《时间序列分析》第二章 时间序列预处理习题解答[1]

《时间序列分析》第二章 时间序列预处理习题解答[1]
《时间序列分析》第二章 时间序列预处理习题解答[1]

统计基础知识第五章时间序列分析习题及答案

第五章时间序列分析 一、单项选择题 1.构成时间数列的两个基本要素是( C )(2012年1月) A.主词和宾词 B.变量和次数 C.现象所属的时间及其统计指标数值 D.时间和次数 2.某地区历年出生人口数是一个( B )(2011年10月) A.时期数列 B.时点数列 C.分配数列 D.平均数数列 3.某商场销售洗衣机,2008年共销售6000台,年底库存50台,这两个指标是( C ) (2010年10) A.时期指标 B.时点指标 C.前者是时期指标,后者是时点指标 D.前者是时点指标,后者是时期指标 4.累计增长量( A ) (2010年10) A.等于逐期增长量之和 B.等于逐期增长量之积 C.等于逐期增长量之差 D.与逐期增长量没有关系 5.某企业银行存款余额4月初为80万元,5月初为150万元,6月初为210万元,7月初为160万元,则该企业第二季度的平均存款余额为( C )(2009年10) 万元万元万元万元 6.下列指标中属于时点指标的是( A ) (2009年10) A.商品库存量 B.商品销售量 C.平均每人销售额 D.商品销售额 7.时间数列中,各项指标数值可以相加的是( A ) (2009年10) A.时期数列 B.相对数时间数列 C.平均数时间数列 D.时点数列 8.时期数列中各项指标数值( A )(2009年1月) A.可以相加 B.不可以相加 C.绝大部分可以相加 D.绝大部分不可以相加 10.某校学生人数2005年比2004年增长了8%,2006年比2005年增长了15%,2007年比2006年增长了18%,则2004-2007年学生人数共增长了( D )(2008年10月) %+15%+18%%×15%×18% C.(108%+115%+118%)-1 %×115%×118%-1 二、多项选择题 1.将不同时期的发展水平加以平均而得到的平均数称为( ABD )(2012年1月) A.序时平均数 B.动态平均数 C.静态平均数 D.平均发展水平 E.一般平均数2.定基发展速度和环比发展速度的关系是( BD )(2011年10月) A.相邻两个环比发展速度之商等于相应的定基发展速度 B.环比发展速度的连乘积等于定基发展速度

时间序列分析第一章王燕习题解答

时间序列分析习题解答 第一章 P. 7 1.5 习题 1.1 什么是时间序列?请收集几个生活中的观察值序列。 答:按照时间的顺序把随机事件变化发展的过程记录下来就构成一个时间序列。 例1:1820—1869年每年出现的太阳黑子数目的观察值; 年份黑子数年份黑子数年份黑子数年份黑子数年份黑子数1820 16 1830 71 1840 63 1850 66 1860 96 1821 7 1831 48 1841 37 1851 64 1861 77 1822 4 1832 28 1842 24 1852 54 1862 59 1823 2 1833 8 1843 11 1853 39 1863 44 1824 8 1834 13 1844 15 1854 21 1864 47 1825 17 1835 57 1845 40 1855 7 1865 30 1826 36 1836 122 1846 62 1856 4 1866 16 1827 50 1837 138 1847 98 1857 23 1867 7 1828 62 1838 103 1848 124 1858 55 1868 37 1829 67 1839 86 1849 96 1859 94 1869 74 例2:北京市城镇居民1990—1999年每年的消费支出按照时间顺序记录下来,就构成了一个序列长度为10的消费支出时间序列(单位:亿元)。 1686,1925,2356,3027,3891,4874,5430,5796,6217,6796。 1.2 时域方法的特点是什么? 答:时域方法特点:具有理论基础扎实,操作步骤规范,分析结果易于解释的优点,是时间序列分析的主流方法。 1.3 时域方法的发展轨迹是怎样的? 答:时域方法的发展轨迹: 一.基础阶段: 1. G.U. Yule 1972年AR模型 2. G.U.Walker 1931年 MA模型、ARMA模型 二.核心阶段:G.E.P.Box和G.M.Jenkins 1. 1970年,出版《Time Series Analysis Forecasting and Control》 2. 提出ARIMA模型(Box-Jenkins模型) 3. Box-Jenkins模型实际上主要运用于单变量、同方差场合的线性模型 三.完善阶段: 1.异方差场合: a.Robert F.Engle 1982年 ARCH模型

