物联网安全特征与关键技术
物联网安全关键技术

由于物联网中的终端设备大多处于无人值守的环境中, 且终端节点数量巨大,感知节点具有组群化、低移动性等特 点,物联网应用对运营商的通信网络提出了更高的要求。由 于物联网具有区别于传统通信网络的不同特点,物联网不仅 面临现有的移动网络中所具有的网络威胁,还将面临与其网 络特点相关的特殊安全威胁。
2.1.1 物联网中感知节点的安全
目前在物联网中,感知节点由于受到功能和能量限制, 其所具有的安全机制较少,安全保护功能较弱,并且由于物 联网目前尚未完全实现标准化,所以导致其中的消息和数据 传输的协议也没有统一的标准,从而无法提供一个统一的安 全保护体系。因此,物联网除了可能遭受同现有网络相同的 安全威胁外,还可能受到一些特有的威胁。
核心网络对感知网络的控制和管理能力。 (3)密钥管理问题:传统的通信网络认证是对终端逐个
进行认证,并生成相应的加密和完整性保护密钥。这样带来 的问题是当网络中存在比传统手机终端多得多的物联网设备 时,如果也按照逐一认证产生密钥的方式,会给网络带来大 量的资源消耗。同时,未来的物联网存在多种业务,对于同 一用户的同一业务设备来说,逐一对设备端进行认证并产生 不同的密钥也是对网络资源的一种浪费。
2.1.2 物联网中通信网络的安全
现有通信网络面向人与人的通信方式设计,通信终端的 数量并没有物联网中如此大的数量,因而通信网络的承载能 力有限,通信网络面临安全威胁将会增加。
1.大量终端节点接入现有通位信网络带来的问题 (1)网络拥塞和Dos攻击:由于物联网设备数量巨大,如 果通过现有的认证方法对设备进行认证,那么信令流量对网 络侧来说是不可忽略的,尤其是大量设备在很短时间内接入 网络,很可能会带来网络拥塞,而网络拥塞会给攻击者带来 可趁之机,从而对服务器产生拒绝服务攻击。 (2)接入认证问题:物联网环境中终端设备的接入通常 表现为大批量、集体式的接入,目前一对一的接入认证无法 满足短期内对大批量物理机器的接入认证,并且在认证后也 无法体现机器的集体性质。而对于物联网网关等相关设备, 还涉及如何能够代表感知网络核心网络进行交互,从而满足
物联网安全性与隐私保护的最新技术

物联网安全性与隐私保护的最新技术在当今数字化社会,物联网(IoT)的普及和应用日益普遍。
然而,随着物联网设备数量的增加和信息交流的加强,物联网的安全性和隐私保护问题也越来越受到关注。
物联网设备的互联性和数据采集功能为黑客和犯罪分子提供了潜在的攻击目标。
因此,确保物联网系统的安全性和隐私保护成为了亟待解决的问题。
最新的技术在物联网安全性和隐私保护方面表现出了巨大的潜力。
以下是一些最新的技术趋势和解决方案:1. 基于密码学的保护:一种常见的物联网攻击是通过窃听和篡改通信来获取机密信息。
为了解决这个问题,使用基于密码学的保护措施,如身份验证、数据加密和数字签名等技术,可以确保通信的机密性和完整性。
区块链技术也可以用于确保数据的安全性和可追溯性。
2. 设备认证和授权:确保物联网设备的合法性和信任性对于保护物联网系统的安全至关重要。
设备认证和授权技术可以在设备连接到网络之前验证其身份,并授予相应的权限。
这将有效防止未经授权的设备接入网络,并减少恶意攻击的风险。
3. 安全更新和漏洞管理:由于物联网设备通常长时间运行并连接到网络,及时的安全更新和漏洞管理是必不可少的。
最新的技术趋势包括自动化的漏洞扫描和修补工具,以及实时监测和分析系统的安全漏洞。
4. 数据隐私保护:物联网设备收集大量的个人和敏感数据,保护这些数据的隐私至关重要。
最新的数据隐私保护技术包括数据加密、数据脱敏、匿名化和访问控制等措施。
差分隐私技术也被广泛应用于保护用户的隐私,同时保持数据的可用性和可分析性。
