精品解析:陕西省西安市陕西师范大学附属中学、西安高级中学等八校2019届高三4月联考语文试题(解析版)

合集下载

数列求和(练)高考数学一轮复习讲练测Word版含解析

数列求和(练)高考数学一轮复习讲练测Word版含解析

高考数学一轮复习讲练测Word版含解析专题6.4 数列求和1.(2019届湘赣十四校高三联考)已知数列{}n a的通项公式为12nna-=,数列{}nb满足*221221log()log logn nn nb a n Na a++=+∈⋅,则数列{}n b的前10项和为()A.50511B.50711C.61511D.61711【答案】A【解析】∵212log log2nna n+==,∴()21221111log log11n na a n n n n++==-⋅++,∴()1111nb nn n⎛⎫=-+-⎪+⎝⎭∴()11111012...11...2231nS nn n⎡⎤⎡⎤=++++-+-+-++-⎣⎦⎢⎥+⎣⎦()11121n nn-⎛⎫=+-⎪+⎝⎭322n nn+=+,310101050520211S+==+.故选A。

2.(福建省三明市2019年高三质检)已知正项数列{}n a的前n项和为n S,且11a=,()2*121n na S n n+=++∈N,设数列11n na a+⎧⎫⎨⎬⎩⎭的前n项和为n T,则n T的取值范围为()A.10,2⎛⎤⎥⎝⎦B.(0,1)C.1(,1)2D.21100m2Bx at==【答案】D【解析】因为2121n na S n+=++,所以()2122n na S n n-=+≥,因此()22112121n n n n n a a S S a +--=-+=+,即()2211n n a a +=+,又{}n a 为正项数列,所以11n n a a +=+,故数列{}n a 是以1为首项,1为公差的等差数列,所以n a n =,()*n N ∈因此()1111111n n a a n n n n +==-++, 所以1111111122311n T n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+-=-⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 因为*n N ∈,所以112n T ≤<. 故选D 。

陕西省西安地区八校联考2019-2020学年高三上学期第一次数学(文)试题(解析版)

陕西省西安地区八校联考2019-2020学年高三上学期第一次数学(文)试题(解析版)