时间序列分析 第一章 时间序列分析简介

input time monyy7. price; format time monyy5. ; cards; jan2005 101 feb2005 82 mar2005 66 apr2005 35 may2005 31 jun2005 7 ; run; proc print data=example1_1; run; 实验结果: 实验分析:该程序的到了一个名为sasuser.example1_1的永久数据集。所谓的永久数据库就是指在该库建立的数据集不会因为我们退出SAS系统而丢失,它会永久的保存在该数据库中,我们以后进入SAS系统还可以从该库中调用该数据集。 3.查看数据集 data example1_1; input time monyy7. price; format time monyy5. ; cards; jan2005 101 feb2005 82 mar2005 66 apr2005 35 may2005 31 jun2005 7 ; run; proc print data=example1_1; run; 实验结果:

2.序列变换 data example1_3; input price; logprice=log(price); time=intnx('month','01jan2005'd,_n_-1); format time monyy.; cards; 3.41 3.45 3.42 3.53 3.45 ; proc print data=example1_3; run; 实验结果: 实验分析:在时间序列分析中,我们得到的是观测值序列xt,但是需要分析的可能是这个观察值序列的某个函数变换,例如对数序列lnxt。在建立数据集时,我们可以通过简单的赋值命令实现这个变换。再该程序中,logprice=log(price);是一个简单的赋值语句,将price的对数函数值赋值给一个新的变量logprice,即建立了一个新的对数序列。 3.子集 data example1_4; set example1_3; keep time logprice; where time>='01mar2005'd; proc print data=example1_4; run; 实验结果:

第二章时间序列的预处理

) ,,(),,(21,,21,,2121m t t t m t t t x x x F x x x F m m τττ+++=第二章 时间序列的预处理 2.1 平稳性检验 2.1.1 特征统计量 一、概率分布 对时间序列},{T t X t ∈,,,,,21T t t t N m m ∈?∈? 联合概率分布记为),,(21,,2 1m t t t x x x F m ,由这些有限维分布函数 构成的全体记为: } ,,,),,2,1(),,,({2121,,21T t t t m m x x x F m m t t t m ∈?∈? 成为序列}{t X 的概率分布族 二、特征统计量 对时间序列},{T t X t ∈,取T s t ∈?, 1、均值 t t EX =μ为}{t X 在t 时刻的均值函数,},{T t t ∈μ反映},{T t X t ∈每时每刻的平均水平 2、方差 2 )(t t t X E DX μ-= 3、自协方差函数(autocovariance function)和自相关函数(autocorrelatioi function) 定义 ),(s t γ为}{t X 的协方差函数: ))((),(s s t t X X E s t μμγ--= 定义),(s t ρ为}{t X 的自相关系数,ACF. s t DX DX s t s t ?=) ,(),(γρ 2.1.2 平稳时间序列的定义 一、严平稳 只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为是严平稳的。 定义 2.1 设}{t X 为一时间序列,对任意正整数m ,任取T t t t m ∈ ,,21,对任意整数τ 有 则称时间序列}{t X 为严平稳时间序列。 二、宽平稳 定义 2.2 如果}{t X 满足如下三个条件: (1)任取∞∈ 2,t EX T t 有; (2)任取μμ,,=∈t EX T t 有为常数;