5. 人工智能和机器学习的应用:人工智能和机器学习技术在物联网安全性和隐私保护方面发挥着越来越重要的作用。
它们可以帮助检测和预测潜在的安全威胁,并采取相应的措施进行防御。
人工智能技术还可以用于实时监测和自动化的安全分析,以及自适应访问控制和风险评估。
总之,物联网安全性和隐私保护是当前关注的热点问题。
最新的技术趋势和解决方案为解决这些问题提供了一些有效的方法。
物联网安全关键技术与挑战

物联网设备是物联网体系中的重要组成部分,设备安全包括硬件安全和软件 安全。硬件安全主要是指设备物理防护,如防盗、防毁等;软件安全主要是指操 作系统、固件、应用程序等方面的安全。设备安全的重点是确保设备不受外部攻 击和内部损坏。
3、数据安全
数据是物联网系统的核心资产,数据安全对于物联网系统的可靠性至关重要。 数据安全包括数据加密、数据完整性保护、数据隐私等方面。数据安全的重点是 确保数据不被非法获取、篡改和泄露。
(1)加强网络协议安全。选用安全性较高的协议,如TLS/SSL等;对协议进行 定期的漏洞分析和评估,及时更新协议版本;严格控制协议的安全参数,如加密 算法、密钥管理等。
(2)提升设备安全性。加强设备物理防护,如采用防盗、防毁等措施;对设 备软件进行定期的安全更新和补丁升级;严格控制设备的接入权限,防止非法接 入。
二、物联网安全挑战
1、ห้องสมุดไป่ตู้息安全
物联网系统的信息安全是至关重要的,因为物联网系统通常涉及大量的敏感 信息和重要数据。黑客可以利用漏洞,植入恶意代码,获取非法的信息,甚至控 制整个系统。因此,如何确保信息安全是物联网安全面临的重要挑战。
2、稳定性
物联网系统通常用于关键业务领域,如工业控制、智能家居、医疗保健等。 这些领域对系统的稳定性要求极高,任何故障都可能带来严重的后果。因此,如 何提高物联网系统的稳定性,避免安全漏洞和攻击,是物联网安全面临的又一大 挑战。
物联网安全关键技术与挑战
目录
01 一、物联网安全关键 技术
02 二、物联网安全挑战
03
三、物联网安全解决 方案
04 四、未来展望
05 参考内容
随着物联网技术的快速发展,物联网安全问题日益引人。物联网安全关键技 术是保障物联网系统安全稳定运行的重要支撑,也面临着诸多挑战。本次演示将 介绍物联网安全关键技术及所面临的挑战,并提出相应的解决方案。
物联网的安全特征

物联网的安全特征物联网是一个多层次的网络体系,当其作为一个应用整体时,各个层次的独立安全措施简单相加不足以提供可靠的安全保障。
物联网的安全特征体现在以下3个方面。
(1)安全体系结构复杂已有的一些针对传感网、互联网、移动网、云计算等的安全解决方案在物联网环境中可以部分使用,而其余部分不再适用。
物联网海量的感知终端,使其面临复杂的信任接入问题;物联网传输介质和方法的多样性,使其通信安全问题更加复杂;物联网感知的海量数据需要存储和保存,这使数据安全变得十分重要。
因此,构建适合全面、可靠传输和智能处理环节的物联网安全体系结构是物联网发展的一项重要工作。
(2)安全领域涵盖广泛首先,物联网所对应的传感网的数量和智能终端的规模巨大,是单个无线传感网无法相比的,需要引入复杂的访问控制问题;其次,物联网所连接的终端设备或器件的处理能力有很大差异,它们之间会相互作用,信任关系复杂,需要考虑差异化系统的安全问题;最后,物联网所处理的数据量将比现在的互联网和移动网大得多,需要考虑复杂的数据安全问题。
所以,物联网的安全范围涵盖广泛。
(3)有别于传统的信息安全即使分别保证了物联网各个层次的安全,也不能保证物联网的安全。
这是因为物联网是融合多个层次于一体的大系统,许多安全问题来源于系统整合。
例如,物联网的数据共享对安全性提出了更高的要求,物联网的应用需求对安全提出了新挑战,物联网的用户终端对隐私保护的要求也日益复杂。