西安市教育学会教研信息专业委会员2020届高三卷•启用前机密 西安地区陕师大附中 西安高级中学 西安高新一中 西安交大附中西安市83中 西安市85中西安市一中 西安铁一中 西安中学 西工大附中八校联考2020届高三年级数学(文科)试题注意事项:1. 答题前,考生务必先将自己的姓名、准考证号填写在答题纸上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题纸上的指定位置上.2. 选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3. 请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4. 保持纸面清洁,不折叠,不破损.5. 若做选考题时,考生应按照题目要求作答,并在答题纸上对应的题号后填写.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}|10A x Z x =∈+≥,(){}|lg 3B x y x ==-,则A B =I ( ) A. {}0,1,2 B. {}|13x x -≤<C. {}0,1,3,1,2-D. {}1,2,1,0-【答案】D 【解析】 【分析】根据交集运算结果求解即可【详解】{}{}|101,0,1,2,3,A x Z x A =∈+≥⇔=-L ,(){}{}|lg 3|3B x y x B x x ==-⇔=<, 则A B =I {}1,2,1,0- 故选:D【点睛】本题考查集合交集运算,属于基础题2.复数12ii-(i 为虚数单位)在复平面上对应的点的坐标为( ) A. ()2,1-- B. ()1,2-C. ()2,1-D. ()1,2--【答案】A 【解析】 【分析】根据复数运算的除法法则求解即可【详解】()()()12122i i i i i i i ---==---,在复平面内对应的点为()2,1-- 故选:A【点睛】本题考查复数的除法运算,复数与复平面的对应关系,属于基础题 3.函数()3234f x x x =+-的零点个数为( )A. 0B. 1C. 2D. 3【答案】C 【解析】 【分析】先求导,令()'0f x =,再根据极值点的正负进一步判断零点个数即可【详解】由()()32234'36f x x x f x x x =+-⇒=+,令()'0f x =得0x =或2x =-,当()(),2,0,x ∈-∞-+∞时,()f x 单调递增,当()2,0x ∈-时,函数单调递减,()()20,04f f -==-,画出函数图像,如图所示:故函数图像有两个零点故选:C【点睛】本题考查导数研究函数零点个数,属于基础题4.若实数x ,y 满足()222013y x x y y ⎧≥-⎪+≥⎨⎪-≤≤⎩,则241z x y =++的最小值为( )A. -2B. -3C. -5D. 0【答案】A 【解析】 【分析】根据题意,画出可行域,再根据目标函数与可行域的位置关系求解即可【详解】如图所示,画出目标可行域,241z x y =++可转化为1124z y x -=-+,当交于点A 时,有最小值,求得1,12A ⎛⎫- ⎪⎝⎭,代入241z x y =++得min 2z =-故选:A【点睛】本题考查根据二元一次方程组求目标函数的最小值,属于基础题5.在一次技能比赛中,共有12人参加,他们的得分(百分制)茎叶图如图,则他们得分的中位数和方差分别为( )A. 89 54.5B. 89 53.5C. 87 53.5D. 89 54【答案】B 【解析】 【分析】根据中位数和方差定义求解即可 【详解】由题可知,中位数为:8791892+=,先求平均数: 787984868787919494989899999012x ++++++++++++==()()()()()()222222222222211211643314889953.512S ⎡⎤=-+-+-+-+-+-++++++=⎣⎦ 故中位数为:89,方差为53.5 故选:B【点睛】本题考查茎叶图的识别,中位数与方差的求法,属于基础题6.已知()1,01ln ,0x x e f x x x x⎧≤⎪⎪=⎨⎪>⎪⎩(e 为自然对数的底数),若1a f f e ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则函数()af x x =是( ) A. 定义域为R 的奇函数 B. 在()0,∞+上递减的奇函数 C. 定义域为R 的偶函数 D. 在()0,∞+上递增的偶函数【答案】B 【解析】 【分析】根据题意,结合分段函数,先求出a ,再求出()af x x =的具体表达式,进一步分析即可【详解】11ln f e e e e ⎛⎫=⨯=- ⎪⎝⎭,则()()111a f f f e e e e ⎛⎫⎛⎫==-=⨯-=- ⎪ ⎪⎝⎭⎝⎭, 则()11axxf x x -===,画出反比例函数的图像,显然B 项符合故选:B【点睛】本题考查分段函数的求值,函数图像奇偶性增减性的判别,属于基础题 7.已知点()2,3A 到抛物线()20y px p =>的准线的距离为5,则抛物线的焦点坐标为( )A. ()2,0B. 10,2⎛⎫ ⎪⎝⎭C. ()0,2D. 10,32⎛⎫ ⎪⎝⎭【答案】C 【解析】 【分析】结合抛物线第一定义和图像即可求解【详解】2y px =可变形为2yx p =,则焦点坐标为10,4p ⎛⎫ ⎪⎝⎭,由抛物线第一定义,点()2,3A 到抛物线()20y px p =>的准线的距离为5,即5AH =,即1354p +=,解得124p=,则抛物线焦点坐标为()02,故选:C【点睛】本题考查抛物线的基本性质,熟悉抛物线基本表达式特征,明确焦点位置,是解题关键,属于基础题8.已知正三棱锥P ABC -的底面边长为3,侧棱长为3的表面积为( ) A. 20π B. 16πC. 12πD. 123π【答案】B 【解析】 【分析】根据题意,画出大致图像,确定球心在'PO 的连线上,再结合几何关系和勾股定理进行求解即可【详解】如图,由几何关系可知,3'33BO =⨯=,先将三角形'PO B 转化成平面三角形, 如图:23PB ='3PO =,OP OB R ==,则'3OO R =-,由勾股定理可得222''O B OO OB +=,即(()22233R R +-=,解得2R =,球体的表面积为:2416S R ππ==故选:B【点睛】本题考查锥体外接球表面积的求法,解题关键在于找出球心,属于中档题9.若x x ≤≤”是“223x x +≤≤”成立的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】解不等式223x x +≤≤可得{|12}x x <<,是{|2x x ≤≤的真子集,故“2x ≤≤“223x x+≤≤”成立的必要不充分条件.故选B.10.函数()2cos 12sin x x x x f =+-的单调递增区间为( )A. (),36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B. ()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z C. ()2,236k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ D. ()22,263k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ 【答案】A 【解析】 【分析】先将函数化简,再结合正弦函数增区间的通式求解即可【详解】()2cos 12sin 2cos 2sin 26f x x x x x x x π⎛⎫=+-=+=+⎪⎝⎭,再令 22,2,622x k k k Z πππππ⎡⎤+∈-++∈⎢⎥⎣⎦,解得,,36x k k k Z ππππ⎡⎤∈-+∈⎢⎥⎣⎦ 故选:A【点睛】本题考查正弦型三角函数单调区间的求法,属于基础题11.已知双曲线C :()222210,0x y a b a b-=>>的左焦点为1F ,过1F 且垂直于x 轴的直线被双曲线C 截得的弦长为234e a (e 为双曲线的离心率),则双曲线的渐近线方程为( )A. 3y x =±B. 5y x =±C. 35y x =±D. y x = 【答案】D 【解析】 【分析】可设左焦点的坐标为(),0c -,直线与曲线的两交点坐标为()(),,,A B A c y B c y --,代入双曲线方程可解得纵坐标,通过题设的通径可得参数,,a b c 基本关系,再结合222c a b =+即可求解 【详解】设1F (),0c -,直线与曲线的两交点坐标为()(),,,A B A c y B c y --()0,0A B y y ><,将()(),,,A B A c y B c y --代入22221x y a b-=,解得22,,,b b A c B c a a ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,则22324b e a a =,解得2283b c =,又因为222c a b =+,联立得:2235b a =,即双曲线的渐近线方程为:y x =±故选:D【点睛】本题考查双曲线通径的使用,双曲线的基本性质,无论是椭圆还是双曲线,通径公式都为22b a,属于中档题12.陕西关中的秦腔表演朴实,粗犷,细腻,深刻,再有电子布景的独有特效,深得观众喜爱.戏曲相关部门特意进行了“喜爱看秦腔”调查,发现年龄段与爱看秦腔的人数比存在较好的线性相关关系,年龄在[]40,44,[]45,49,[]50,54,[]55,59的爱看人数比分别是0.10,0.18,0.20,0.30.现用各年龄段的中间值代表年龄段,如42代表[]40,44.由此求得爱看人数比y 关于年龄段x 的线性回归方程为0.4188y kx =-.那么,年龄在[]60,64的爱看人数比为( ) A. 0.42 B. 0.39C. 0.37D. 0.35【答案】D 【解析】【分析】根据题意,可列出y 关于x 的表格,求出,x y ,代入0.4188y kx =-,求出k ,即可求解 【详解】由题,对数据进行处理,得出如下表格:求得49.5x =,0.195y =,因样本中心(),x y 过线性回归方程,将(),x y 代入0.4188y kx =-,得0.0124k =,即0.01240.4188y x =-,年龄在[]60,64对应的x 为62,将62x =代入0.01240.4188y x =-得:0.0124620.41880.35y =⨯-=,对应的爱看人数比为:0.35故选:D【点睛】本题考查线性回归方程的应用,样本中心(),x y 过线性回归方程是一个重要特征,属于中档题二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卷中相应的横线上)13.已知平面向量(),2a m =r ,()2,b m =r,且()//a b a -r r r ,则m =______.【答案】2± 【解析】 【分析】由题,根据()//a b a -r r r,即向量平行的坐标运算即可求出参数m【详解】()2,2a b m m -=--r r ,(),2a m =r ,因为()//a b a -r r r ,所以222m mm --=,解得2m =±故答案为:2m =±【点睛】本题考查向量平行的坐标运算,属于基础题14.在3与156之间插入50个数,使这52个数成等差数列,则插入的50个数的和等于______. 【答案】3975 【解析】 【分析】根据等差数列下标性质进行求解即可【详解】由题,可设1523,156a a ==,则15225135026273156a a a a a a a a +=+=+=+=+L , 故()23512531563975a a a ++=⨯+=L 故答案为:3975【点睛】本题考查等差数列下标性质的应用,属于基础题15.从1,2,3,5,6,7中任意取三个数,则这三个数的和为偶数的概率为______. 【答案】0.6 【解析】 【分析】根据题意,采用列举法,表示出所有的情况,再选出符合题意的个数,结合古典概型公式求解即可 【详解】由题可知,所有可能的情况为:()()()()()()()1,2,3,1,2,5,1,2,6,1,2,7,1,3,5,1,3,6,1,3,7,()()()()()()()()()()()1,5,6,1,5,7,1,6,7,2,3,5,2,3,6,2,3,7,2,5,6,2,5,7,2,6,7,3,5,6,3,5,7, ()()3,6,7,5,6,7,共计20个其中符合题意的有:()()()()()()()1,2,3,1,2,5,1,2,7,1,3,6,1,5,6,1,6,7,2,3,5,()()()()()2,3,7,2,5,7,3,5,6,3,6,7,5,6,7,共计12个故这三个数的和为偶数的概率为:120.620P == 故答案为:0.6【点睛】本题考查古典概型的计算,正确表示各个数的形式是解题关键,属于基础题16.金石文化,是中国悠久文化之一.“金”是指“铜”,“石”是指“石头”,“金石文化”是指在铜器或石头上刻有文字的器件.在一千多年前,有一种凸多面体工艺品,是金石文化的代表作,此工艺品的三视图是三个全等的正八边形(如图),若一个三视图(即一个正八边形)的面积是(()28dm +,则该工艺品共有______个面,表面积是______.【答案】 (1). 26 (2). ()()27283dm +【解析】 【分析】先由三视图还原出立体图,再结合立体图特点求解表面积即可【详解】由立体图可确定该几何体由26个面构成,其中有18个正方形面和8个正三角形面构成,先研究正视图,若设中间的正方形的边长为a ,则2BC =(正视图BC 长度会被压缩),该正八边形面积为()(22212242228822S a aa ⎫=+-⨯⨯=+=+⎪⎪⎝⎭,解得2a = 18个正方形面积为:218272⨯=,8232883⨯=故表面积为:(()27283dm +故答案为:26;(()27283dm +【点睛】本题考查由三视图还原立体图,多面体表面积的求法,还原立体图形、正确理解三视图与立体图线段关系是解题关键,属于难题三、解答题(本大题共7小题,共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题.第22、23题为选考题,考生根据要求作答)17.