第五章 时间序列的模型识别

第五章时间序列的模型识别 前面四章我们讨论了时间序列的平稳性问题、可逆性问题,关于线性平稳时间序列模型,引入了自相关系数和偏自相关系数,由此得到ARMA(p, q)统计特性。从本章开始,我们将运用数据开始进行时间序列的建模工作,其工作流程如下: 图5.1 建立时间序列模型流程图 在ARMA(p,q)的建模过程中,对于阶数(p,q)的确定,是建模中比较重要的步骤,也是比较困难的。需要说明的是,模型的识别和估计过程必然会交叉,所以,我们可以先估计一个比我们希望找到的阶数更高的模型,然后决定哪些方面可能被简化。在这里我们使用估计过程去完成一部分模型识别,但是这样得到的模型识别必然是不精确的,而且在模型识别阶段对于有关问题没有精确的公式可以利用,初步识别可以我们提供有关模型类型的试探性的考虑。 对于线性平稳时间序列模型来说,模型的识别问题就是确定ARMA(p,q)过程的阶数,从而判定模型的具体类别,为我们下一步进行模型的参数估计做准备。所采用的基本方法主要是依据样本的自相关系数(ACF)和偏自相关系数(PACF)初步判定其阶数,如果利用这种方法无法明确判定模型的类别,就需要借助诸如AIC、BIC 等信息准则。我们分别给出几种定阶方法,它们分别是(1)利用时间序列的相关特性,这是识别模型的基本理论依据。如果样本的自相关系数(ACF)在滞后q+1阶时突然截断,即在q处截尾,那么我们可以判定该序列为MA(q)序列。同样的道理,如果样本的偏自相关系数(PACF)在p处截尾,那么我们可以判定该序列为AR(p)序列。如果ACF和PACF 都不截尾,只是按指数衰减为零,则应判定该序列为ARMA(p,q)序列,此时阶次尚需作进一步的判断;(2)利用数理统计方法检验高阶模型新增加的参数是否近似为零,根据模型参数的置信区间是否含零来确定模型阶次,检验模型残差的相关特性等;(3)利用信息准则,确定一个与模型阶数有关

最新地震处理教程——1 第一章 时间序列分析基础

第一章时间序列分析基础 一维傅里叶变换 首先观察一个实验。将弹簧的一端固定并悬垂,另一端挂一重物。向下拉重物使弹簧拉伸某一距离,比如说0.8个单位,使其振动。现假定弹簧是弹性的,那么它将无休止地上下运动。若将运动起始的平衡位置定为时间零,那么重物的位移量将随着时间函数在极限[+0.8—-0.8]之间变化。如果有一装置能给出位移振幅随时间函数变化的轨迹,就会得到一条正弦波曲线。其相邻两峰值间的时间间隔为0.08秒(80毫秒)。我们称它为弹簧的周期,它取决于所测弹簧刚度的弹性常数。我们说弹簧在一个周期时间内完成了一次上下振动。在1秒的观测时间内记下其周期数,我们发现是12.5周,这个数被称为弹簧振动的频率。你一定会注意到,1/0.08=12.5,这就是说频率为周期的倒数。 我们取另一个刚性较大的弹簧,并重复上面的实验。不过这次弹簧的振幅峰值位移为0.4个单位。它的运动轨迹所显示的是另一条正弦曲线。量其周期和频率分别为0.04秒和25周/秒,为了记下这些测量结果,我们做每个弹簧峰值振幅与频率的关系图,这便是振幅谱。 现在取两个相同的弹簧。一个弹簧从0.8个单位的峰值振幅位移开始松开,并使其振动。这时注意弹簧通过零时平衡位置的时间,就在它通过零时的一刹那,请你将另一弹簧从0.8个单位的同样峰值振幅位移处松开。这样由于起始的最大振幅相同,所以两个正弦时间函数的振幅谱也应该一样。但肯定两者之间是有差别的,特别是当第1个正弦波达到峰值振幅时,另一个的振幅为零。两者的区别为:第2个弹簧的运动相对于第1个弹簧的运动有一个等于四分之一周期的时间延迟。四分之一周期的时间延迟等于90°相位滞后。所以除振幅谱之外,我们还可以作出相位延迟谱,至此,这个实验做完了。那么我们学到了什么呢?这就是弹簧的弹性运动可以用正弦时间函数来描述,更重要的是,可以用正弦波的频率、峰值振幅及相位延迟来全面地描述正弦波运动。这个实验告诉我们弹簧的振动是怎样随时间和频率函数变化的。 现在设想有一组弹簧,每个弹簧的正弦运动都具有特定的频率、峰值振幅和相位延迟。所有弹簧的正弦响应如图1所示。我们可以把该系统的运动“合成”为一个总的波动,来代替该组中的各单个分量的运动。这一合成是直接把所有记录道相加,其结果得到一个与时间相关的信号,在图1中由第一道表示。我们通过这种合成可以把这一运动由频率域变换到时间域。这一变换是可逆的:即给定时间域信号,我们可以把它变换到频率域的正弦分量。在数学上,这种双向过程是由傅里叶变换完成的。在实际应用中,标准的运算是所谓快速傅氏变换。通过傅氏正变换可以把与时间相关的信号分解成它的频率分量,而所有的频率分量合成为时间域信号又是通过反傅氏变换来实现的。图2概括了信号的傅氏变换。振幅谱和相位谱(严格地讲是相位延迟谱)是图1中所显示的正弦波最简单的表示形

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事!