鉴于此,物联网的安全体系需要在现有信息安全体系之上,制定可持续发展的安全架构,使物联网在发展和应用过程中,其安全防护措施能够不断完善。
目前,国内外学者针对物联网的安全问题开展了相关研究,在物联网感知、传输和处理等各个环节均开展了相关工作,但这些研究大部分是针对物联网的各个层次的,还没有形成完整系统的物联网安全体系。
在感知层,感知设备有多种类型,为确保其安全,目前主要进行加密和认证工作,利用认证机制避免标签和节点被非法访问。
物联网安全关键技术

物联网安全关键技术随着信息技术的飞速发展,物联网已经逐渐融入到我们生活的方方面面,从智能家居到工业自动化,从智能交通到医疗健康。
然而,物联网的广泛应用也带来了一系列的安全挑战。
在这个万物互联的时代,保障物联网的安全至关重要。
接下来,让我们一起探讨一下物联网安全的关键技术。
一、身份认证与访问控制身份认证是确保只有合法的设备和用户能够接入物联网系统的第一道防线。
在物联网环境中,由于设备数量众多且类型各异,传统的认证方式可能不再适用。
例如,对于一些资源受限的设备,如传感器节点,采用复杂的加密算法进行认证可能会消耗过多的能量和计算资源。
因此,需要研究轻量级的认证机制,既能保证安全性,又能适应物联网设备的特点。
访问控制则是在认证通过后,对设备和用户的操作权限进行限制。
通过访问控制策略,可以防止未经授权的访问和操作,保护物联网系统中的敏感数据和关键功能。
例如,在智能家居系统中,可以设置不同用户对家电设备的不同操作权限,以保障家庭安全和隐私。
二、数据加密与隐私保护数据在物联网中的传输和存储过程中面临着被窃取、篡改和泄露的风险。
因此,数据加密是保障物联网安全的重要手段。
加密技术可以将数据转换为密文,只有拥有正确密钥的授权方能够解密并读取数据。
同时,隐私保护也是物联网安全中不可忽视的问题。
物联网设备收集了大量的个人和敏感信息,如位置信息、健康数据等。
如何在保证数据可用性的前提下,对这些敏感信息进行保护,防止隐私泄露,是当前研究的热点之一。
例如,可以采用数据匿名化、差分隐私等技术来保护用户的隐私。
三、安全协议与通信机制安全的通信协议是物联网系统正常运行的基础。
在物联网中,设备之间的通信通常采用无线方式,如蓝牙、Zigbee 等,这些通信方式本身存在一定的安全漏洞。
因此,需要设计专门的安全协议来保障通信的安全性。
例如,采用加密的通信链路,对通信数据进行完整性校验,防止数据在传输过程中被篡改。
此外,还需要考虑通信协议的抗干扰能力和容错性,以应对复杂的网络环境。
物联网安全

图2物联网安全技术架构
应用环境安全技术可信终端、身份认证、访问控制、安全审 计等
网络环境安全技术无线网安全、虚拟专用网、传输安全、安 全路由、防火墙、安全域策略、安全审计等
信息安全防御关键技术攻击监测、内容分析、病毒防治、访 问控制、应急反应、战略预警等 信息安全基础核心技术密码技术、高速密码芯片、PKI公钥 基础设施、信息系统平台安全等
•
•
签显示了独特的优势,而虚拟光学的加密解密技术为基 于光学标签的身份标识提供了手段,基于软件的虚拟光学 密码系统由于可以在光波的多个维度进行信息的加密处理, 具有比一般传统的对称加密系统有更高的安全性,数学模 型的建立和软件技术的发展极大地推动了该领域的研究和 应用推广。 • 数据处理过程中涉及到基于位置的服务与在信息处理过 程中的隐私保护问题。ACM于2008年成立了 SIGSPATIAL(Special Interest Group oil SpatialInformation),致力于空间信息理论与应用研究。 基于位置的服务是物联网提供的基本功能,是定位、电子 地图、基于位置的数据挖掘和发现、自适应表达等技术的 融合。定位技术目前主要有GPS定位、基于手机的定位、 无线传感网定位等。无线传感网的定位主要是射频识别、 蓝牙及ZigBee等。基于位置的服务面临严峻的隐私保护问。