已知ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,且()(222a b c bc --=,2sin sin cos 2CA B =,BC 边上的中线AM . (1)求角A 、C 的大小; (2)求ABC ∆的面积.【答案】(1)6A π=,23C π=(2)ABC S ∆= 【解析】 【分析】(1)将()(222a b c bc --=展开,结合余弦定理即可求得A ,再由2sin sin cos2CA B =可得sin 1cos B C =+,结合三角形内角和公式可求得C ; (2)结合(1)可判断ABC V 为等腰三角形,ACM ∆结合余弦定理即可求得,a b ,再结合正弦面积公式即可求解【详解】(1)由()(222a b c bc --=,得222b c a +-=.∴222cos 2b c a A bc +-==. ∵0A π<<,∴6A π=,由2sin sin cos 2CA B =,得sin 1cos B C =+, ∴5sin 1cos 6C C π⎛⎫-=+⎪⎝⎭,由此得sin 16C π⎛⎫-= ⎪⎝⎭.又0C π<<,∴62C ππ-=,即23C π=. (2)由(1)知,6A B π==,则a b =,在ACM ∆中,由余弦定理,得2222cos120722a a AM b b ⎛⎫=+-⋅⋅︒= ⎪⎝⎭,解得2a b ==. 故113sin 223222ABC S ab C ∆==⨯⨯⨯=. 【点睛】本题考查正弦定理、余弦定理解三角形,属于中档题18.已知四棱锥P ABCD -中,底面四边形ABCD 为平行四边形,M 为CD 的中点,N 为PD 上一点,且12DN NP =(如图).(1)证明://PB 平面AMN ;(2)当平面PAB ⊥平面ABCD ,55566PA PB AD AB ====,120BAD ∠=︒时,求三棱锥P ABN -的体积.【答案】(1)证明见解析 (2)83【解析】 【分析】(1)要证//PB 平面AMN ,即证//PB 平面AMN 的一条线段,可连接BD ,交AM 于点E ,通过相似三角形证明//NE PB 即可;(2)采用等体积法进行转化,13P ABN N AB ABP P S V V d --∆=⋅=,平面PAB ⊥平面ABCD ,可通过几何关系先求出点D 到平面PAB 的距离,再结合12DN NP =求得点N 到平面PAB 的距离,结合体积公式即可求解;【详解】(1)证明:取AB 的中点H ,连接CH ,BD ,BD AM E ⋂=,连接NE .∵四边形ABCD 为平行四边形,M ,H 分别为CD ,AB 的中点, ∴根据平行线分线段成比例定理得13DE DB =, 又12DN NP =,得13DN DP =, ∴//NE PB ,又NE 在平面AMN 内,PB 不在平面AMN 内, ∴//PB 平面AMN .(2)由题意,得5PA PB ==,6AD AB BC ===, 120BAD ∠=︒.连接CH ,PH (H 为AB 的中点), 则PH AB ⊥,CH AB ⊥,且22534PH =-=,226333CH =-=∵平面PAB ⊥平面ABCD ,PAB ABCD AB =I ,CH 在平面ABCD 内,CH AB ⊥. ∴CH ⊥平面PAB ,∵//DC AB ,得D 点到平面PAB 的距离就是33CH = 又12DN NP =, ∴N 到平面PAB 的距离为2233d CH ==∴13P ABN N AB ABP PS V V d --∆=⋅=1164238332=⨯⨯⨯⨯=【点睛】本题考查线面平行的证明,锥体体积的求法,属于中档题 19.已知数列{}n a 的前n 项和为n S ,设()()22nn n a S f n =-+-.(1)若11a =,23a =,且数列(){}f n 为等差数列,求数列(){}f n 的通项公式;(2)若()0f n =对任意n ∈+N 都成立,求当n 为偶数时n S 的表达式. 【答案】(1)()()31225f n n n =-+-⨯=- (2)()122122nn n S +=-=-(n 为偶数)【解析】 【分析】(1)根据题意求出公差d ,即可求出通项公式;(2)由()()220nn n a S n N +-+-=∈,当2n ≥时,()111220n n n a S ----+-=,两式作差可得()()1133222n nn n a a --+=--=-,再令()2n m m N +=∈,则2212322m m m a a -+=⋅,结合前n 项和公式即可求解;【详解】(1)∵()()22nn n a S f n =-+-,11a =,23a =, ∴()1122121123a S f --=-⨯-=-=,()()()()2212223213241a a f a -++-=-++=-=,设等差数列为(){}f n 的公差为d ,则()132d =---=. ∴数列(){}f n 的通项公式为()()31225f n n n =-+-⨯=-.(2)()0f n =对任意n N ∈,都成立,即()()220nn n a S n N +-+-=∈ ①当2n ≥时,()111220n n n a S ----+-=②①-②得()()1133222n nn n a a --+=--=-. 令()2n m m N +=∈,则2212322mm m a a -+=⋅,∴()2221211322mm k mk k k k S a a -===+=∑∑()()224123221214mm -=⋅=--,故()122122nn n S +=-=-(n偶数).【点睛】本题考查等差数列的基本求法,由n a 与n S 求数列前n 项和,对运算能力有较高要求,属于中档题 20.已知函数()()2sin f x mx x m R =+∈在区间,33ππ⎡⎤-⎢⎥⎣⎦上单调递减. (1)求m 的最大值;(2)若函数()f x 的图像在原点处的切线也与函数()ln 1g x x x =+的图像相切,求m 的值. 【答案】(1)-1 (2)1m = 【解析】 【分析】(1)通过求导,再将函数在,33ππ⎡⎤-⎢⎥⎣⎦上单调递减作等价转化,可得sin 2m x ≤-在,33ππ⎡⎤-⎢⎥⎣⎦上恒成立,求得()min sin 2x -,即可求解;(2)可先求出()f x 过原点的切线方程,再设函数()ln 1g x x x =+的图像在()000,ln 1x x x +处的切线为l ,根据点斜式得出()()()0000ln 1ln 1y x x x x x -+=+-,又0ln 1m x =+,结合()0,0点经过l ,即可求解 【详解】解:(1)∵()()2sin f x mx x m R =+∈,∴()2sin c 'os sin 2m x x x m x f +=+=, ∵函数()f x 在区间,33ππ⎡⎤-⎢⎥⎣⎦上为减函数. ∴()'0f x ≤即sin 20m x +≤,sin 2m x ≤-在,33ππ⎡⎤-⎢⎥⎣⎦上恒成立,当,33x ππ⎡⎤∈-⎢⎥⎣⎦时,222,33x ππ⎡⎤∈-⎢⎥⎣⎦,则当22x π=即4x π=时,sin 2x -取最小值-1. ∴1m ≤-, ∴m 的最大值为-1.(2)()f x 的定义域为R ,()g x 的定义域为()0,+∞. 由()'sin 2f x m x =+,得()'0sin0f m m =+=. ∴函数()f x 的图像在原点处的切线方程为y mx =, 由()ln 1g x x x =+,得()'ln 1g x x =+,设函数()ln 1g x x x =+的图像在()000,ln 1x x x +处的切线为l ,则l :()()()0000ln 1ln 1y x x x x x -+=+- ①.且l 过原点,0ln 1m x =+,将0x =,0y =代入①,解得01x =. ∴ln111m =+=.【点睛】本题考查用导数和函数增减性求解参数问题,具体切线方程中参数的求法,学会等价转化,分离参数是解决参数类问题常用方法,属于中档题21.已知A ,B ,C 顺次是椭圆E :()222210x y a b a b +=>>的右顶点、上顶点和下顶点,椭圆E的离心率2e =,且12AB AC ⋅=u u u r u u u r . (1)求椭圆E 的方程; (2)若斜率12k =的直线l 过点60,5⎛⎫⎪⎝⎭,直线l 与椭圆E 交于P ,Q 两点,试判断:以PQ 为直径的圆是否经过点A ,并证明你的结论.【答案】(1)221164x y += (2)经过,证明见解析【解析】 【分析】(1)根据题意,列出相应表达式,再结合222a b c =+,即可求解;(2)可联立直线和椭圆的标准方程,结合韦达定理表示出两根和与积的关系,再由向量证明0AP AQ ⋅=u u u r u u u r即可;【详解】(1)解:由題意得(),0A a ,()0,B b ,()0,C b -,2e =. ∴12AB AC ⋅=u u u r u u u r即()()22,,12a b a b a b -⋅--=-=,设椭圆的半焦距为()0c c >,得方程组2222212a b ca ab c⎧-=⎪⎪=⎨⎪=+⎪⎩,解得42a b c ⎧=⎪=⎨⎪=⎩,∴椭圆E 的方程为221164x y +=.(2)方法一:以PQ 为直径的圆经过点A .理由如下:∵椭圆E :221164x y +=,()4,0A .直线l 的斜率12k =,且过点60,5⎛⎫ ⎪⎝⎭.∴直线l :1625y x =+, 由2216251164y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩消去y ,并整理得2121280525x x +-=, 212128410525⎛⎫⎛⎫∆=-⨯⨯-> ⎪ ⎪⎝⎭⎝⎭,直线l 与椭圆E 有两个交点.设()11,P x y ,()22,Q x y ,则12125x x +=-,1212825x x =-. ∵()()11224,4,x y AP A x y Q -⋅-⋅=u u u r u u u r()121212416x x x x y y =-+++()12121216164162525x x x x x x ⎛⎫⎛⎫=-+++++ ⎪⎪⎝⎭⎝⎭()12125234364525x x x x =-++ 512823124364255525⎛⎫=⨯--⨯+ ⎪⎝⎭1602764360252525=--+=. ∴以PQ 为直径的圆经过点A . 方法二:同方法一,得12125x x +=-,121285x x =-. ∴PQ ===设PQ 的中点为()00,C x y ,则120625x x x +==-,00163255y x =-=-.∴12CA PQ ===.∴以PQ 为直径的圆经过点A .【点睛】本题考查椭圆标准方程的求法,韦达定理、向量法在解析几何中的应用,属于中档题22.在直角坐标系xOy 中,直线l经过点()P -,其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系,设曲线S的参数方程为1x k y ⎧=⎪⎪⎨⎪=⎪⎩k为参数),曲线C 的极坐标方程为4sin ρθ=. (1)求曲线S 的普通方程和极坐标方程; (2)若直线l 与曲线C 有公共点,求α的取值范围.【答案】(1)普通方程为()224004,02x y x x y +-=<≤≤≤,极坐标方程为4cos 0,02πρθρθ⎛⎫=>≤≤⎪⎝⎭(2)0,3π⎡⎤⎢⎥⎣⎦【解析】 【分析】 (1)由1x k =得1k x=,代入y =S 的普通方程,再结合222x y ρ+=,cos x ρθ=即可求解的曲线S 的极坐标方程;(2)设直线方程为(y k x =+,由直线l 与曲线C 有公共点可得圆心到直线距离d r ≤,可解得k ,进而求得α的取值范围 详解】(1)显然,参数14k ≥,由1x k =得()104k x x =<≤,代入y =()224004,02x y x x y +-=<≤≤≤, 将222x y ρ+=,cos x ρθ=代入2240x y x +-=,得24cos 0ρρθ-=,即4cos 0,02πρθρθ⎛⎫=>≤≤⎪⎝⎭. ∴曲线S 的普通方程为()224004,02x y x x y +-=<≤≤≤,极坐标方程为4cos 0,02πρθρθ⎛⎫=>≤≤⎪⎝⎭. (2)曲线C 的直角坐标方程为()2224x y +-=,曲线C 是以()02,为圆心,半径为2的圆.当2πα=时,直线l:x =-与曲线C 没有公共点, 当2πα≠时,设直线l的方程为(()tan y k x k α=+=.圆心()02,到直线l的距离为d ==由2d =≤,得0k ≤≤.∴03πα≤≤,即α的取值范围为0,3π⎡⎤⎢⎥⎣⎦. 【点睛】本题考查曲线的普通方程和极坐标方程的求法,直线与圆的位置关系,属于中档题 23.已知函数()25f x x x x =---. (1)求不等式()238f x x ≥-的解集;(2)若存在[]00,6x ∈,使()042f x a ≥--成立,求a 的取值范围. 【答案】(1){}|6x x ≤ (2)(][),13,-∞+∞U 【解析】 【分析】(1)采用取绝对值方法可求得()f x 的分段函数,分三组方程求解即可;(2)存在[]00,6x ∈,使()042f x a ≥--成立,即求出()0f x 在区间[]00,6x ∈的最大值,使得()0max 42f x a ≥--即可求解a 的取值范围【详解】解:(1)∵()22262,22542,2562,5x x x f x x x x x x x x x x ⎧-+<⎪=---=--≤≤⎨⎪-+->⎩,∴不等式()238f x x ≥-等价于下列不等式组,①2226238x x x x <⎧⎨-+≥-⎩或②22254238x x x x ≤≤⎧⎨--≥-⎩或③2256238x x x x >⎧⎨-+-≥-⎩, 由①得2203x x <⎧⎪⎨≤⎪⎩,得2x <,由②得259x x ≤≤⎧⎨≤⎩,得25x ≤≤;由③得536x x >⎧⎨-≤≤⎩,得56x <≤.∴不等式()238f x x ≥-的解集为{}|6x x ≤.(2)区间[]0,6上,当02x ≤<时,()()max 02f x f ==;当25x ≤≤时,()()max 53f x f ==;当56x <≤时,()()53f x f <=.∴在区间[]0,6上,()max 3f x =.由存在[]00,6x ∈使()042f x a ≥--成立,得342a ≥--,得1a ≤或3a ≥. ∴a 的取值范围为(][),13,-∞+∞U .【点睛】本题考查绝对值不等式的解法,存在性问题的等价转化,属于中档题。

