,必须由相应的酶切除。
,必须由相应的酶切除。
2. 当每个肽键形成终了时,增长的肽链以肽酰tRNA 的形式留在核糖体的的形式留在核糖体的 位 3. 在 过程中水解ATP 的两个高能磷酸酯键释放出的能量足以驱动肽键的合成。
动物生物化学课件:蛋白质的生物合成

蛋白质的生物合成
将mRNA分子中 4 种核苷酸序列 编码的遗传信息,通过遗传密码破译的 方式解读为蛋白质一级结构中20种氨基 酸的排列顺序过程,称为蛋白质的生物 合成或翻译。
参与蛋白质生物合成的物质 蛋白质生物合成的过程
第一节 参与蛋白质生物合成的物质
参与蛋白质合成的物质
• 原料:20种氨基酸 • 模板:mRNA • 运载体:tRNA • 场所:核蛋白体(rRNA与蛋白质构成) • 蛋白质因子:
生物功能
占据A位防止结合其他tRNA 促进起始tRNA与小亚基结合 促进大、小亚基分离,提高P位对结合起始tRNA的 敏感性 促进起始tRNA与小亚基结合 最先结合小亚基促进大、小亚基分离 eIF-4F复合物成分,有解螺旋酶活性,促进mRNA 结合小亚基 结合mRNA,促进mRNA扫描定位起始tRNA eIF-4F复合物成分,结合mRNA5`-帽子 eIF-4F复合物成分,结合eIF-4E和PAB
➢ tRNA凭借自身的反密码子与mRNA链上的密码 子相识别,按照mRNA链上的密码子所决定的氨 基酸顺序将所带氨基酸转运到核糖体的特定部位。
一种氨基酸可以有一种以上tRNA作为 运载工具。通常把携带相同氨基酸而反密 码子不同的一组tRNA称为同功tRNA.
氨基酰tRNA----氨基酸的活化形式。 表示为: tRNAPhe
对应同一种氨基酸的不同密码子,称 为同义密码子。同义密码子使用频率不同.
在蛋白质中出现频率越多的氨基酸, 其密码子的数量越多。
4.密码子使用频率不同
• 在蛋白质合成时,对简并密码子的使用频率是 不同的。
• 如UUU和UUC都为苯丙氨酸编码,但在高表 达的蛋白质中使用UUC的频率明显高于UUU。
5. 密码子与反密码子配对的不严格性
生物化学第18章_蛋白质的生物合成

• 4). 肽基转移酶活性位点
• 位于P和A位点的连接处,靠近tRNA的接受臂. • 23SrRNA,L2,L3,L4,L15,L16
5). 5SrRNA位点
• 在50S亚基上靠近肽基转移酶活性位点 • L5,L8,L25
6). EF-Tu位点
• 位于50S亚基,靠近30S亚基 • L5,L1,L20,L7/L12
7). 转位因子EF-G结合位点
• 在50S亚基,靠近30S亚基界面处.
8). E位点
9).多肽出口位点
蛋白质的合成过程
氨基酸的活化
氨基酸先被tRNA-氨基酰合成酶活化,氨基 酸的羧基以高能键连接于腺苷酸,生成氨酰 腺苷酸 (Aa-AMP),同时释放焦磷酸.