ቤተ መጻሕፍቲ ባይዱ
1.1物联网安全特征
• 从物联网的信息处理过程来看,感知信息经过采集、汇 聚、融合、传输、决策与控制等过程,整个信息处理的过 程体现了物联网安全的特征与要求,也揭示了所面临的安 全问题。 • 一是感知网络的信息采集、传输与信息安全问题。感知 节点呈现多源异构性,感知节点通常情况下功能简单(如 自动温度计)、携带能量少(使用电池),使得它们无法拥有 复杂的安全保护能力,而感知网络多种多样,从温度测量 到水文监控,从道路导航到自动控制,它们的数据传输和 消息也没有特定的标准,所以没法提供统一的安全保护体 系。 • 二是核心网络的传输与信息安全问题。核心网络具有相 对完整的安全保护能力,但是由于物联网中节点数量庞大, 且以集群方式存在,因此会导致在数据传播时,由
物联网安全特征与关键技术

物联网安全特征与关键技术在当今数字化的时代,物联网已经成为我们生活和工作中不可或缺的一部分。
从智能家居设备到工业控制系统,物联网将各种物理对象连接到互联网,实现了智能化的管理和控制。
然而,随着物联网的广泛应用,其安全问题也日益凸显。
了解物联网的安全特征以及掌握关键的安全技术,对于保障物联网系统的稳定运行和用户的隐私安全至关重要。
物联网的安全特征与传统的网络安全有所不同。
首先,物联网设备通常具有资源受限的特点。
这些设备往往计算能力较弱、存储容量有限,难以运行复杂的安全软件和算法。
这使得它们在面对恶意攻击时相对脆弱,容易被攻破。
其次,物联网设备的数量极其庞大且分布广泛。
这意味着对每一个设备进行实时监控和管理几乎是不可能的,一旦出现安全漏洞,可能会迅速蔓延到大量的设备上,造成严重的后果。
再者,物联网中的数据具有多样性和敏感性。
从个人的生活习惯数据到企业的关键业务数据,这些信息的泄露可能会给用户带来巨大的损失。
此外,物联网的应用场景复杂多样,涉及到不同的行业和领域。
不同的应用场景对安全的需求也各不相同,这增加了安全管理的难度。
为了应对这些安全挑战,一系列关键技术应运而生。
加密技术是保障物联网安全的基础。
通过对数据进行加密,可以确保即使数据在传输过程中被窃取,攻击者也无法解读其中的内容。
对称加密算法和非对称加密算法在物联网中都有广泛的应用。
身份认证技术用于确认物联网设备和用户的身份合法性。
常见的身份认证方式包括基于密码的认证、基于生物特征的认证以及基于数字证书的认证等。
只有经过认证的设备和用户才能访问物联网系统中的资源,从而有效地防止非法入侵。
访问控制技术则决定了设备和用户在物联网系统中能够访问的资源范围和操作权限。
通过合理的访问控制策略,可以避免权限滥用和数据的非法访问。
安全协议也是物联网安全的重要组成部分。
例如,传输层安全协议(TLS)和安全套接字层协议(SSL)可以为数据传输提供安全保障,防止数据被篡改和窃取。
物联网技术特征

物联网技术特征物联网技术是当今信息技术领域的热点之一,它的特征是通过智能化的设备、传感器和网络连接,实现物体之间的信息交互和通信。
物联网技术的发展,将给人们的生活、工作和社会带来深远的影响和改变。
本文将从四个方面介绍物联网技术的特征:智能化、互联互通、大数据和安全性。
一、智能化物联网技术的核心在于智能化设备的应用。
物联网中的设备和传感器具有较强的智能感知能力,可以通过感知环境中的实时数据,并将其处理和分析,从而实现对物体之间的互动和控制。
智能化设备在不同领域有着广泛的应用,如智能家居、智慧城市、智能交通等。
这些设备可以通过互联网进行远程控制和监测,使人们的生活更加智能、便捷和高效。
二、互联互通物联网技术实现了物体之间的互联互通。