陕西省西安中学2019届高三四模文科综合地理试卷(答案+解析)

陕西省西安中学2019届高三四模文科综合地理试卷(答案+解析)

陕西省西安中学2019届高三四模文科综合试卷一、选择题近几十年以来,中国省际人口迁移的变化较大,这一变化越来越引起人们的关注和研究。

下图为2010-2030年中国省际流动人口空间迁移总量预测示意图。

读图完成下列各小题。

1. 我国省际流动人口迁移总量相差最小的两个年份是()A. 2010年、2015年B. 2015年、2020年C. 2020年、2025年D. 2025年、2030年2. 2010~2030年中国省际流动人口迁移速度放缓主要得益于()A. 二孩政策的实施B. 交通网络的改善C. 环境污染的减轻D. 城市化水平的提高【答案】1. B 2. D【解析】本题主要考查人口迁移,要求我们掌握影响人口迁移的主要因素和人口迁移的方向。

【1题详解】根据图中的曲线可以比较2010年和2015年, 2015年和2020年,2020年和2025年,2025年和2030年我国省际流动人口迁移数量,通过比较可知2015年和2020年之间相差最小,选择B。

【2题详解】2010~2030年中国省际流动人口迁移速度放缓主要得益于各地城市化水平的提高,中西部地区经济发展,D对;二孩政策的实施暂不影响人口迁移,A错;交通网络的改善有利于人口迁移,B错;环境污染的减轻对人口移动没有关系,C错。

下图示意我国某新能源汽车企业发展历程。

据此完成下面小题。

3. 该企业在进入汽车领域的第3年就推出纯电动轿车主要得益于()A. 市场需求量大B. 劳动力素质高C. 汽车组装基础好D. 核心部件生产经验丰富4. 与德国车企戴姆勒合作主要为了()A. 提高产品质量B. 增强两国友谊C. 降低生产成本D. 拓展德国市场5. 所谓“零元购车”,是指集团客户不用一次性承担购车资金压力,可采用“零首付+分期付款”模式购车。

“零元购车”首先影响该公司的()A. 成本B. 销量C. 产量D. 技术【答案】3. D 4. A 5. B【解析】【3题详解】根据材料信息,该企业在进入汽车领域前生产锂电池,锂电池是纯电动轿车的核心部件,故该企业推出纯电动轿车主要得益于核心部件生产经验丰富,D正确;汽车市场仍然以燃油汽车为主,市场需求量大错误,A错误;材料信息没有体现劳动力素质,B错误;该企业进入汽车领域时间短,没有很好的汽车组装基础,C错误。

陕西西安八校2019高三联考试题-数学理

陕西西安八校2019高三联考试题-数学理

陕西西安八校2019高三联考试题-数学理2018届高三年级联考数 学 试 题〔理〕本试卷分第I 卷〔选择题〕和第II 卷〔非选择题〕两部分,共150分,考试时间120分钟。

本卷须知1、答题前,考生务必将自己的姓名、准考证号填写在答题纸上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题纸上的指定位置上。

2、选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案用0.5毫米的黑色中性〔签字〕笔或碳素笔书写,字体工整,笔迹清晰。

3、请按照题号在各题的答题区域〔黑色线框〕内作答,超出答题区域书写的答案无效。

4、保持纸面清洁,不折叠,不破损。

5、假设做选考题时,考生应按照题目要求作答,并用2B 铅笔在答题纸上把所选题目对应的题号涂黑。

第I 卷〔选择题 共50分〕【一】选择题〔本大题共10小题,每题5分,共50分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1、全集U 和集合A ,B 如下图,那么()U C A B =〔 〕A 、{5,6}B 、{3,5,6}C 、{3}D 、{0,4,5,6,7,8}2、复数2(1)1i z i+=-的共轭复数是 〔 〕A 、-1-iB 、-1+iC 、1122i + D 、1122i - 3、双曲线2214x y -=的一个焦点坐标是〔 〕A 、(5,0)-B 、(2,0)-C 、3,0)D 、〔1,0〕4、函数()f x 是定义在R 上的奇函数,当0,()2x x f x >=时,那么(3)f -的值是〔 〕A 、18B 、18-C 、8D 、-8〔〕A 、假设,,,m n m n n αβαβαβ⊥=⊥⊥⊥则或B 、假设m 不垂直于α,那么m 不可能垂直于α内的许多条直线C 、假设,//,,,//m n m n n n αβαβαβ=⊄⊄且则且n//D 、假设,//,,//m n n m αββα⊥⊥则6、实数a 、b ,那么“2ab ≥”是“224a b +≥”的 〔〕 A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、即不充分也不必要条件7、函数32()22f x x x =-+,那么以下区间必存在零点的是〔〕A 、3(2,)2-- B 、3(,1)2-- C 、1(1,)2-- D 、1(,0)2- 8、设函数()sin ()f x x x x R =∈在0x x =处取得极值,那么200(1)(1cos 2)x x ++的值为 〔〕A 、12B 、2C 、14D 、49、程序框图如下:假如上述程序运行的输出结果为132S =, 那么判断框中应填入 〔〕 A 、10k ≤ B 、9k ≤C 、10k <D 、9k <10、函数①()3ln ;f x x =②cos ()3x f x e =;③()3;x f x e =④()3cos .f x x =其中关于()f x 定义域 内的任意一个自变量1x ,都存在唯一一个自变量2x ,使12()()3f x f x =成立的函数是 〔〕A 、①②④B 、②③C 、③D 、④第II 卷〔非选择题共100分〕【二】填空题〔本大题共5小题,每题5分,共25分。

2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(文科)

2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(文科)

尊敬的读者朋友们:本文档内容是我们精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为资料分析笔记整理的全部内容。