Long long ago,有多long?估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义?当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。 好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢? 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。

时间序列分析基于R——习题答案

第一章习题答案 略 第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 ()0t E x =,2 1 () 1.9610.7 t Var x ==-,220.70.49ρ==,220φ= 3.2 1715φ=,2115 φ= 3.3 ()0t E x =,10.15 () 1.98(10.15)(10.80.15)(10.80.15) t Var x += =--+++ 10.8 0.7010.15 ρ= =+,210.80.150.41ρρ=-=,3210.80.150.22ρρρ=-= 1110.70φρ==,2220.15φφ==-,330φ= 3.4 10c -<<, 1121,1,2 k k k c c k ρρρρ--?=? -??=+≥? 3.5 证明: 该序列的特征方程为:32 - -c 0c λλλ+=,解该特征方程得三个特征根: 11λ=,2λ=3λ=

应用时间序列分析 第5章

佛山科学技术学院 应用时间序列分析实验报告 实验名称第五章非平稳序列的随机分析 一、上机练习 通过第4章我们学习了非平稳序列的确定性因素分解方法,但随着研究方法的深入和研究领域的拓宽,我们发现确定性因素分解方法不能很充分的提取确定性信息以及无法提供明确有效的方法判断各因素之间确切的作用关系。第5章所介绍的随机性分析方法弥补了确定性因素分解方法的不足,为我们提供了更加丰富、更加精确的时序分析工具。 5.8.1 拟合ARIMA模型 【程序】 data example5_1; input x@@; difx=dif(x); t=_n_; cards; 1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.38 5.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -1 6.22 -19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44 -23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29 -9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80 ; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; estimate p=1 noint; forecast lead=5id=t out=out; proc gplot data=out; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay; symbol1c=black i=none v=star; symbol2c=red i=join v=none; symbol3c=green I=join v=none;

时间序列预处理

时间序列预处理 一、平稳性检验 1、概率分布 (1)意义: 随机变量族的统计特性完全由它们的联合分布函数或联合密度函数决定 (2)时间序列概率分布族的定义: T t t t m m x x x F m m t t t m ∈?∈?,,,),,,2,1()},,,({2121,,,21 2、特征统计量 均值:?∞ ∞-==)(x xdF EX t t t μ 方差:)()()(2 2x dF x X E DX t t t t t ?∞∞--=-=μμ 自协方差:))((),(s s t t X X E s t μμγ--= 自相关系数:s t DX DX s t s t ?=) ,(),(γρ 3、平稳时间序列的定义 (1)严平稳 严平稳是一种条件比较苛刻的平稳性定义,它认为只有当序列所有的统计性质都不会随着时间的推移而发生变化时,该序列才能被认为平稳。 (2)宽平稳 宽平稳是使用序列的特征统计量来定义的一种平稳性。它认为序列的统计性质主要由它的低阶矩决定,所以只要保证序列低阶矩平稳(二阶),就能保证序列的主要性质近似稳定。 4、平稳时间序列的统计定义 满足如下条件的序列称为严平稳序列:?正整数m ,T t t t m ∈?,,,21 ,?正整数τ,有:),,,(),,,(21,21,2121m t t t m t t t x x x F x x x F m m τττ+++= 满足如下条件的序列称为宽平稳序列: (1)T t EX t ∈?∞<,2; (2)T t EX t ∈?=为常数,μμ,; (3)T t s k k s t t s k k s t ∈-+?-+=且,,,),(),(γγ; 严平稳与宽平稳的关系: (1)一般关系 严平稳条件比宽平稳条件苛刻,通常情况下,严平稳(低阶矩存在)能推出宽平稳成立,而宽平稳序列不能反推严平稳成立。 (2)特例 不存在低阶矩的严平稳序列不满足宽平稳条件,例如服从柯西分布的严平稳