通过网络连接,物联网中的设备、传感器和云平台可以实现实时数据的共享和传输。
无论是人与物体之间,还是物体与物体之间,都可以实现无缝的通信,从而形成一个广泛的互联网。
这种互联互通的特征,极大地提升了信息的传递速度和效率。
例如,当智能家居中的传感器检测到有人离开家后,可以通过云平台发送通知给手机端,提醒用户关闭家中的电器设备,实现智能化管理。
三、大数据物联网技术的应用产生了大量的实时数据。
这些数据包括传感器收集的环境数据、设备状态数据和用户行为数据等。
通过对这些数据的收集、分析和利用,可以获取有价值的信息。
物联网中的大数据应用包括数据采集、数据存储、数据管理、数据处理和数据挖掘等方面。
这些数据在各个领域中有着广泛的应用,例如交通管理、环境监测和健康医疗等。
四、安全性物联网技术的发展也带来了一系列的安全问题。
由于物联网中的设备和网络连接数量庞大,安全性问题成为一个亟待解决的难题。
物联网涉及到用户的个人隐私和重要数据,因此必须确保物联网系统的安全性和隐私保护。
物联网系统需要具备数据加密、身份认证、权限管理和漏洞修复等安全机制,以确保系统的安全性。
总结物联网技术具有智能化、互联互通、大数据和安全性四个特征。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 物联网安全特征 一、感知网络的信息采集、传输与信息安全问题 感知节点呈现多源异构性 感知节点功能简单、携带能量少 感知网络多种多样 二、核心网络的传输与信息安全问题 物联网中节点数量庞大 现有通信网络的安全架构是从人通信的角度进行设计
三、物联网业务的安全问题 支撑物联网业务的平台有着不同的安全策略 大规模、多平台、多业务类型使物联网业务层次的安 全面临新的挑战 也可以从安全的机密性、完整性和可用性来分析物联 网的安全需求 信息隐私是物联网信息机密性的直接体现 信息的加密是实现机密性的重要手段 物联网的信息完整性和可用性贯穿物联网数据流的全 过程 物联网的感知互动过程也要求网络具有高度的稳定性 和可靠性
无线传感器网络可用性的另一个要求是网络的容错性 无线传感器网络的容错性指的是当部分节点或链路失效后, 网络能够进行传输数据的恢复或者网络结构自愈,从而尽可 能减小节点或链路失效对无线传感器网络功能的影响 目前相关领域的研究主要集中在: (1)网络拓扑中的容错 (2)网络覆盖中的容错 (3)数据检测中的容错机制
在物联网中,业务应用与网络通信紧紧地绑在一起,认 证有其特殊性
物联网的业务由运营商提供
可以充分利用网络层认证的结果而不需要进行业务层的 认证
当业务是敏感Biblioteka 务需要做业务层的认证当业务是普通业务
网络认证已经足够,那么就不再需要业务层的认证
在物联网的认证过程中,传感网的认证机制是重要的研 究部分 (1)基于轻量级公钥算法的认证技术
无线传感器网络的密钥管理系统的安全需求: (1).密钥生成或更新算法的安全性 (2).前向私密性 (3).后向私密性和可扩展性 (4).抗同谋攻击 (5).源端认证性和新鲜性 根据这些要求,在密钥管理系统的实现方法中,提出 了基于对称密钥系统的方法和基于非对称密钥系统的 方法。
在基于对称密钥的管理系统方面,从分配方式上也可 分为以下三类: 基于密钥分配中心方式 预分配方式 基于分组分簇方式 典型的解决方法有SPINS协议、基于密钥池预分配方式 的E-G方法和q-Composite方法、单密钥空间随机密钥预分 配方法、多密钥空间随机密钥预分配方法、对称多项式 随机密钥预分配方法、基于地理信息或部署信息的随机 密钥预分配方法、低能耗的密钥管理方法等。