Aa + ATP
氨酰tRNA合成酶
Aa-AMP + ppi
真核生物的多肽定向运输
• 溶酶体 线粒体 叶绿体,细胞核 • 信号肽及其信号肽的识别
信号肽长40个氨基酸残基 N端至少含一个带正电荷的氨基酸残基 在中部有10-15个高度疏水的氨基酸残基 有一个信号肽识别位点,其上游常有高度疏水的5 信号肽并不都在N端卵清蛋白的信号肽位于中部 识别信号肽的
SRP 是一种核蛋白。有300个核苷酸 的RNA和6个多肽组成, SRP 携带 新生多肽链的核糖体结合移动到内 质网上的
eEF-1βγ同EF-Ts功能
(3) 肽键的形成
肽基转移酶催化肽键的形成
3. “接头”的特异性只与反密码子有关
பைடு நூலகம்
延伸及 延伸相关因子
• EF-Tu • EF-Ts • EF-G
•植物中蛋白质翻译的起始
二. 蛋白质合成的动态过程
A0001401.mov
蛋白生物合成途径

蛋白生物合成途径蛋白质是生命体内最重要的大分子,它们在细胞的结构和功能中起着关键作用。
蛋白质的合成是一个复杂的过程,涉及到多个生物化学途径和分子机制。
本文将介绍蛋白质生物合成的主要途径。
蛋白质生物合成的过程可以分为三个主要步骤:转录、转译和后转录修饰。
转录是指在细胞核中将DNA转录成RNA的过程。
在这个过程中,DNA的双链解开,其中的一个链作为模板合成mRNA,mRNA是一种将基因信息转移到细胞质中的分子。
转录的过程是由RNA聚合酶酶催化的,它能够将RNA的核苷酸单元与DNA的模板链上的互补碱基配对。
转录过程完成后,mRNA进入细胞质中的核糖体,开始转译过程。
转译是指将mRNA上的遗传信息转化为氨基酸序列的过程,从而合成蛋白质。
转译是由tRNA和核糖体共同参与的。
tRNA是一种能够与mRNA上的三个碱基序列互补配对的RNA分子,它携带着特定的氨基酸,通过与mRNA上的密码子配对,将氨基酸顺序添加到正在合成的蛋白质链上。
转译过程中,核糖体会识别mRNA上的起始密码子,并将第一个氨基酸添加到蛋白质链上。
然后,核糖体会依次识别mRNA上的密码子,通过与tRNA配对,将相应的氨基酸添加到蛋白质链上。
这个过程持续进行,直到遇到终止密码子,核糖体停止合成蛋白质,新合成的蛋白质被释放出来。
转译过程完成后,新合成的蛋白质还需要经过后转录修饰。
后转录修饰是指对蛋白质进行化学修饰或结构调整的过程,以使其获得特定的功能。
后转录修饰的方式多种多样,包括磷酸化、甲基化、酰化等。
这些修饰可以改变蛋白质的电荷性质,或者与其他分子相互作用,从而调节蛋白质的活性、稳定性或定位。
总结起来,蛋白质生物合成的途径包括转录、转译和后转录修饰。
转录是将DNA转录成mRNA的过程,转译是将mRNA上的遗传信息转化为氨基酸序列的过程,后转录修饰是对新合成的蛋白质进行化学修饰或结构调整的过程。
这些步骤在细胞中密切协调,共同完成蛋白质的合成。
蛋白质的合成过程是生命体的基础,对于理解细胞的结构和功能,以及研究疾病的发生机制具有重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
UGG—Trp的密码 59个: 同义、简并、三中读二
3个: UAG、UAA、UGA —终止密码
不代表任何氨基酸
4.摆动性
5′ 1 2 3 3 2 1 3′ mRNA
5’
氨基酰-tRNA 3’aa
tRNA的反密码子与mRNA的密码子互补结合时, 不严格遵守常见的碱基配对规律。
密码子与反密码子的摆动配对 密码子第3碱 基 反密码子第1 碱基 A、 C、 U I A、 G U C 、 G、 U C U G
蛋白质的生物合成
Protein Biosynthesis Translation
翻译
即蛋白质的生物合成,就是将mRNA中由 4 种核苷酸序列编码的遗传信息,通过遗传 密码破译的方式解读为蛋白质一级结构中
20种氨基酸的排列顺序 。
第一节 参与蛋白质生物成的物质
一、蛋白质生物合成的原料
模板mRNA
1、 氨基酰-tRNA合成酶
氨基酰-tRNA合成酶(aminocyl-tRNA synthetase)催化tRNA的3′-末端CCA-OH与氨 基酸羧基形成酯键,生成:氨基酰-tRNA。
氨基酰-tRNA合成酶对底物AA和tRNA都有高度
特异性。
氨基酰-tRNA合成酶具有校正活性。
2.转肽酶(肽酰转移酶)是核酶 将P位上的肽酰基转移给A位上的氨基酰 tRNA,形成肽键; 原核生物中,是大亚基23S rRNA的成分; 真核生物中,是大亚基28S rRNA的成分。 3.转位酶 转位酶活性存在于延长因子EF-G,使核蛋 白体向mRNA的3’端移动相当于一个密 码子的距离,使下一个密码子定位于A位
