结构方程模型及其应用_侯杰泰共105页
结构方程模型简介及应用

模型建模的类型
纯粹验证型:拒绝or接受 模型发展型:根据数据和理论修改 选择模型:选择一个好的
模型建构:模型选择(以验证性因素分析为例)
多个一阶模型:理论和探索性因素分析结果 直交or斜交:因素间是否存在相关 一阶or二阶:因素间的相关大小
t14
1
t171
内在取向内在取向t19
1 1 1
t14e141 t17e171 t19e191
低识别模型
正好识别模型
过度识别模型
第三步:收集数据
样本数: a:理想的样本量与题项数比例为5-20倍 b:样本越多越好,但是越多卡方值越大, 模型被拒绝的可能性更大。 c: 200-500之间
缺失数据:在spss里补好
第四步:模型拟合—参数估计方法
极大似然法(maximum likelihood):大样本,正态分布、观测变 量是连续变量
1
e3
X3
1
e4
X4 1
1
e5
X5
智力
1
e6
X6
1
e7
X7 1
1
e8
X8
自信
1
e9
X9
1
学业表现
1
Y1
e10
1
Y2
e11
1
Y3
e12
1
课外活动
1
Y4
e13
1
Y5
e14
1
Y6
e15
1
服务热诚
1
Y7
e16
1
Y8
e17
1
Y9
e18
回归
测量 方程
外生潜变量
结构 方程
内生潜变量
结构方程模型原理及其应用

一、结构方程模型简介
结构方程模型由一种因素模型和一种结构方程式模型组 成,将心理测量学和经济计量学有效的结合起来。
一个包括一组自变量和一组或更多因变量的计量模型。
模型由两部分组成:测量模型(即验证性因素分析模型, Confirmatory Factor Analysis , CFA)和结构模型 (又称潜变量的因果关系模型,Causal Model )。测量 模型主要是用于表示观测变量和潜变量之间的关系;而 结构方程模型主要是用于来表示潜变量之间的关系。 其相应的统计分析软件:SPSS/AMOS与LISREL的应用,特 别是AMOS的操作与应用。
?1 ?2 ?3
情商
ξ1
? 21
? 21 外部潜在变量
? 11
智商
ξ2
?4 ?5 ?6
?12
η ? Βη ? Γξ ? ζ
?10 ?11 ?12
η2 ζ2 人际
关系
? 21 内部潜在变量
η1
ζ1 学业
成绩
?7 ?8 ?9
x4
x5
x6
y1
y2
y3
δ4 δ5 δ6
ε1 ε2 ε3
测量模型(验证性因素分析模型,如社会经济指
一、结构方程模型简介
结构方程模型是基于变量的协方差矩阵来分析变量之间关系的 一种统计方法,是路径分析和因素分析的有机结合。
对于那些不能准确、直接测量的潜变量( latent variable , 如家庭的社会经济地位、学业成就等),可以用一些外显指标 ( observed variable ,如学生父母的教育程度和父母职业及 收入作为家庭社会经济地位的指标,以学生的语文、数学英语 三科成绩作为学业成就的指标 )去间接测量。结构方程模型 可以同时处理潜变量及指标。
结构方程模型在实证分析中的应用课件

结构方程模型在实证分析中的应用
为什么使用SEM?
结构方程模型最为显著的两个特点是:
(1)评价多维的和相互关联的关系; (2)能够发现这些关系中没有察觉到的概念关系,而且能够
在评价的过程中解释测量误差。
联系信息技术吸纳能力: • SEM能够反映模型中要素之间的相互影响; • 吸纳能力概念作为一个重要的模型要素,难以直接度量,
绝对拟合度
简约拟合度
增值拟合度
指 标 χ2 2 df GFI RMR RMSEA PNFI PGFI NFl
TFI
CFI
评价 标准 不显著
<2 >0.9 <0.08
<0.06
>0.5 >0.5 >0.95 >0.95 >0.95
结构方程模型在实证分析中的应用
指标说明
• χ2卡方拟合指数 检验选定的模型协方差矩阵与观察数据协方差矩阵相匹配的假设。原假 设是模型协方差阵等于样本协方差阵。如果模型拟合的好,卡方值应该不显著。在这种 情况下,数据拟合不好的模型被拒绝。
测量模型 结构模型
Λx—外生观测变量与外生潜变量直接的关系,是外生观测变量在外生 潜变量上的因子载荷矩阵; Λy—内生观测变量与内生潜变量之间的关系,是内生观测变量在内生 潜变量上的因子载荷矩阵; В—路径系数,表示内生潜变量间的关系; Г—路径系数,表示外生潜变量对内生潜变量的影响; ζ—结构方程的残差项,反映了”在方程中未能被解释的部分。
结构方程模型在实证分析中的应用
整体模型拟合度
• 整体模型拟合度是用来评价模型与数据的拟合程度。 • 主要包括:
(1)绝对拟合度,用来确定模型可以预测协方差阵和相关矩阵的程度; (2)简约拟合度,用来评价模型的简约程度; (3)增值拟合度,理论模型与虚无模型的比较。
结构方程模型的原理与应用