时间序列分解Decompose

时间序列分解算法和d ecompose函数实现 李思亮 55531469@https://www.360docs.net/doc/aa17963790.html, 目录 时间序列分解算法和decompose函数实现 (1) 1 数据读入并生成时间序列 (2) 2 数据可视化 (4) 3 时间序列分解 (7)

在时间序列分析的过程中,往往需要对时间序列作出初步分析,本文主要采用R语言作为分析平台,从数据的读入,可视化图,分解(decompose)为趋势项,季节项,随机波动等角度对数据开展分析的几个案例。最后对分解算法作出初步描述并探讨其预测预报中的潜在应用。本文的数据和部分内容主要采用https://www.360docs.net/doc/aa17963790.html,/en/latest/中的内容,感兴趣的读者可以参考。 1 数据读入并生成时间序列 对于数据分析来讲,数据读入是一个比较关键的步骤。常用的数据读入函数有scan,read.table 等。下面列举了几种常见的数据。 首先是https://www.360docs.net/doc/aa17963790.html,/tsdldata/misc/kings.dat,中包含了英国国王的寿命从William开始,数据来源(Hipel and Mcleod, 1994)。 > kings <- scan("https://www.360docs.net/doc/aa17963790.html,/tsdldata/misc/kings.dat",skip=3) Read 42 items > kings [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 上述例子中,读入了连续42个公国国王的寿命并将其赋给变量‘kings’ 如果我们希望对读入数据开展分析,下一步就是将其转化为时间序列对象(时间序列类),R提供了很多函数用于分析时间序列类数据。可以使用ts函数将变量转化为时间序列类。 > kingsts <- ts(kings) > kingsts Time Series: Start = 1 End = 42 Frequency = 1 [1] 60 43 67 50 56 42 50 65 68 43 65 34 47 34 49 41 13 35 53 56 16 43 69 59 48 59 86 55 68 51 33 49 67 77 81 67 71 81 68 70 77 56 对于上述数据操作的好处是将数据转化为特定的“时间序列类”便于我们使用R中的函数分析数据。 有时候我们会按照一定的时间周期来收集数据,这个周期可能是季度,月,日,小时,分。在大数据时代,有些情况下的数据是按照秒来采集收集。这种情况下,我们需要对数据的周期或频率进行设置。这里采用ts函数中的frequency参数可以实现这种功能。比方说,若按1年为一个周期,我们的月度时间

时间序列分析第五章作业

时间序列分析第五章作业 班级:09数学与应用数学 学号: 姓名: 习题5.7 1、 根据数据,做出它的时序图及一阶差分后图形,再用ARIMA 模型模拟该序列的发展,得出 预测。根据输出的结果,我们知道此为白噪声,为非平稳序列,同时可以得出序列t x 模型 应该用随机游走模型(0,1,0)模型来模拟,模型为:,并可以预测到下一天 的收盘价为296.0898。 各代码: data example5_1; input x@@; difx=dif(x); t=_n_; cards ; 304 303 307 299 296 293 301 293 301 295 284 286 286 287 284 282 278 281 278 277 279 278 270 268 272 273 279 279 280 275 271 277 278 279 283 284 282 283 279 280 280 279 278 283 278 270 275 273 273 272 275 273 273 272 273 272 273 271 272 271 273 277 274 274 272 280 282 292 295 295 294 290 291 288 288 290 293 288 289 291 293 293 290 288 287 289 292 288 288 285 282 286 286 287 284 283 286 282 287 286 287 292 292 294 291 288 289 ; proc gplot ; plot x*t difx*t; symbol v =star c =black i =join; proc arima data =example5_1; identify Var =x(1) nlag =8 minic p = (0:5) q = (0:5); estimate p =0 q =0 noint; forecast lead =1 id =t out =results; run ; proc gplot data =results; plot x*t=1 forecast*t=2 l95*t=3 u95*t=3/overlay ; symbol1 c =black i =none v =star; symbol2 c =red i =join v =none; symbol3 c =green i =join v =none l =32; run ; 时序图:

时间序列分解法

什么是时间序列分解法 时间序列分解法是数年来一直非常有用的方法,这种方法包括谱分析、时间序列分析和傅立叶级数分析等。 时间序列分解模型 时间序列y可以表示为以上四个因素的函数,即: Y t = f(T t,S t,C t,I t) 时间序列分解的方法有很多,较常用的模型有加法模型和乘法模型。 加法模型为:Y t = T t + S t + C t + I t 乘法模型为: 时间序列的分解方法 (1)运用移动平均法剔除长期趋势和周期变化,得到序列TC。然后再用按月(季)平均法求出季节指数S。 (2)做散点图,选择适合的曲线模型拟合序列的长期趋势,得到长期趋势T。 (3)计算周期因素C。用序列TC除以T即可得到周期变动因素C。 (4)将时间序列的T、S、C分解出来后,剩余的即为不规则变动,即:

时间序列的模式 时间序列一般包括四类因素,长期趋势因素、季节变动因素、循环变动因素和不规则变动因素。四种因素的组合形式一般有以下几类, 其中记Xt为时间序列的全变动;Tt为长期趋势;St为季节变动;Ct为循环变动;It为不规则变动,它总是存在着的。 1)乘法模式,其中, a) X t与T t有相同的量纲,S t为季节指数,C t为循环指数,两者皆为比例数; b) c) I t是独立随机变量序列,服从正态分布。 2)加法模式X t = T t + S t + C t + I t 这种形式要求满足条件: a) X t,T t,S t,C t,I t均有相同的量纲; b) ,k为季节性周期长度; c) I t是独立随机变量序列,服从正态分布。 3) 混合模式

a) X t与T t,C t,I t有相同的量纲,St是季节指数,为比例数; b) c) I t是独立随机变量序列,服从正态分布。 时间序列分解法试图从时间序列中区分出这四种潜在的因素,特别是长期趋势因素(T)、季节变动因素(S)和循环变动因素(C)。显然,并非每一个预测对象中都存在着T、S、C这三种趋势,可能是其中的一种或两种。一个具体的时间序列究竟由哪几类变动组合,采取哪种组合形式,应根据所掌握的资料、时间序列及研究目的来确定。 时间序列分解法各因素的确定 分解法的基础是容易理解而且直观的。不过最重要的是它为预测和检验提供了独特和非常有用的资料。我们用一个例题来说明各个因素分解的步骤。 设有某产品十二年(91年-02年)的季度销售额数据。见表4.3中的第二列,共有48个数据。如果将这些数据画在图上(图.1),可以看出有明显的长期趋势和季节变动。利用分解法,假设这48个数据可表示为 。这里X t是这些原始数据,通过分析原始数据X来确定T、C、S(剩下的为I)。

时间序列分解结果

在随机时间序列分析中,为简便起见,我们假定时间序列主要由趋势项(T)、季节项 (S)和随机项(R)构成。 # 读入数据,画曲线图 > sales <- read.csv(file = "sales.csv",header = TRUE) > head(sales) > plot(sales$t,sales$Y,type = "l") 观察这幅图形,可以看出有明显的长期趋势和季节变动。 利用分解法,假设这48个数据可表示为:,Yt代表实际销售额

度。 长期趋势的分解 用时间回归法,在同一图中画出趋势项目、季节项和随机项的数据图,如下: decompose()函数主要用来做季节指数分解,figure项即指季节指数。同时也返回原始数据,以及MA算法的结果;trend趋势项使用光滑移动平均法求得,它包含了长期趋势T 和周期变动因素C,之前用回归法求得长期趋势T,利用此函数的返回值Trend即可求得周期变动因素C;Random即为不规则变动。 此函数的基本结构: Additive: xt = Trend + Seasonal + Random Multiplicative: xt = Trend * Seasonal * Random > sales1 <- ts(sales[,2],start = 1,frequency = 4) # 季节变动趋势分解 > m <- decompose(sales1,type = "multiplicative") > plot(m) > m$x Qtr1 Qtr2 Qtr3 Qtr4 2003 3017.60 3043.54 2094.35 2809.84 2004 3274.80 3163.28 2114.31 3024.57 2005 3327.48 3493.48 2439.93 3490.79 2006 3685.08 3661.23 2378.43 3459.55 2007 3849.63 3701.18 2642.38 3585.52 2008 4078.66 3907.06 2828.46 4089.50 2009 4339.61 4148.60 2916.45 4084.64 2010 4242.42 3997.58 2881.01 4036.23 2011 4360.33 4360.53 3172.18 4223.76 2012 4690.48 4694.48 3342.35 4577.63 2013 4965.46 5026.05 3470.14 4525.94 2014 5258.71 5189.58 3596.76 3881.60