一种无线传感器网络中的容侵框架,该框架包括三个部分: (1)判定恶意节点 (2)发现恶意节点后启动容侵机制 (3)通过节点之间的协作,对恶意节点做出处理决定(排除或 是恢复) 根据无线传感器网络中不同的入侵情况,可以设计出不同的 容侵机制,如无线传感器网络中的拓扑容侵、路由容侵和数 据传输容侵等机制。
3.2 数据处理与隐私性 物联网应用不仅面临信息采集的安全性,也要考虑 到信息传送的私密性,要求信息不能被篡改和非授 权用户使用,同时,还要考虑到网络的可靠、可信 和安全
就传感网而言,在信息的感知采集阶段就要进行相关的安全 处理
对RFID采集的信息进行轻量级的加密处理后,再传送到汇 聚节点 关注对光学标签的信息采集处理与安全 虚拟光学的加密解密技术: 基于软件的虚拟光学密码系统由于可以在光波的多个维度进 行信息的加密处理,具有比一般传统的对称加密系统有更高 的安全性,数学模型的建立和软件技术的发展极大地推动了 该领域的研究和应用推广
基于位置服务中的隐私内容涉及两个方面: 一、位置隐私 二、查询隐私 面临一个困难的选择,一方面希望提供尽可能精确的位置服 务,另一方面又希望个人的隐私得到保护
3.3安全路由协议 物联网的路由要跨越多类网络,有基于IP地址的互联网 路由协议、有基于标识的移动通信网和传感网的路由算 法,因此我们要至少解决两个问题 一、多网融合的路由问题; 二、传感网的路由问题。 前者可以考虑将身份标识映射成类似的IP地址,实现基 于地址的统一路由体系;后者是由于传感网的计算资源 的局限性和易受到攻击的特点,要设计抗攻击的安全路 由算法。
2.2 物联网安全架构
3.1密钥管理机制 物联网密钥管理系统面临两个主要问题: 一、如何构建一个贯穿多个网络的统一密钥管理系统, 并与物联网的体系结构相适应; 二、如何解决传感网的密钥管理问题,如密钥的分配、 更新、组播等问题。
实现统一的密钥管理系统可以采用两种方式: 一、以互联网为中心的集中式管理方式 一旦传感器网络接入互联网,通过密钥中心与传感器 网络汇聚点进行交互,实现对网络中节点的密钥管理 二、以各自网络为中心的分布式管理方式 互联网和移动通信网比较容易解决,但对多跳通信的 边缘节点、以及由于簇头选择算法和簇头本身的能量 消耗,使传感网的密钥管理成为解决问题的关键。
无线传感器节点电量有限、计算能力有限、存储容量有 限以及部署野外等特点,使得它极易受到各类攻击
抗击上述攻击可以采用的方法
针对无线传感器网络中数据传送的特点,目前已提出许 多较为有效的路由技术。按路由算法的实现方法划分, 洪泛式路由,如Gossiping等; 以数据为中心的路由,如Directed Diffusion,SPIN等; 层次式路由,如LEACH(low energy adaptive clustering hierarchy)、TEEN(threshold sensitive energy efficient sensor network protocol)等; 基于位置信息的路由,如GPSR(greedy perimeter stateless routing)、GEAR(geographic and energy aware routing)等。
3.6决策与控制安全
物联网的数据是一个双向流动的信息流,一是从感知端采集 物理世界的各种信息,经过数据的处理,存储在网络的数据 库中;二是根据用户的需求,进行数据的挖掘、决策和控制, 实现与物理世界中任何互连物体的互动。 数据采集处理--隐私性等安全问题 决策控制--涉及到另一个安全问题,如可靠性等 传统的无线传感器网络网络中--侧重对感知端的信息获取, 对决策控制的安全考虑不多 互联网的应用--侧重与信息的获取与挖掘,较少应用对第三 方的控制 而物联网中对物体的控制将是重要的组成部分,需要进一步 更深入的研究。
基于RSA公钥算法的TinyPK认证方案 基于身份标识的认证算法
(2)基于预共享密钥的认证技术