结构方程模型的原理与应用嘿,朋友们!今天咱来聊聊结构方程模型,这玩意儿可有意思啦!你看啊,结构方程模型就像是一个超级复杂但又超级厉害的拼图游戏。
我们都玩过拼图吧,要把那些小块块拼成一幅完整的画面。
结构方程模型也是一样,它要把各种看似杂乱无章的因素、变量啊,给整合起来,让我们能看清它们之间的关系。
比如说,我们想知道学习时间、学习方法和学习成绩之间到底是怎么回事儿。
结构方程模型就能帮我们搞清楚,到底是学习时间长成绩就好呢,还是学习方法对了更重要。
这就好像我们在黑暗中摸索,结构方程模型就是那盏明灯,一下子让我们看清了路。
它的应用那可广泛了去了。
在心理学领域,能帮我们理解人的心理特质和行为之间的联系;在社会学里,能探究社会现象背后的各种因素。
这不就跟我们找东西一样嘛,东翻翻西找找,最后终于找到了我们想要的答案。
而且哦,它还特别灵活。
不像有些方法那么死板,它可以根据我们的具体问题和需求来调整。
就像一件百搭的衣服,啥场合都能穿得合适。
咱再想想,要是没有结构方程模型,那我们得多迷茫啊!就像在大海里没有指南针,不知道该往哪儿走。
有了它,我们就有了方向,能更准确地做出判断和决策。
你说这结构方程模型是不是很神奇?它就像是一个智慧的小精灵,在我们研究的道路上给我们指引。
我们可以通过它发现很多以前没注意到的关系和规律,这多让人兴奋啊!所以啊,大家可别小瞧了这个结构方程模型,它真的能给我们带来很多惊喜呢!它能帮我们把复杂的问题简单化,让我们能更轻松地理解和解决。
这不就是我们一直追求的嘛,用简单的方法解决复杂的问题。
总之,结构方程模型就是我们探索知识海洋的有力工具,让我们能在茫茫的数据中找到属于我们的宝藏!大家一定要好好利用它呀!。
结构方程模型及其在医学中的应用

结构方程模型及其在医学中的应用作者:曲波郭海强任继萍孙高张阳于晓松【关键词】结构方程模型结构方程模型(Structural Equation Modeling, SEM)也称协方程结构模型(covariance Structure Models, CSM)或线性结构模型(Linear Stuctural Relations Models), LISREL模型是自20世纪六、七十年代才开始出现的新兴的统计分析手段,被称为近年来统计学三大进展之一[1]。
结构方程模型是一种建立、估计和检验因果关系模型的方法,模型中既包含有可观测的显在变量(observed variable),也可能包含无法直接观测的潜在变量(latent variable)。
从数理角度看,结构方程模型综合了通径分析和证实性因子分析(confirmatory factor analysis, CFA),是一种杂合体[2]。
目前结构方程模型已在心理、行为、教育和社会科学等学科领域里得到广泛的应用,但在医学领域的应用还不多,随着社会和行为科学研究问题复杂性的增加,以及统计软件的进一步发展,结构方程模型在医学领域将会逐步得到重视及应用。
1基本原理结构方程模型包括测量模型(Measurement Model)与结构模型(Structural Equation Model)[3]。
测量模型部分求出观察指标与潜变量之间的关系;结构模型部分求出潜在变量与潜在变量之间的关系。
在结构方程模型中,对于所研究的问题,无法直接测量的现象记为潜变量(Latent Variable)或称隐变量;可直接测量的变量记为观测变量(Manifest Variable)或显变量。
11测量模型(Measurement Model)一般由两个方程式组成,分别规定了内生的潜在向量η和内生的显在向量Y之间,以及外生的潜在变量ξ和外生的显在向量X间的关系,分别用方程表示为:Y=ΛYη+ω(1)X=ΛXξ+δ(2)其中,Y为q×1阶内生观测变量向量,X为p×1阶外生观测变量向量;η是n×1阶内生潜变量(即潜在的因变量)向量,ξ是m×1阶外生潜变量(即潜在的自变量)向量;ΛY为q×n阶矩阵,是内生观测变量Y在内生潜变量η上的因子载荷矩阵;ΛX为p×m阶矩阵,是外生观测变量X在外生潜变量ξ上的因子载何矩阵;δ为p×1阶测量误差向量,ε为q×1阶测量误差向量,δ、ε表示不能由潜变量解释的部分。
路径分析、结构方程模型及应用讲义