应用时间序列分析EVIEWS 实验手册(1)

河南财经政法大学应用时间序列分析实验手册 应用时间序列分析 实验手册

目录 目录 (2) 第一章Eviews的基本操作 (3) 第二章时间序列的预处理 (6) 一、平稳性检验 (6) 二、纯随机性检验 (13) 第三章平稳时间序列建模实验教程 (14) 一、模型识别 (14) 二、模型参数估计 (18) 三、模型的显著性检验 (21) 四、模型优化 (23) 第四章非平稳时间序列的确定性分析 (24) 一、趋势分析 (24) 二、季节效应分析 (39) 三、综合分析 (44) 第五章非平稳序列的随机分析 (50) 一、差分法提取确定性信息 (50) 二、ARIMA模型 (63) 三、季节模型 (68)

第一章Eviews的基本操作 The Workfile(工作簿) Workfile 就像你的一个桌面,上面放有许多Objects,在使用Eviews 时首先应该打开该桌面,如果想永久保留Workfile及其中的内容,关机时必须将该Workfile存到硬盘或软盘上,否则会丢失。 (一)、创建一个新的Workfile 打开Eviews后,点击file/new/workfile,弹出一个workfile range对话框(图1)。 图1 该对话框是定义workfile的频率,该频率规定了workfile中包含的所有objects频率。也就是说,如果workfile的频率是年度数据,则其中的objects也是年度数据,而且objects数据范围小于等于workfile的范围。 例如我们选择年度数据(Annual),在起始日(Start date)、终止日(End date)分别键入1970、1998,然后点击OK,一个新的workfile就建立了(图2)。 图2

应用时间序列分析习题答案

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221 +++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .021102112 12112011φρφρφρφρρφφρφρφρ 解得:???==15 /115/721φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0

时间序列分析word版

第2章 时间序列的预处理 拿到一个观察值序列之后,首先要对它的平稳性和纯随机性进行检验,这两个重要的检验称为序列的预处理。根据检验的结果可以将序列分为不同的类型,对不同类型的序列我们会采用不同的分析方法。 2.1 平稳性检验 2.1.1 特征统计量 平稳性是某些时间序列具有的一种统计特征。要描述清楚这个特征,我们必须借助如下统计工具。 一、概率分布 数理统计的基础知识告诉我们分布函数或密度函数能够完整地描述一个随 机变量的统计特征。同样,一个随机 变量族的统计特性也完全由它们的联 合分布函数或联合密度函数决定。 对于时间序列{t X ,t ∈T },这样来定义它的概率分布: 任取正整数m ,任取m t t t ,, ,?21∈T ,则m 维随机向量(m t t t X X X ,,,?21)’的联合概率分布记为),,,(m t t t x x x F m ??21,,,21,由这些有限维分布函数构成的全体。 {),,,(m t t t x x x F m ??21,,,21,?m ∈正整数,?m t t t ,,,?21∈T } 就称为序列{t X }的概率分布族。 概率分布族是极其重要的统计特征描述工具,因为序列的所有统计性质理论上都可以通过 概率分布推测出来,但是概率分布族的重要 性也就停留在这样的理论意义上。在实际应 用中,要得到序列的联合概率分布几乎是不 可能的,而且联合概率分布通常涉及非常复 杂的数学运算,这些原因使我们很少直接使 用联合概率分布进行时间序列分析。 二、特征统计量 一个更简单、更实用的描述时间序列统计特征的方法是研究该序列的低阶矩,特别是均值、方差、自协方差和自相关系数,它们也被称为特征统计量。 尽管这些特征统计量不能描述随机序列全部的统计性质,但由于它们概率意义明显,易于计算,而且往往能代表随机 序列的主要概率特征,所以我们对时间序列进行分析,主要就是通过分析这些统计量的统计特性,推断出随机序列的性质。 1.均值 对时间序列{t X ,t ∈T }而言,任意时刻的序列值t X 都是一个随机变量,都有它自己的概率分布,不妨记为)(x F t 。只要满足条件 ∞