注:资料封面,下载即可删除2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(文科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合{1A =,2,3,6,9},{3|}B x x A =∈,{|3}C x N x A =∈∈,则(BC =)A .{1,2,3}B .{1,6,9}C .{1,6}D .{3}2.(5分)右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,x x 乙甲,标准差分别为σ甲,σ乙,则( )A .,x x σσ><乙乙甲甲B .,x x σσ>>乙乙甲甲C .,x x σσ乙乙甲甲D .,x x σσ<<乙乙甲甲3.(5分)1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式cos sin ix e x i x =+,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,2i e 表示的复数所对应的点在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.(5分)设D 为ABC ∆所在平面内一点,3BC CD =,则( )A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+ D .4133AD AB AC =+ 5.(5分)《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?( ) A .18B .20C .21D .256.(5分)设两个变量x 和y 之间具有线性相关关系,它们的相关系数为r ,y 关于x 的回归直线方程为ˆykx b =+,则( ) A .k 与r 的符号相同 B .b 与r 的符号相同C .k 与r 的符号相反D .b 与r 的符号相反7.(5分)如果对定义在R 上的奇函数()y f x =,对任意两个不相邻的实数1x ,2x ,所有11221221()()()()x f x x f x x f x x f x +>+,则称函数()y f x =为“H 函数”,下列函数为H 函数的是( ) A .()sin f x x =B .()x f x e =C .3()3f x x x =-D .()||f x x x =8.(5分)已知正三棱柱111ABC A B C -的三视图如图所示,一只蚂蚁从顶点A 出发沿该正三棱柱的表面绕行两周到达顶点1A ,则该蚂蚁走过的最短路径为( )A 193B .25C .2193D .319.(5分)将函数sin(2)6y x π=+的图象向右平移3π个单位,在向上平移一个单位,得到()g x 的图象.若12()()4g x g x =,且1x ,2[2x π∈-,2]π,则122x x -的最大值为( ) A .92πB .72π C .52π D .32π 10.(5分)已知圆22:2430C x y x y +--+=,若等边PAB ∆的一边AB 为圆C 的一条弦,则||PC 的最大值为( ) ABC.D.11.(5分)抛物线212x y =在第一象限内图象上一点(i a ,22)i a 处的切线与x 轴交点的横坐标记为1i a +,其中*i N ∈,若232a =,则246a a a ++等于( ) A .64B .42C .32D .2112.(5分)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( ) AB .2CD .5二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.(5分)已知F 是抛物线2:2C y x =的焦点,点(,)P x y 在抛物线C 上,且1x =,则||PF = .14.(5分)已知实数x ,y 满足约束条件42047020x y x y x y ++⎧⎪+-⎨⎪-+⎩,则5z x y =-+的最大值为 .15.(5分)设函数21,1()(1),1x x f x f x x ⎧-<=⎨-⎩,则函数2(log 10)f = .16.(5分)如图,已知正四棱柱1111ABCD A B C D -O ,底面ABCD 在半球O 底面所在平面上,1A ,1B ,1C ,1D 四点均在球面上,则该正四棱柱的体积的最大值为 .三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.(12分)ABC ∆的内角A ,B ,C 的对边分别为,,,23a b c a =,且(23)(sin sin )()sin b A B c b C +-=-.(1)求角A 的大小;(2)求ABC ∆的面积的最大值.18.(12分)如图,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E ,F 分别为PC ,PA 的中点,底面是直角梯形,//AB CD ,90ADC ∠=︒,2AB AD PD ===,4CD =. (1)求证:平面PBC ⊥平面PBD ; (2)求三棱锥P EFB -的体积.19.(12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值的平均值x 及方差2s ;(3)当质量指标值位于(80,122.5)时,认为该产品为合格品,求该产品为合格品的概率.20.(12分)已知椭圆C 过点(26,2)A ,两个焦点(26,0),(26,0)-. (1)求椭圆C 的标准方程;(2)设直线l 交椭圆C 于A ,B 两点,坐标原点O 到直线l 的距离为3,求AOB ∆面积的最大值.21.(12分)已知函数()()x f x e ax a R =-∈有两个零点. (1)求实数a 的取值范围;(2)若函数()f x 的两个零点分别为1x ,2x ,求证:122x x +>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-:4:坐标系与参数方程] 22.(10分)已知曲线C 的极坐标方程为24cos sin θρθ=,直线l 的参数方程为cos (1sin x t t y t αα=⎧⎨=+⎩为参数,0)απ<.(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状; (Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长. [选修4-:5:不等式选讲]23.已知函数()|1||3|f x x x m =++--R . (Ⅰ)求实数m 的取值范围.(Ⅱ)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(文科)(3月份)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合{1A =,2,3,6,9},{3|}B x x A =∈,{|3}C x N x A =∈∈,则(BC =)A .{1,2,3}B .{1,6,9}C .{1,6}D .{3}【解答】解:集合{1A =,2,3,6,9}, {3|}{3B x x A =∈=,6,9,18,27}, {|3}{1C x N x A =∈∈=,2,3}, {3}BC ∴=.故选:D .2.(5分)右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,x x 乙甲,标准差分别为σ甲,σ乙,则( )A .,x x σσ><乙乙甲甲B .,x x σσ>>乙乙甲甲C .,x x σσ乙乙甲甲D .,x x σσ<<乙乙甲甲【解答】解:由条形统计图得到:在这次考试各科成绩(转化为了标准分,满分900分)中, 甲比乙的各科成绩整体偏高,且相对稳定, 设甲乙两位同学成绩的平均值分别为,x x 乙甲, 标准差分别为σ甲,σ乙, 则x x >乙甲,σσ<乙甲. 故选:A .3.(5分)1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式cos sin ix e x i x =+,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,2i e 表示的复数所对应的点在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【解答】解:由题意可得,2cos2sin 2i e i =+,22ππ<<,cos20∴<,sin 20>,则2i e 表示的复数所对应的点在复平面中位于第二象限. 故选:B .4.(5分)设D 为ABC ∆所在平面内一点,3BC CD =,则( ) A .1433AD AB AC =-+B .1433AD AB AC =-C .4133AD AB AC =+ D .4133AD AB AC =+ 【解答】解:3BC CD =;∴3()AC AB AD AC -=-; ∴1433AD AB AC =-+. 故选:A .5.(5分)《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?( ) A .18B .20C .21D .25【解答】解:设公差为d ,由题意可得:前30项和3030293903052S d ⨯==⨯+,解得1629d =. ∴最后一天织的布的尺数等于165295292129d +=+⨯=. 故选:C .6.(5分)设两个变量x 和y 之间具有线性相关关系,它们的相关系数为r ,y 关于x 的回归直线方程为ˆykx b =+,则( ) A .k 与r 的符号相同 B .b 与r 的符号相同C .k 与r 的符号相反D .b 与r 的符号相反【解答】解:相关系数r 为正,表示正相关,回归直线方程上升, r 为负,表示负相关,回归直线方程下降,k ∴与r 的符号相同.故选:A .7.(5分)如果对定义在R 上的奇函数()y f x =,对任意两个不相邻的实数1x ,2x ,所有11221221()()()()x f x x f x x f x x f x +>+,则称函数()y f x =为“H 函数”,下列函数为H 函数的是( ) A .()sin f x x =B .()x f x e =C .3()3f x x x =-D .()||f x x x =【解答】解:根据题意,对于所有的不相等实数1x ,2x ,则11221221()()()()x f x x f x x f x x f x +>+恒成立,则有1212()[()()]0x x f x f x -->恒成立,即函数()f x 是定义在R 上的增函数, 则“H 函数”为奇函数且在R 上为增函数, 据此依次分析选项:对于A ,()sin f x x =,为正弦函数,为奇函数但不是增函数,不符合题意; 对于B ,()x f x e =,为指数函数,不是奇函数,不符合题意;对于C ,3()3f x x x =-,为奇函数,但在R 上不是增函数,不符合题意; 对于D ,22,0()||,0x x f x x x x x ⎧==⎨-<⎩,为奇函数且在R 上为增函数,符合题意;故选:D .8.(5分)已知正三棱柱111ABC A B C -的三视图如图所示,一只蚂蚁从顶点A 出发沿该正三棱柱的表面绕行两周到达顶点1A ,则该蚂蚁走过的最短路径为( )A .193B .25C .2193D .31【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.2343=,所以矩形的长等于4624⨯=,宽等于7, 由勾股定理求得2224725d +=. 故选:B .9.(5分)将函数sin(2)6y x π=+的图象向右平移3π个单位,在向上平移一个单位,得到()g x 的图象.若12()()4g x g x =,且1x ,2[2x π∈-,2]π,则122x x -的最大值为( ) A .92πB .72π C .52π D .32π 【解答】解:将函数sin(2)6y x π=+的图象向右平移3π个单位,再向上平移一个单位,得到2()sin(2)1cos2136g x x x ππ=-++=-+ 的图象, 故()g x 的最大值为2,最小值为0,若12()()4g x g x =,则12()()2g x g x ==,或12()()2g x g x ==-(舍去). 故有12()()2g x g x ==,即12cos2cos21x x ==-,又1x ,2[2x π∈-,2]π,则12x π=,22x π=- 则122x x -取得最大值为322πππ+=. 故选:D .10.(5分)已知圆22:2430C x y x y +--+=,若等边PAB ∆的一边AB 为圆C 的一条弦,则||PC 的最大值为( )AB C .D .【解答】解:由圆22:2430C x y x y +--+=,得:22(1)(2)2x y -+-=,∴圆心坐标(1,2)C ,半径r =等边PAB ∆的一边AB 为圆C 的一条弦,圆中最长弦即为直径,||AB ∴的最大值为直径又PAB ∆为等边三角形,||PC ∴的最大值也为故选:C .11.(5分)抛物线212x y =在第一象限内图象上一点(i a ,22)i a 处的切线与x 轴交点的横坐标记为1i a +,其中*i N ∈,若232a =,则246a a a ++等于( ) A .64 B .42C .32D .21【解答】解:22(0)y x x =>,4y x ∴'=, 212x y ∴=在第一象限内图象上一点(i a ,22)i a 处的切线方程是:224()i i i y a a x a -=-, 整理,得2420i i a x y a --=, 切线与x 轴交点的横坐标为1i a +, 112i i a a +∴=,2{}k a ∴是首项为232a =,公比14q =的等比数列, 246328242a a a ∴++=++=.故选:B .12.(5分)已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为2F ,若C 的左支上存在点M ,使得直线0bx ay -=是线段2MF 的垂直平分线,则C 的离心率为( )A B .2CD .5【解答】解:2(,0)F c ,直线0bx ay -=是线段2MF 的垂直平分线, 可得2F 到渐近线的距离为2||F P b ==,即有||OP a ==,OP 为△12MF F 的中位线,可得1||2||2MF OP a ==, 2||2MF b =,可得21||||2MF MF a -=,即为222b a a -=,即2b a =,可得c e a ===故选:C .二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(5分)已知F 是抛物线2:2C y x =的焦点,点(,)P x y 在抛物线C 上,且1x =,则||PF = 178. 【解答】解:由22y x =,得212x y =,则14p =;由1x =得2y =,由抛物线的性质可得117||22288p PF =+=+=, 故答案为:178. 14.(5分)已知实数x ,y 满足约束条件42047020x y x y x y ++⎧⎪+-⎨⎪-+⎩,则5z x y =-+的最大值为 10 .【解答】解:作出实数x ,y 满足约束条件42047020x y x y x y ++⎧⎪+-⎨⎪-+⎩的可行域如图所示:作直线0:50l x y -+=,再作一组平行于0l 的直线:5l x y z -+=, 当直线l 经过点A 时,5z x y =-+取得最大值, 由42020x y x y ++=⎧⎨-+=⎩,得点A 的坐标为(2,0)-,所以5(2)010max z =-⨯-+=. 5z x y =-+的最大值为:10.故答案为:10.15.(5分)设函数21,1()(1),1x x f x f x x ⎧-<=⎨-⎩,则函数2(log 10)f = 14 .【解答】解:函数21,1()(1),1x x f x f x x ⎧-<=⎨-⎩,∴函数210322223101(log 10)(log 101)(log 102)(log 103)21124log f f f f -=-=-=-=-=-=. 故答案为:14. 16.(5分)如图,已知正四棱柱1111ABCD A B C D -和半径为3的半球O ,底面ABCD 在半球O 底面所在平面上,1A ,1B ,1C ,1D 四点均在球面上,则该正四棱柱的体积的最大值为 4 .【解答】解:设正四棱柱1111ABCD A B C D -的高为h ,底面棱长为a ,则正四棱柱的底面外接圆直径为22r a ,所以,2r =. 由勾股定理得222(3)h r +=,即2232a h +=,得2262a h =-,其中03h <<,所以,正四棱柱1111ABCD A B C D -的体积为223(62)26V a h h h h h ==-=-+,其中03h <<,构造函数3()26f h h h =-+,其中0h <2()66f h h '=-+,令()0f h '=,得1h =.当01h <<时,()0f h '>;当1h <<()0f h '<.所以,函数()V f h =在1h =处取得极大值,亦即最大值,则max V f =(1)4=. 因此,该正四棱柱的体积的最大值为4.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.(12分)ABC ∆的内角A ,B ,C 的对边分别为,,,a b c a =,且)(sin sin )()sin b A B c b C +-=-.(1)求角A 的大小;(2)求ABC ∆的面积的最大值.【解答】解:(1)在ABC ∆的内角A ,B ,C 的对边分别为,,,a b c a =,且)(sin sin )()sin b A B c b C +-=-.整理得:()(sin sin )()sin a b A B c b C +-=-, 利用正弦定理得:222a b c bc -=-,即:2221cos 22b c a A bc +-==,由于:0A π<<, 解得:3A π=.(2)由于3a A π==,所以:2222cos a b c bc A =+-,整理得:22122b c bc bc bc bc =+--=, 所以:113sin 1233222ABC S bc A ∆==.18.(12分)如图,在四棱锥P ABCD -中,侧面PCD ⊥底面ABCD ,PD CD ⊥,E ,F 分别为PC ,PA 的中点,底面是直角梯形,//AB CD ,90ADC ∠=︒,2AB AD PD ===,4CD =. (1)求证:平面PBC ⊥平面PBD ; (2)求三棱锥P EFB -的体积.【解答】(1)证明:在直角梯形ABCD 中,过点B 作BH CD ⊥于H , 在BCH ∆中,有2BH CH ==,45BCH ∴∠=︒. 又在DAB ∆中,有2AD AB ==,45ADB ∴∠=︒. 45BDC ∴∠=︒,90DBC ∴∠=︒.BC BD ∴⊥.PD CD ⊥,平面PCD ⊥平面ABCD ,平面PCD ⋂平面ABCD CD =,PD ⊂平面PCD ,PD ∴⊥平面ABCD ,PD BC ∴⊥,又BDPD D =,BD ⊂平面PBD ,PD ⊂平面PBD ,BC ∴⊥平面PBD ,又BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;(2)解://AB CD ,且AB ⊂平面PAB ,CD ⊂/平面PAB ,则//CD 平面PAB ,在Rt PDA ∆中,由2AD PD ==,可得D 到PA 的距离为2,即D 到平面PAB 的距离为2. 又E 为PC 的中点,可得E 到平面PAB 的距离为22. 在Rt PAB ∆中,由2AB =,22PA =,且F 为PA 的中点, 可得122PBF PAB S S ∆∆==.1212323P EFB E PBF V V --∴==⨯⨯=.19.(12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值的平均值x及方差2s;(3)当质量指标值位于(80,122.5)时,认为该产品为合格品,求该产品为合格品的概率.【解答】解:(1)由频率分布直方图得:-+++⨯=,[95,105)内的频率为:1(0.0060.0260.0220.008)100.38由此能补全频率分布直方图如下:(2)质量指标值的样本平均数为:800.06900.261000.381100.221200.08100x =⨯+⨯+⨯+⨯+⨯=.质量指标值的样本方差为22222(20)0.06(10)0.2600.38100.22200.08104S =-⨯+-⨯+⨯+⨯+⨯=. (3)当质量指标值位于(80,122.5)时,认为该产品为合格品, 质量指标值位于(80,122.5)的频率为:0.006310(0.0260.0380.022)100.008100.9524⨯+++⨯+⨯⨯=. ∴该产品为合格品的概率为0.95.20.(12分)已知椭圆C 过点A ,两个焦点(-. (1)求椭圆C 的标准方程;(2)设直线l 交椭圆C 于A ,B 两点,坐标原点O 到直线l 的距离为3,求AOB ∆面积的最大值.【解答】解:(1)由题意可设椭圆方程为:22221(0)x y a b a b+=>>,半焦距c .则c =2221b+=,222a b c =+.联立解得:c =,6a =,212b =.∴椭圆C 的标准方程为:2213612x y +=.(2)直线l 与x 轴平行时,把3y =±代入椭圆方程可得:2913612x +=,解得3x =±,可得AOB∆面积16392S =⨯⨯=.直线l 的斜率不为0时,设直线l 的方程为:x ty m =+,设1(A x ,1)y ,2(B x ,2)y . 原点到直线AB 的距离3d ==,化为:229(1)m t =+.联立22336x ty m x y =+⎧⎨+=⎩,化为:222(3)2360t y tmy m +++-=, △222244(3)(36)0t m t m =-+->,12223tmy y t +=-+,2122363m y y t -=+.则22(1)(||6(3)t t AB t +===+,令233t n+=,则AOB∆面积2222 11(1)(9)||3622(3)t tS d ABt++==⨯⨯+44933=⨯=当且仅当6n=,t=AOB∆面积取得最大值.21.(12分)已知函数()()xf x e ax a R=-∈有两个零点.(1)求实数a的取值范围;(2)若函数()f x的两个零点分别为1x,2x,求证:122x x+>.【解答】解:(1)由()xf x e ax=-,得()xf x e a'=-,当0a<时,()f x在R上为增函数,函数()f x最多有一个零点,不符合题意,所以0a>.当0a>时,()x x lnaf x e a e e'=-=-()0f x x lna'<⇔<;()0f x x lna'>⇔>;所以()f x在(,)lna-∞上为减函数,在(,)lna+∞上为增函数;所以()()minf x f lna a alna==-;若函数()f x有两个零点,则()0f lna a e<⇒>;当a e>时,(0)10f=>,f(1)0e a=-<;32(3)()30af a e a=->;由零点存在定理,函数()f x在(0,1)和(1,3)a上各有一个零点.结合函数()f x的单调性,当a e>时,函数()f x有且仅有两个零点,所以,a的取值范围为(,)e+∞.(2)证明:由(1)得a e>,120x x<<;由11ex ax=,22ex ax=得11x lna lnx=+,22x lna lnx=+;所以221211xx x lnx lnx lnx-=-=;设21xtx=(1)t>,则2121x txx x lnt=⎧⎨-=⎩,解得11lnt x t =-,21tlnt x t =-; 所以12(1)1t lnt x x t ++=-, 当1t >时,12(1)221t lnt x x t ++>⇔>- 2(1)01t lnt t -⇔->+; 设2(1)()1t h t lnt t -=-+,则22(1)()(1)t h t t t -'=+,当1t >时,()0h t '>; 于是()h t 在(1,)+∞上为增函数;所以,当1t >时,()h t h >(1)0=,即2(1)01t lnt t -->+; 所以122x x +>.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-:4:坐标系与参数方程]22.(10分)已知曲线C 的极坐标方程为24cos sin θρθ=,直线l 的参数方程为cos (1sin x t t y t αα=⎧⎨=+⎩为参数,0)απ<.(Ⅰ)把曲线C 的极坐标方程化为直角坐标方程,并说明曲线C 的形状;(Ⅱ)若直线l 经过点(1,0),求直线l 被曲线C 截得的线段AB 的长.【解答】解:(1)曲线C 的极坐标方程24cos sin θρθ=化为22sin 4cos ρθρθ=, 得到曲线C 的直角坐标方程为24y x =,故曲线C 是顶点为(0,0)O ,焦点为(1,0)F 的抛物线;(2)直线l 的参数方程为cos (1sin x t y t αα=⎧⎨=+⎩ t 为参数,0)απ<. 故l 经过点(0,1);若直线l 经过点(1,0),则34πα=, ∴直线l的参数方程为3cos 4(31sin 142x t t y t ππ⎧==⎪⎪⎨⎪=+=+⎪⎩为参数).代入24y x =,得220t ++=设A 、B 对应的参数分别为1t ,2t ,则12t t +=-,122t t =.12||||8AB t t =-=.[选修4-:5:不等式选讲]23.已知函数()f x =R .(Ⅰ)求实数m 的取值范围.(Ⅱ)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值. 【解答】解:(1)函数定义域为R ,|1||3|0x x m ∴++--恒成立, 设函数()|1||3|g x x x =++-,则m 不大于函数()g x 的最小值,又|1||3||(1)(3)|4x x x x ++-+--=,即()g x 的最小值为4,4m ∴.(2)由(1)知4n =,12112(3)2(2)12974(622)()(5)(52)432423434a b a b b a b a b a b a b a b a b a b a b b a b +++∴+=++++=+++⨯=+++++,当且仅当23a b a b +=+,即3210b a ==时取等号. 74a b ∴+的最小值为94.。

陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月文综-历史

陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月文综-历史

(八校顺序以校名全称按汉语拼音方案字母表顺序排列,再行增减校名时“八校联考”名称不变) 2019届高三年级文科综合试题历史部分注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上。

2.第Ⅰ卷每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上。

3.考试结束,监考人只将答题卡收回。

24.武王伐纣的五百多年后,作为商族后裔的孔子,面对辉煌的周朝,这样倾心表达对灭掉他祖宗之国的周朝的认同:“郁郁乎文哉,吾从周!”孔子认同周朝是因为周朝( )A.强化了中央集权B.强化了对商族后裔的统治C.强化了家国认同感D.巩固了王位世袭制度25.秦以郡县治东方,结果激起东方的反抗。

汉初,这种区域文化的差异与冲突又显现出来,且仍以楚齐、赵三地最为明显。

刘邦方面必须“承秦”,另方面又必须尊重东方社会之习俗。

这反映出( )A.汉代中华文化尚未出现融合B.汉初实行郡国并行制有合理性C.秦由于未从俗而治导致灭亡D.汉承秦制才是长治久安的保证26.据文献记载,西北的高昌国原本保持有土地自由买卖的习惯。

唐初,灭高昌国,置高昌县,后设安西都护府统之。

此后在该地出土的唐时期吐鲁番文书中,就很少见到土地买卖文书了。

这变化反映了当时( )A.唐朝重视保护自耕农经济B.西北与中原贸易往来频繁C.中央集权有利于经济发展D.农业经济重心逐渐向南迁移27.在中国戏曲中,昆曲被称为雅乐正声,明万历年间更是被视为“官腔”。

随着乾隆末年四大徽班进京,京剧的形成终结了长期以来的“花雅之争”,以昆曲为代表的“雅部”衰落了下去。

清中叶以后昆曲没落的主要原因是 ( )A.社会等级观念的弱化B.统治阶级旨趣的变化C.民众文化水平的下降D.市民阶层发展的必然28.在晚清学习西方的思潮中,有人认为:“诚使孔子生于今日,其于西国舟车、枪炮、机器之制,亦必有所取焉。

器则取诸西国,道则备自当躬。

陕西省西安市达标名校2019年高考四月物理模拟试卷含解析

A.只要发射线圈 中有电流流入,接收线圈 两端一定可以获得电压
B.只要接收线圈 两端有电压,发射线圈 中的电流一定不是恒定电流
C.当接收线圈 中磁感应强度大小均匀增加时,接收线圈 中有均匀增加的电流
D.若 时间内,接收线圈 中磁感应强度大小均匀增加 ,则接收线圈 两端的电压为
11.在一个很小的矩形半导体薄片上,制作四个电极E、F、M、N,做成了一个霍尔元件,在E、F间通入恒定电流I,同时外加与薄片垂直的磁场B,M、N间的电压为UH.已知半导体薄片中的载流子为正电荷,电流与磁场的方向如图所示,下列说法正确的有( )
陕西省西安市达标名校2019年高考四月物理模拟试卷
一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的
1.如图所示,金属环M、N用不可伸长的细线连接,分别套在水平粗糙细杆和竖直光滑细杆上,当整个装置以竖直杆为轴以不同大小的角速度匀速转动时,两金属环始终相对杆不动,下列判断正确的是( )
A.月球的自转周期与其绕地球的公转周期一定是相同的
B.“鹊桥”的公转周期一定大于月球的公转周期
C.“鹊桥”的自转的周期一定等于其绕地球公转的周期
D.“鹊桥”绕L2点自转的向心力一定是地球和月球对其万有引力的合力
二、多项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分
A.
B.
C.
D.
4.一质点在做匀变速直线运动,依次经过 四点。已知质点经过 段、 段和 段所需的时间分别为 、 、 ,在 段和 段发生的位移分别为 和 ,则该质点运动的加速度为( )
A. B. C. D.

陕西省西安地区陕师大附中等八校2019届高三3月联考数学(文)试卷附答案解析

陕西省西安地区陕师大附中、西安高级中学、高新一中、铁一中学、西工大附中等八校2019届高三3月联考数学(文)试题一、选择题(本大题共12小题,共60.0分)1.已知集合2,3,6,,,,则A.2, B. 6, C. D.【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩转化为了标准分,满分900分的条形统计图(甲为黑色条框,乙为浅色条框),设甲乙两位同学成绩的平均值分别为,标准差分别为,,则A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,表示的复数所对应的点在复平面中位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,则()A. B.C. D.【答案】A【解析】【分析】由利用平面向量几何运算的三角形法则,可得,化简即可得结果.【详解】因为,所以,可得,化为,故选A.【点睛】本题主要考查平面向量的几何运算,属于基础题.向量的几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).5.《张丘建算经》卷上第22题为:“今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织多少尺布?A. B. C. D.【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.设两个变量x和y之间具有线性相关关系,它们的相关系数为r,y关于x的回归直线方程为,则A. k与r的符号相同B. b与r的符号相同C. k与r的符号相反D. b与r的符号相反【答案】A【解析】【分析】根据相关系数知相关系数的性质:,且越接近1,相关程度越大;且越接近0,相关程度越小为正,表示正相关,回归直线方程上升,选出正确结果.【详解】相关系数r为正,表示正相关,回归直线方程上升,r为负,表示负相关,回归直线方程下降,与r的符号相同.故选:A.【点睛】本题考查用相关系数来衡量两个变量之间相关关系的方法,当相关系数为正时,表示两个变量正相关,当相关系数大于时,表示两个变量有很强的线性相关关系.7.如果对定义在R上的奇函数,对任意两个不相邻的实数,,所有,则称函数为“H函数”,下列函数为H函数的是A. B. C. D.【答案】D【解析】【分析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.8.已知正三棱柱的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点,则该蚂蚁走过的最短路径为A. B. 25 C. D. 31【答案】B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.9.将函数的图象向右平移个单位,在向上平移一个单位,得到的图象若,且,,则的最大值为A. B. C. D.【答案】A【解析】【分析】由题意利用函数的图象变换规律,得到的解析式,再利用正弦函数的图象的值域,求出,的值,可得的最大值.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到的图象,故的最大值为2,最小值为0,又,则.即,又,,则,从而取得最大值为.故选:A.【点睛】本题主要考查函数的图象变换规律,正弦函数的图象的值域,属于中档题.10.已知圆C:,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. 2 D. 2【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.11.抛物线在第一象限内图像上一点处的切线与x轴交点的横坐标即为,其中,若,则等于()A. B. C. D.【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.12.已知双曲线的右焦点为,若C的左支上存在点M,使得直线是线段的垂直平分线,则C的离心率为A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.二、填空题(本大题共4小题,共20.0分)13.已知F是抛物线C:的焦点,点在抛物线C上,且,则______.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则的最大值为______.【答案】10【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的最值即可.【详解】作出实数x,y满足约束条件的可行域如图所示:作直线:,再作一组平行于的直线l:,当直线l经过点A时,取得最大值,由,得点A的坐标为,所以.的最大值为:10.故答案为:10.【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.设函数,则函数______.【答案】【解析】【分析】推导出函数,由此能求出结果.【详解】函数,函数.故答案为:.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.16.如图,已知正四棱柱和半径为的半球O,底面ABCD在半球O底面所在平面上,,,,四点均在球面上,则该正四棱柱的体积的最大值为______.【答案】4【解析】【分析】设该正四棱柱的高为h,底面边长为a,计算出底面外接圆的半径,利用勾股定理,得出,利用柱体体积公式得出柱体体积V关于h的函数关系式,然后利用导数可求出V的最大值.【详解】设正四棱柱的高为h,底面棱长为a,则正四棱柱的底面外接圆直径为,所以,.由勾股定理得,即,得,其中,所以,正四棱柱的体积为,其中,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,则.因此,该正四棱柱的体积的最大值为4.【点睛】本题考查球体内接几何体的相关计算,解决本题的关键在于找出相应几何量所满足的关系式,考查计算能力,属于中等题.三、解答题(本大题共7小题,共82.0分)17.的内角A,B,C的对边分别为,且.求角A的大小;求的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图,在四棱锥中,侧面底面ABCD,,E,F分别为PC,PA的中点,底面是直角梯形,,,,.求证:平面平面PBD;求三棱锥的体积.【答案】(1)见解析;(2).【解析】【分析】过点B作于H,证明,通过直线与平面垂直的判定定理证明平面PBD;求出E到平面PAB的距离及三角形PBF的面积,利用等积法求三棱锥的体积.【详解】证明:在直角梯形ABCD中,过点B作于H,在中,有,.又在中,有,.,.,平面平面ABCD,平面平面,平面PCD,平面ABCD,,又,平面PBD,平面PBD,平面PBD,又平面PBC,平面平面PBD;解:,且平面PAB,平面PAB,则平面PAB,在中,由,可得D到PA的距离为,即D到平面PAB的距离为.又E为PC的中点,可得E到平面PAB的距离为.在中,由,,且F为PA的中点,可得..【点睛】本题考查面面垂直的判定,考查空间想象能力与思维能力,训练了利用等积法求多面体的体积,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值由测量表得到如下频率分布直方图补全上面的频率分布直方图用阴影表示;统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值的平均值及方差;当质量指标值位于时,认为该产品为合格品,求该产品为合格品的概率.【答案】(1)见解析;(2),;(3)0.95.【解析】【分析】由频率分布直方图求出内的频率为,由此能补全频率分布直方图.由频率分布直方图求出质量指标值的样本平均数和质量指标值的样本方差.求出质量指标值位于的频率,由此能求出该产品为合格品的概率.【详解】由频率分布直方图得:内的频率为:,由此能补全频率分布直方图如下:质量指标值的样本平均数为:.质量指标值的样本方差为.当质量指标值位于时,认为该产品为合格品,质量指标值位于的频率为:.该产品为合格品的概率为.【点睛】本题考查频率分布直方图的作法,考查平均数、方差、概率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题.20.已知椭圆C过点,两个焦点.求椭圆C的标准方程;设直线l交椭圆C于A,B两点,坐标原点O到直线l的距离为3,求面积的最大值.【答案】(1);(2).【解析】【分析】由题意可设椭圆方程为:,半焦距可得,,联立解出即可得出.直线l与x轴平行时,把代入椭圆方程可得:,解得x,可得面积直线l的斜率不为0时,设直线l的方程为:,设,原点到直线AB的距离,化为:直线方程与椭圆方程联立化为:,利用根与系数的关系可得,令,可得面积.【详解】由题意可设椭圆方程为:,半焦距c.则,,.联立解得:,,.椭圆C的标准方程为:.直线l与x轴平行时,把代入椭圆方程可得:,解得,可得面积.直线l的斜率不为0时,设直线l的方程为:,设,原点到直线AB的距离,化为:联立,化为:,,,.则,令,则面积,当且仅当,时,面积取得最大值.【点睛】本题考查了椭圆的标准方程及其性质、一元二次方程的根与系数的关系、弦长公式、二次函数的性质,考查了推理能力与计算能力,属于难题.21.已知函数有两个零点.求实数a的取值范围;若函数的两个零点分别为,,求证:.【答案】(1);(2)见解析.【解析】【分析】利用导数判断函数的单调性,以及结合零点定理即可求出a的范围;由,得,;得到所以;构造函数,求证即可.【详解】由,得,当时,在R上为增函数,函数最多有一个零点,不符合题意,所以.当时,,;所以在上为减函数,在上为增函数;所以;若函数有两个零点,则;当时,,;;由零点存在定理,函数在和上各有一个零点.结合函数的单调性,当时,函数有且仅有两个零点,所以,a的取值范围为.证明:由得,;由,得,;所以;设,则,解得,;所以,当时,;设,则,当时,,于是在上为增函数;所以,当时,,即;所以.【点睛】本题主要考查了利用导函数判断函数的单调性,以及零点定理应用与构造函数等知识点,属较难题.22.选修4-4:坐标系与参数方程已知曲线的极坐标方程为,直线的参数方程为(为参数,).(Ⅰ)把曲线的极坐标方程化为直角坐标方程,并说明曲线的形状;(Ⅱ)若直线经过点,求直线被曲线截得的线段的长.【答案】(1)详见解析;(2)【解析】试题分析:(1)对曲线的极坐标方程两边乘以,可化得其直角坐标方程为,这是顶点在原点,焦点为的抛物线;(2)根据直线参数方程的定义可知,直线过点,依题意直线又过点,由此求得直线方程为,倾斜角为,故直线的参数方程为,代入抛物线的直角坐标方程,写出韦达定理,利用求得弦长为.试题解析:(1)曲线的直角坐标方程为,故曲线是顶点为,焦点为的抛物线.(2)直线的参数方程为(为参数,),故经过点,若直线经过点,则. ∴直线的参数方程为(为参数)代入,得,设对应的参数分别为,则,,∴.23.已知函数的定义域为R.Ⅰ求实数m的取值范围.Ⅱ若m的最大值为n,当正数a、b满足时,求的最小值.【答案】(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.【此处有视频,请去附件查看】。