四个外生变量耐用性、操作的简单性、通话效果和价格既对忠 诚度有直接作用,同时通过感知价值对忠诚度具有间接作用。
路径分析的优势在于:它可以容纳多环节的因果结构,通过路径图把这些因果关
系很清楚地表示出来,据此进行更深层次的分析,如比较各种因素之间的相对重
要程度,计算变量与变量之间的直接与间接影响
2021/8/7
8
例:某种消费性电子产品(如手机)路径分析:
四个变量耐用性、操作的简单性、通话效果和价格两两相关,决
2021/8/7
中间变量的中间作
用有理论依据吗?
中间作用统计显著
吗?
11
检验中间变量间接作用是否统计显著(Barron, R.M. & Kenny D.(1986) Agarwal ,S.& Teas,R.K.(1997) ): • 第一步:用中间变量(感知价值)对外生变量耐用性、操作的简单性、通话效果和 价格四个变量进行回归; • 第二步:用内生变量(忠诚度)对第一步中的四个变量进行回归; • 第三步:用忠诚度对第一步中的四个变量以及中间变量感知价值进行回归。
2021/8/7
18
三、路径模型的整体检
验
• 路径模型中方程的个数和内生变量的个数相等,不妨设有m个内生变
量,则对于这m个方程,设其回归后的决定系数分别是
每个 R2 (1)
,
R2 (2)
,,
R2 (m)
R2 都代表相应内生变量的方差中由回归方程所解释的比例,1- R2 则
侯杰泰结构方程模型

The output: Principal Components Analysis Eigenvalues and Eigenvectors
PC_1 PC_2 PC_3 PC_4 PC_5 PC_6 ------- -------- ------- ------- ------ ------Eigenvalue 2.56 1.66 1.63 0.69 0.59 0.56 % Variance 28.42 18.49 18.15 7.65 6.50 6.18 Cum% Var 28.42 46.91 65.06 72.71 79.21 85.39
• It is also possible that we have no “theory” in mind to test, i.e., we have the following research questions:
– How many cluster of subjects are there? How do these 9 subjects relate to each of these clusters (factors)?
模型 df
2
NNFI
CFI
(no. of estimated parameters) 需要估计的参数个数
______________________________________________________________________________________________
M1 24 40 .973 .982 21 = 9 Load + 9 Uniq + 3 Corr
______________________________________________________________________________________________
第十九章结构方程模型

第十九章结构方程模型第十九章结构方程模型本章导读:本章主要介绍结构方程模型的基本概念,结构方程的数学方程表达式,最后以一个案例的形式完整的把结构方程模型的操作过程展现在读者面前了。
19.1 结构方程简介在社会生活中我们经常会遇到需要处理多变量的问题,或者遇到的一些变量无法直接观测,这时需要用其他变量反映,这些变量被称为是潜在变量。
怎样处理这些变量呢?线性结构方程模型的方法就应运而生了,这种方法是20世纪70年代最重要的成果之一,也是多元变量进行处理的一种最为重要的方法,随着该方法的提出,专门的应用软件也随之而诞生,LISREL和AMOS是专门针对此种方法诞生的处理线性结构方程的软件。
限于篇幅,此章只用AMOS进行讲解,主要原因在于其操作方便,界面友好,同时容易入门。
我们知道变量之间的相互作用关系是普遍存在的事实,而多元回归分析方法分析只是重视解释变量对被解释变量的独立作用,这就使得多元回归分析方法在解释客观现象时存在非常大的局限性。
因为它很难清楚的解释变量之间的相互作用关系。
进一步,如果模型越复杂,那么自变量就会越来越多,变量之间的关联程度也会越来越明显,变量之间的间接效应就变得不容忽视,而多元回归分析方法恰恰就忽视这些变量之间的间接效应,因此存在很大的缺陷。
为了弥补这一缺陷,结构方程模型就很好的解决了这一问题。
虽然结构方程模型有许多优点,但是结构方程也有自身的不足,其应用起来也十分有限。
现在结构方程主要应用到管理学领域,比如市场营销和人力资源的研究比较多,其次是教育学和心理学,再次是社会学研究,偶尔可见经济学领域的竞争力评价,以及金融学领域的人为行为的寿险研究。
下面进一步说明结构方程模型的优点和缺陷。
结构方程模型的优点主要有:(1)结构方程模型假设潜在的统计分析是明确的和可以检验的,调查者能全部控制和进一步地分析理解。
(2)绘图接口软件创造性地推进和使快速调式模型变得容易(这个特性取决于所选的SEM软件)。