时间序列分析第五章上机指导

第五章 拟合ARIMA模型 由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在了ARIMA过程中。我们已经在第3章进行了ARMA模型拟合时介绍了ARIMA过程的基本命令格式。再次以临时数据集example5_1的数据为例介绍ARIMA模型拟合与ARMA模型拟合的不同之处。 data example5_1; input x@@; difx=dif(x); t=_n_; cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; run; 输出时序图显示这是一个典型的非平稳序列。如图5-49所示 图5-49 序列x时序图 考虑对该序列进行1阶差分运算,同时考察查分后序列的平稳性,在原程序基础上添加相关命令,程序修改如下: data example5_1; input x@@; difx=dif(x);

cards; proc gplot; plot x*t difx*t; symbol v=star c=black i=join; proc arima; identify var=x(1); estimate p=1; forecast lead=5 id=t ; run; 语句说明: (1)DATA步中的命令“difx=dif(x);”,这是指令系统对变量x进行1阶差分,差分后的序列值赋值给变量difx。其中dif()是差分函数,假如要差分的变量名为x,常见的几种差分表示为: 1阶差分:dif(x) 2阶差分:dif(dif(x)) k步差分:difk(x) (2)我们在GPLOT过程中添加绘制了一个时序图“difx*t”,这是为了直观考察1阶差分后序列的平稳性。所得时序图如图5-50所示。 图5-50 序列difx时序图 时序图显示差分后序列difx没有明显的非平稳特征。 (3)“identify var=x(1);”,使用该命令可以识别查分后序列的平稳性、纯随机性和适当的拟合模型阶数。其中x(1)表示识别变量x的1阶差分后序列。SAS支持多种形式的差分序列识别:var=x(1),表示识别变量x的1阶查分后序列Δxt; var=x(1,1),表示识别变量x的2阶查分后序列Δ2xt; var=x(k),表示识别变量x的k步差分后序列Δkxt;

平稳时间序列模型及其特征

平稳时间序列模型及其特征 第一章平稳时间序列模型及其特征 第一节模型类型及其表示一、自回归模型(AR 由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。用数学模型来描述这种关系就是如下的一阶自回归模型: X t=? X-1 + £ t (2.1.1 )常记作AR(1)。其中{X t}为零均值(即已中心化处理)平稳序列,?为X t对X -1的依赖程度,£ t为随机扰动项序列(外部冲击)。 如果X t与过去时期直到X t-p的取值相关,则需要使用包含X t i ,……X-p 在内的p阶自回归模型来加以刻画。P阶自回归模型的一般形式为:X=? i X t-1+? 2 X t-2+ -------- ? p X t-p+ £ t (2.1.2 )为了简便运算和行文方便,我们引入滞后算子来简记模型。设 B 为滞后算子,即BX=X-1,则B(B k-1X)二B k X二X-k B(C)=C(C 为常数)。利

用这些记号,(2.1.2 )式可化为: X t= ? 1BX+ ? 2BX+ ? 3B‘X +.... +? P BX+£ t 从而有: (1- ? 1B- ? 启- ... -? P B) X t = £ t 记算子多项式?( B) = ( 1- ? 1B- ? 2B- ........... - ? p B),则模型可以表示成 ?( B) X=£ t (2.1.3) 例如,二阶自回归模型X=0.7X t「+0.3X t-2 +0.3X t-3 + £ t可写成 (1-0.7B-0.3B 2) X= £ t 二、滑动平均模型(MA 有时,序列X的记忆是关于过去外部冲击值的记忆,在这种情况下,X可以表示成过去冲击值和现在冲击值的线性组合,即 X = £t- 0 1 £t-1 - 0 2 £t-2 - .............................. - 0 q £t-q (2.1.4) 此模型常称为序列X的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,0 1, 0 2…0 q为参滑动平均的权数。相应的序列X t称为滑动平均序列。 使用滞后算子记号,(2.1.4 )可写成 X t= (1- 0 1B- 0 2W-……-0 q£) q t=0 (B) £t (2.1.5) 三、自回归滑动平均模型 如果序列{X}的当前值不仅与自身的过去值有关,而且还与其以

相关文档
最新文档