陕西省西安地区陕师大附中、西安高级中学等八校2019届高三3月联考数学(理)试题(解析版)

2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A. {1,2,3}B. {1,6,9}C. {1,6}D. {3}【答案】D【解析】【分析】先分别求出集合A,B,C,由此能求出.【详解】集合2,3,6,,6,9,18,,2,,.故选:D.【点睛】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.如图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,,标准差分别为,则()A. B.C. D.【答案】A【解析】【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,从而得到,.【详解】由条形统计图得到:在这次考试各科成绩转化为了标准分,满分900分中,甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为,,则,.故选:A.【点睛】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题.3.1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cosx+isinx,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】由已知可得,再由三角函数的象限符号得答案.【详解】由题意可得,,,,,则表示的复数所对应的点在复平面中位于第二象限.故选:B.【点睛】本题考查复数的代数表示法及其几何意义,是基础题.4.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.【答案】A【解析】∵∴−−=3(−−);∴=−−.故选:C.5.《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A. 18B. 20C. 21D. 25【答案】C【解析】由题意设从第二天开始,每一天比前一天多织尺布,则,解得,所以,故选C.6.如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A. f(x)=sinxB. f(x)=e xC. f(x)=x3﹣3xD. f(x)=x|x|【答案】D【解析】【分析】根据题意,不等式等价为,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【详解】根据题意,对于所有的不相等实数,,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.【点睛】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A. B. 25 C. D. 31【答案】B【解析】【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【详解】将正三棱柱沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为,所以矩形的长等于,宽等于7,由勾股定理求得.故选:B.【点睛】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化空间问题转化为平面问题,化曲为直的思想方法.8.将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g(x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A. B. C. D.【答案】A【解析】【分析】由题意利用函数的图象变换规律,得到的解析式,再利用余弦函数的图象的值域,求出,的值,可得的最大值.【详解】将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g()g()=4,则g()=g()=2,或g()=g()=﹣2(舍去).故有g()=g()=2,即cos2=cos2=﹣1,又,x2∈[﹣2π,2π],∴2,2∈[﹣4π,4π],要使﹣2取得最大值,则应有2=3π,2=﹣3π,故﹣2取得最大值为+3π=.故选:A.【点睛】本题主要考查函数的图象变换规律,余弦函数的图象的值域,属于中档题.9.已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A. B. C. D.【答案】C【解析】试题分析:方法一:如图,连接AC,BC,设,连接PC与AB交于点D,,是等边三角形,∴D是AB的中点,,∴在圆C:中,圆C的半径为,,,∴在等边中,,,故选C.方法二:设,则,记,令,得,,故选C.考点:圆的性质、三角函数最值、利用导数求函数最值.【思路点睛】法一、先由为等腰三角形,得出D为中点,再由为等边三角形,得出,在中,将和用表示,从而求出的值,得到的表达式,用三角函数的有界性求最值;法二:设出边AD的长x,根据已知条件表示出,再利用导数求出函数的最值.10.抛物线x2= y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A. 64B. 42C. 32D. 21【答案】B【解析】试题分析:,∴,∴过点的切线方程为,令,得,可得,又,所以.考点:1.导数的几何性质;2.等比数列.11.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B. 2 C. D. 5【答案】C【解析】【分析】设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选:C.【点睛】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】由g(x)=xf(x)﹣1=0得f(x),根据条件作出函数f(x)与h(x)的图象,研究两个函数的交点个数即可得到结论.【详解】由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)=,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有3个交点,即函数g(x)的零点个数为3个,故选:B.【点睛】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=_____.【答案】【解析】【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【详解】由,得,则;由得,由抛物线的性质可得,故答案为:.【点睛】本题考查抛物线的定义的应用,属于基础题.14.已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为_____.【答案】[0,11]【解析】【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【详解】作出实数x,y满足约束条件的可行域,如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点睛】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.在的展开式中,常数项为_____.【答案】-40【解析】【分析】根据,按照二项式定理展开,可得在的展开式中的常数项.【详解】解:∵(x﹣2)=(x6+6x4+15x2+20+15•6•)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为_____.【答案】2π【解析】【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【详解】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点睛】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【答案】(1);(2).【解析】【分析】直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.利用的结论和余弦定理及基本不等式的应用求出结果.【详解】在的内角A,B,C的对边分别为,且.整理得:,利用正弦定理得:,即:,由于:,解得:.由于,所以:,整理得:,所以:.当且仅当时,的面积有最小值.【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【答案】(1)见解析;(2)【解析】【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处;(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【详解】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2x,OE,∴B(2,2x,0),E(,0,0),A(0,0,x),C(﹣2,2x,0),(﹣2,2x,﹣x),(2,x﹣2,0),∵异面直线BE与AC垂直,∴8=0,解得x(舍)或x,∴,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量(0,1,0),(,0,﹣x),(2,x﹣2,0),设平面ABE的法向量(a,b,c),则,取a=1,得(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点睛】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z (μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【答案】(1)见解析;(2)①0.9544,②863200.【解析】【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【详解】(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(2)①由(1)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点睛】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【答案】(1);(2)【解析】【分析】(1)由已知可设椭圆方程为(a>b>0),且c,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【详解】解:(1)由题意,设椭圆方程为(a>b>0),且c,2a12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|,由|AB|6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(,),B(,),则,.由|AB|6,整理得:,原点O到AB的距离d.∴.当时,△AOB面积有最大值为9.综上,△AOB面积的最大值为.【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下几个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.21.已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【答案】(1)(e,+∞);(2)见解析【解析】【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为,x2,不妨设<,+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【详解】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a,令g(x),(x≠0).g′(x),可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x>1时,g′(x)>0,函数g(x)单调递增.g(1)=e,得到函数草图如图所示.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:+>2⇔>2﹣>1⇔,由,因此即证明:.构造函数h(x),0<x<1,2﹣x>1.h′(x)(x﹣1),令函数u(x),(0<x<2).u′(x).可得函数u(x)在(0,2)内单调递减,于是函数v(x)在(0,1)内单调递减.v (x)≥v(1)=0.∴h′(x)(x﹣1),h(x)在(0,1)内单调递减.∴h(x)>h(1)=0,∴.因此+>2成立.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(1)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(2)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【答案】(1)曲线C:y2=4x,顶点为O(0,0),焦点为F(1,0)的抛物线;(2)8【解析】【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|即可得出.【详解】(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|==8.【点睛】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足时,求7a+4b的最小值.【答案】(Ⅰ) m≤4(Ⅱ)【解析】试题分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.试题解析:(Ⅰ)由题意可知:+-m≥0对任意实数恒成立.设函数g(x)=+,则m不大于函数g(x)的最小值.又+≥=4.即g(x)的最小值为4,所以m≤4(Ⅱ)由(Ⅰ)知n=4,∴7a+4b===≥=.当且仅当a+2b=3a+b,即b=2a=时,等号成立.所以7a+4b的最小值为.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。

陕西省西安地区陕师大附中、西安高级中学、西工大附中等八校2019届高三3月联考数学(理)试题(解析版)