SNEP方案中提出两种配置方法: 一、节点之间的共享密钥 二、每个节点和基站之间的共享密钥 (3)基于单向散列函数的认证方法
访问控制是对用户合法使用资源的认证和控制,目前信 息系统的访问控制主要是基于角色的访问控制机制 (role-based access control,RBAC)及其扩展模型 对物联网而言,末端是感知网络,可能是一个感知节点 或一个物体,采用用户角色的形式进行资源的控制显得 不够灵活 (1)基于角色的访问控制在分布式的网络环境中已呈现 出不相适应的地方 (2)节点不是用户,是各类传感器或其他设备,且种类 繁多 (3)物联网表现的是信息的感知互动过程,而RBAC机制中 一旦用户被指定为某种角色,其可访问资源就相对固定
与非对称密钥系统相比,对称密钥系统在计算复杂度方 面具有优势。 但在密钥管理和安全性方面有不足 例如:邻居节点间的认证难于实现,节点的加入和退出 不够灵活等。
在物联网环境下,如何实现与其他网络的密钥管理 系统的融合? 将非对称密钥系统也应用于无线传感器网络:
使用TinyOS开发环境的MICA2节点上,采用RSA算法实现 传感器网络外部节点的认证以及TinySec密钥的分发; 在MICA2节点上基于椭圆曲线密码ECC(ellipse curve cryptography)实现了TinyOS的TinySec密钥的分发; 基于轻量级ECC的密钥管理提出了改进的方案,特别是基于 椭圆曲线密码体制作为公钥密码系统之一; 非对称密钥系统的基于身份标识的加密算法(identity-based encryption,IBE)引起了人们的关注
新的访问控制机制是物联网、也是互联网值得研究的问题 基于属性的访问控制(attribute-based access control,ABAC) 是近几年研究的热点 目前有两个发展方向: 基于密钥策略 基于密文策略 目标是改善基于属性的加密算法的性能。
3.5 入侵检测与容侵容错技术
容侵就是指在网络中存在恶意入侵的情况下,网络仍然能够 正常地运行 现阶段无线传感器网络的容侵技术主要集中于 网络的拓扑容侵 安全路由容侵 数据传输过程中的容侵机制
物联网是通过射频识别(RFID)装置、红外感应器、 全球定位系统、激光扫描器、传感器节点等信息传感 设备,按约定的协议,把任何物品与互联网相连接, 进行信息交换和通信,以实现智能化识别、定位、跟 踪、监控和管理等功能的一种网络。 物联网的核心是完成物体信息的可感、可知、可传和 可控。
从信息与网络安全的角度来看,物联网作为一个多网 的异构融合网络,不仅存在与传感器网络、移动通信 网络和因特网同样的安全问题,同时还有其特殊性 隐私保护问题 异构网络的认证与访问控制问题 信息的存储与管理等
谢
谢!
数据处理过程中涉及到基于位置的服务与在信息处理过程中的隐 私保护问题 基于位置的服务是物联网提供的基本功能,是定位、电子地图、 基于位置的数据挖掘和发现、自适应表达等技术的融合 定位技术目前主要有: GPS定位 基于手机的定位 无线传感网定位等 无线传感网的定位主要是: 射频识别、 蓝牙 ZigBee等 基于位置的服务面临严峻的隐私保护问题,既是安全问题,也是 法律问题
3.4认证与访问控制 认证指使用者采用某种方式来“证明”自己确实是自己 宣称的某人,网络中的认证主要包括身份认证和消息认 证 身份认证可以使通信双方确信对方的身份并交换会话密 钥。 认证的密钥交换中两个重要的问题: 保密性 及时性
消息认证中主要是接收方希望能够保证其接收的消息确 实来自真正的发送方 广播认证是一种特殊的消息认证形式,在广播认证中一 方广播的消息被多方认证 传统的认证是区分不同层次的,网络层的认证就负责网 络层的身份鉴别,业务层的认证就负责业务层的身份鉴 别,两者独立存在。