二、原核生物蛋白质合成 (一)肽链合成起始
指 mRNA 和起始氨基酰 -tRNA 分别
与核蛋白体结合而形成翻译起始复合物
(translational initiation complex) 。
1. 核蛋白体大小亚基分离
IF-3
IF-1
起 始 因 子 IF 1 、 IF 3 协 助使大小亚 基分离, 70s核糖体 →30s小亚 基+50s大亚 基
mRNA在小亚基定位结合
5' IF-3
AUG
3' IF-1
起始氨基酰tRNA( fMet-tRNAimet )结 合到小亚基
5′
读码方向
3′
N
肽链延伸方向
C
2. 连续性(commaless)
编码蛋白质氨基酸序列的各个三联体密码从5’
3’连续阅读,密码间既无间断也无交叉。
5’…….A U G G C A G U A C A U …… U A A 3’
Met Ala Val His
终止密码
遗传密码表
第一个 核苷酸 第二个核苷酸 U C A G 第三个 核苷酸
• 开放读码框架(open reading frame,ORF)
指从起始密码子到终止密码子的一段核苷酸序列, 能够编码一条完整的多肽链,其间不存在使翻译中
断的终止密码子。
遗传密码特点
1. 方向性(directional)
从mRNA的起始密码子AUG开始,按 5’→3’的方向逐一阅读,直至终止密码子。
34 33
50
60S
核蛋白体上的功能部位
mRNA 5′
E位
小亚基 P位 A位 3′
P位/
肽位(peptidyl site) / 给位(donor site)
A位/氨基酰位(aminoacyl
site) /受位(acceptor site)
E位
大亚基
位
卸载tRNA的排出
(真核无E位)
三、 蛋白质合成酶系
四、其他因子
1、其他蛋白质因子 起始因子IF(eIF)、延长因子EF、终止因子RF(eRF) 2、无机离子,Mg 2+、K+ 3、供能物质,如ATP,GTP
第二节
蛋白质的生物合成过程
起始、延长、终止
翻译后加工修饰
一、氨基酸的活化与转运
氨基酰-tRNA合成酶
ATP
氨基酸 + tRNA
氨基酰- tRNA AMP+PPi
C
A
G
3. 简并性(degeneracy) 1个AA具有2种以上的密码子的现象
除色氨酸和甲硫氨酸仅有一个密码 子外,其余氨基酸有2、3、4个或多至6 个三联体为其编码。
简并性(degeneracy)
64个密码子:
AUG 61个: 起始密码(initiation codon) 原核甲酰蛋氨酸 真核蛋氨酸
组氨酸 组氨酸 谷氨酰胺 谷氨酰胺 天冬酰胺 天冬酰胺 赖氨酸 赖氨酸 天冬氨酸 天冬氨酸 谷氨酸 谷氨酸
半胱氨酸 半胱氨酸 ——终止密码 色氨酸
精氨酸 精氨酸 精氨酸 精氨酸 丝氨酸 丝氨酸 精氨酸 精氨酸 甘氨酸 甘氨酸 甘氨酸 甘氨酸
U C A G
U C A G U C A G U C A G
一种aa可以和2-6种tRNA特异性结合
tRNA分子3′末端的CCA序列是氨基酸结合部 位。每一种特异的tRNA只能转载特异的氨基 酸。
(三)、(rRNA+pr.)组成核糖体是肽链合成场所
核糖体组成 原核 70S 真核 80S
30S 50S
40S
rRNA
16S
Pr.
21
5S、23S 18S
5S、5.8S、28S
20种α-氨基酸
原料
运载体tRNA Pr.合成酶系 核蛋白体
蛋白因子(IF、EF、RF、RR) 无机离子、ATP、GTP
Protein
二、三种RNA在翻译中所起的作用
(一)、mRNA是翻译的直接模板
mRNA
5' AUG
3'
遗传密码(密码子,codon)
mRNA分子5至3方向,由AUG开始,每3个核 苷酸为一组,代表肽链合成的起始、氨基酸序列或 合成终止信号,称为三联体密码(triplet coden)。
U
苯丙氨酸 苯丙氨酸 亮氨酸 亮氨酸
亮氨酸 亮氨酸 亮氨酸 亮氨酸 异亮氨酸 异亮氨酸 异亮氨酸 甲硫氨酸 缬氨酸 缬氨酸 缬氨酸 缬氨酸
丝氨酸 丝氨酸 丝氨酸 丝氨酸
脯氨酸 脯氨酸 脯氨酸 脯氨酸 苏氨酸 苏氨酸 苏氨酸 苏氨酸 丙氨酸 丙氨酸 丙氨酸 丙氨酸
酪氨酸 酪氨酸 ——终止密码 ——终止密码
5. 通用性(universal)
• 适用于整个生物界。 • 但在线粒体、叶绿体中例外
线粒体起始密码子:AUG、AUA、AUU, AUA译为Met,UGA被译为Trp,终止密码子AGA、AGG。
(二)、tRNA是转运氨基酸的工具
aa的活化:
aa
tRNA
ATP
AMP
氨基酰-tRNA合成酶
氨基酰-tRNA