2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A.{1,2,3}B.{1,6,9}C.{1,6}D.{3}2.(5分)右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则()A.B.C.D.3.(5分)1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix=cos x+i sin x,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e2i表示的复数所对应的点在复平面中位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(5分)设D为△ABC所在平面内一点,=3,则()A.=﹣+B.=﹣C.=+D.=+5.(5分)《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A.18B.20C.21D.256.(5分)如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A.f(x)=sin x B.f(x)=e x C.f(x)=x3﹣3x D.f(x)=x|x|7.(5分)已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A.B.25C.D.318.(5分)将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g (x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A.B.C.D.9.(5分)已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A.B.C.2D.210.(5分)抛物线x2=y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A.64B.42C.32D.2111.(5分)已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx ﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A.B.2C.D.512.(5分)已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A.2B.3C.4D.5二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(5分)已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=.14.(5分)已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为.15.(5分)在的展开式中,常数项为.16.(5分)如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.18.(12分)如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB 于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.19.(12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.20.(12分)已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.21.(12分)已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-:4:坐标系与参数方程]22.(10分)已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.[选修4-:5:不等式选讲]23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.2019年陕西师大附中、西安高中、高新一中、铁一中学、西工大附中等八校高考数学模拟试卷(理科)(3月份)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={1,2,3,6,9},B={3x|x∈A},C={x∈N|3x∈A},则B∩C=()A.{1,2,3}B.{1,6,9}C.{1,6}D.{3}【分析】先分别求出集合A,B,C,由此能求出B∩C.【解答】解:∵集合A={1,2,3,6,9},B={3x|x∈A}={3,6,9,18,27},C={x∈N|3x∈A}={1,2,3},∴B∩C={3}.故选:D.【点评】本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.(5分)右图是甲乙两位同学某次考试各科成绩(转化为了标准分,满分900分)的条形统计图,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则()A.B.C.D.【分析】甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,从而得到>,σ甲<σ乙.【解答】解:由条形统计图得到:在这次考试各科成绩(转化为了标准分,满分900分)中, 甲比乙的各科成绩整体偏高,且相对稳定,设甲乙两位同学成绩的平均值分别为,标准差分别为σ甲,σ乙,则>,σ甲<σ乙.故选:A .【点评】本题考查命题真假的判断,考查条形图、平均值、标准差等基础知识,考查运算求解能力,是基础题. 3.(5分)1748年,瑞士著名数学家欧拉发现了复指数函数和三角函数的关系,并写出以下公式e ix =cos x +i sin x ,这个公式在复变论中占有非常重要的地位,被誉为“数学中的天桥”,根据此公式可知,e 2i 表示的复数所对应的点在复平面中位于( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由已知可得e 2i =cos2+i sin2,再由三角函数的象限符号得答案. 【解答】解:由题意可得,e 2i =cos2+i sin2,∵<2<π,∴cos2<0,sin2>0,则e 2i 表示的复数所对应的点在复平面中位于第二象限. 故选:B .【点评】本题考查复数的代数表示法及其几何意义,是基础题.4.(5分)设D 为△ABC 所在平面内一点,=3,则( )A .=﹣+B .=﹣C .=+ D .=+【分析】根据向量减法的几何意义便有,,而根据向量的数乘运算便可求出向量,从而找出正确选项.【解答】解:;∴;∴.故选:A.【点评】考查向量减法的几何意义,以及向量的数乘运算.5.(5分)《张丘建筑经》卷上第22题为:“今有女善织,日益功疾,且从第二天起,每天比前一天多织相同量的布.若第一天织5尺布,现有一月(按30天计),共织390尺布”,则该女最后一天织布的尺数为()A.18B.20C.21D.25【分析】设出等差数列的公差,由题意列式求得公差,再由等差数列的通项公式求解.【解答】解:设公差为d,由题意可得:前30项和S30=390=30×5+d,解得d=.∴最后一天织的布的尺数等于5+29d=5+29×=21.故选:C.【点评】本题考查了等差数列的前n项和公式,考查了推理能力与计算能力,属于基础题.6.(5分)如果对定义在R上的奇函数y=f(x),对任意两个不相邻的实数x1,x2,所有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数y=f(x)为“H函数”,下列函数为H函数的是()A.f(x)=sin x B.f(x)=e x C.f(x)=x3﹣3x D.f(x)=x|x|【分析】根据题意,不等式x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)等价为(x1﹣x2)[f(x1)﹣f(x2)]>0,即满足条件的函数为单调递增函数,即可得“H函数”为奇函数且在R上为增函数,据此依次分析选项:综合可得答案.【解答】解:根据题意,对于所有的不相等实数x1,x2,则x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1)恒成立,则有(x1﹣x2)[f(x1)﹣f(x2)]>0恒成立,即函数f(x)是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,f(x)=sin x,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,f(x)=e x,为指数函数,不是奇函数,不符合题意;对于C,f(x)=x3﹣3x,为奇函数,但在R上不是增函数,不符合题意;对于D,f(x)=x|x|=,为奇函数且在R上为增函数,符合题意;故选:D.【点评】本题考查函数的奇偶性与单调性的判断,关键是分析“H函数”的含义,属于基础题.7.(5分)已知正三棱柱ABC﹣A1B1C1的三视图如图所示,一只蚂蚁从顶点A出发沿该正三棱柱的表面绕行两周到达顶点A1,则该蚂蚁走过的最短路径为()A.B.25C.D.31【分析】将三棱柱展开,得出最短距离是6个矩形对角线的连线,相当于绕三棱柱转2次的最短路径,由勾股定理求出对应的最小值.【解答】解:将正三棱柱ABC﹣A1B1C1沿侧棱展开,如图所示;在展开图中,最短距离是6个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得正三棱锥底面三角形的边长为=4,所以矩形的长等于4×6=24,宽等于7,由勾股定理求得d==25.故选:B.【点评】本题考查了棱柱的结构特征与应用问题,也考查了几何体的展开与折叠,以及转化(空间问题转化为平面问题,化曲为直)的思想方法.8.(5分)将函数的图象向右平移个单位,在向上平移一个单位,得到g(x)的图象.若g (x1)g(x2)=4,且x1,x2∈[﹣2π,2π],则x1﹣2x2的最大值为()A.B.C.D.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得到g(x)的解析式,再利用正弦函数的图象的值域,求出x1,x2的值,可得x1﹣2x2的最大值.【解答】解:将函数的图象向右平移个单位,再向上平移一个单位,得到g(x)=sin(2x﹣+)+1=﹣cos2x+1 的图象,故g(x)的最大值为2,最小值为0,若g(x1)g(x2)=4,则g(x1)=g(x2)=2,或g(x1)=g(x2)=﹣2(舍去).故有g(x1)=g(x2)=2,即cos2x1=cos2x2=﹣1,又x1,x2∈[﹣2π,2π],∴2x1,2x2∈[﹣4π,4π],要使x1﹣2x2取得最大值,则应有2x1=3π,2x2=﹣3π,故x1﹣2x2取得最大值为+3π=.故选:A.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,正弦函数的图象的值域,属于中档题.9.(5分)已知圆C:x2+y2﹣2x﹣4y+3=0,若等边△PAB的一边AB为圆C的一条弦,则|PC|的最大值为()A.B.C.2D.2【分析】化圆的一般方程为标准方程,从而得到圆心坐标和半径.等边△PAB的一边AB为圆C的一条弦,可得|PC|的最大值为直径,即可得出结论.【解答】解:由圆C:x2+y2﹣2x﹣4y+3=0,得:(x﹣1)2+(y﹣2)2=2,∴圆心坐标C(1,2),半径r=.∵等边△PAB的一边AB为圆C的一条弦,圆中最长弦即为直径,∴|AB|的最大值为直径2,又∵△PAB为等边三角形,∴|PC|的最大值为等边三角形的高,.故选:B.【点评】本题考查圆的方程,考查学生的计算能力,确定|PC|的最大值为直径是关键.10.(5分)抛物线x2=y在第一象限内图象上的一点(a i,2a i2)处的切线与x轴交点的横坐标记为a i+1,其中i∈N+,若a2=32,则a2+a4+a6等于()A.64B.42C.32D.21【分析】由y=2x2(x>0),求出x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y﹣2a i2=4a i(x﹣a i),再由切线与x轴交点的横坐标为a i+1,知a i+1=a i,所以{a2k}是首项为a2=32,公比q=的等比数列,由此能求出a2+a4+a6.【解答】解:∵y=2x2(x>0),∴y′=4x,∴x2=y在第一象限内图象上一点(a i,2a i2)处的切线方程是:y﹣2a i2=4a i(x﹣a i),整理,得4a i x﹣y﹣2a i2=0,∵切线与x轴交点的横坐标为a i+1,∴a i+1=a i,∴{a2k}是首项为a2=32,公比q=的等比数列,∴a2+a4+a6=32+8+2=42.故选:B.【点评】本题考查数列与函数的综合,综合性强,难度大,容易出错.解题时要认真审题,注意导数、切线方程和等比数列性质的灵活运用.11.(5分)已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx ﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A.B.2C.D.5【分析】求得F2到渐近线的距离为b,OP为△MF1F2的中位线,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【解答】解:F2(c,0),直线bx﹣ay=0是线段MF2的垂直平分线,可得F2到渐近线的距离为|F2P|==b,即有|OP|==a,OP为△MF1F2的中位线,可得|MF1|=2|OP|=2a,|MF2|=2b,可得|MF2|﹣|MF1|=2a,即为2b﹣2a=2a,即b=2a,可得e====.故选:C.【点评】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.12.(5分)已知函数,则函数g(x)=xf(x)﹣1的零点的个数为()A.2B.3C.4D.5【分析】由g(x)=xf(x)﹣1=0得f(x)=,根据条件作出函数f(x)与h(x)=的图象,研究两个函数的交点个数即可得到结论.【解答】解:由g(x)=xf(x)﹣1=0得xf(x)=1,当x=0时,方程xf(x)=1不成立,即x≠0,则等价为f(x)=,当2<x≤4时,0<x﹣2≤2,此时f(x)=f(x﹣2)=(1﹣|x﹣2﹣1|)=﹣|x﹣3|,当4<x≤6时,2<x﹣2≤4,此时f(x)=f(x﹣2)=[﹣|x﹣2﹣3|]=﹣|x﹣5|,作出f(x)的图象如图,则f(1)=1,f(3)=f(1)=,f(5)=f(3)==,设h(x)=,则h(1)=1,h(3)=,h(5)=>f(5),作出h(x)的图象,由图象知两个函数图象有4个交点,即函数g(x)的零点个数为4个,故选:C.【点评】本题主要考查函数与方程的应用,利用条件转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.(5分)已知F是抛物线C:y=2x2的焦点,点P(x,y)在抛物线C上,且x=1,则|PF|=.【分析】利用抛物线方程求出p,利用抛物线的性质列出方程求解即可.【解答】解:由y=2x2,得x2=,则p=;由x=1得y=2,由抛物线的性质可得|PF|=2+=2+=,故答案为:.【点评】本题考查抛物线的定义的应用,属于基础题.14.(5分)已知实数x,y满足约束条件,则z=|﹣5x+y|的取值范围为[0,11].【分析】作出约束条件表示的可行域,判断目标函数经过的点,然后求解目标函数的范围即可.【解答】解:作出实数x,y满足约束条件的可行域如图所示:作直线l0:﹣5x+y=0,再作一组平行于l0的直线l:﹣5x+y=z,当直线l经过点A时,z=﹣5x+y取得最大值,由,得点A的坐标为(﹣2,0),所以z max=﹣5×(﹣2)+0=10.直线经过B时,目标函数取得最小值,由,解得B(2,﹣1)函数的最小值为:﹣10﹣1=﹣11.z=|﹣5x+y|的取值范围为:[0,11].故答案为:[0,11].【点评】本题考查线性规划的简单应用,考查转化思想以及数形结合的综合应用,考查计算能力.15.(5分)在的展开式中,常数项为﹣40.【分析】根据=,按照二项式定理展开,可得在的展开式中的常数项.【解答】解:∵=(x﹣2)=(x6+6x4+15x2+20+15•+6•+)(x﹣2),∴常数项是20•(﹣2)=﹣40,故答案为:﹣40.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.16.(5分)如图,已知圆柱和半径为的半球O,圆柱的下底面在半球O底面所在平面上,圆柱的上底面内接于球O,则该圆柱的体积的最大值为2π.【分析】设圆柱的底面圆半径为r,高为h,求出r与h的关系,再计算圆柱的体积V,从而求出体积V的最大值.【解答】解:设圆柱的底面圆半径为r,高为h;则h2+r2=R2=3;所以圆柱的体积为V=πr2h=π(3﹣h2)h=π(3h﹣h3);则V′(h)=π(3﹣3h2),令V′(h)=0,解得h=1;所以h∈(0,1)时,V′(h)>0,V(h)单调递增;h∈(1,)时,V′(h)<0,V(h)单调递减;所以h=1时,V(h)取得最大值为V(1)=2π.故答案为:2π.【点评】本题考查了半球与内接圆柱的结构特征与应用问题,也考查了圆柱的体积计算问题,是中档题.三、解答题(本大题共5小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)(一)必考题:共60分.17.(12分)△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.【分析】(1)直接利用三角函数关系式的恒等变变换和余弦定理和正弦定理的应用求出结果.(2)利用(1)的结论和余弦定理及基本不等式的应用求出结果.【解答】解:(1)在△ABC的内角A,B,C的对边分别为,且.整理得:(a+b)(sin A﹣sin B)=(c﹣b)sin C,利用正弦定理得:a2﹣b2=c2﹣bc,即:,由于:0<A<π,解得:A=.(2)由于,所以:a2=b2+c2﹣2bc cos A,整理得:12=b2+c2﹣bc≥2bc﹣bc=bc,所以:=3.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,正弦定理和余弦定理及三角形面积公式,基本不等式的应用,主要考查学生的运算能力和转化能力,属于基础题型.18.(12分)如图1,等边△ABC中,AC=4,D是边AC上的点(不与A,C重合),过点D作DE∥BC交AB 于点E,沿DE将△ADE向上折起,使得平面ADE⊥平面BCDE,如图2所示.(1)若异面直线BE与AC垂直,确定图1中点D的位置;(2)证明:无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值,并求出这个定值.【分析】(1)取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出图1中点D在靠近点A的三等分点处.(2)求出平面ADE的法向量和平面ABE的法向量,利用向量法能证明无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【解答】解:(1)在图2中,取DE中点O,BC中点F,连结OA,OF,以O为原点,OE、OF、OA所在直线分别为x,y,z轴,建立空间直角坐标系,设OA=x,则OF=2﹣x,OE=,∴B(2,2﹣x,0),E(,0,0),A(0,0,x),C(﹣2,2﹣x,0),=(﹣2,2﹣x,﹣x),=(﹣2,x﹣2,0),∵异面直线BE与AC垂直,∴=+8=0,解得x=(舍)或x==,∴=,∴图1中点D在靠近点A的三等分点处.证明:(2)平面ADE的法向量=(0,1,0),=(,0,﹣x),=(﹣2,x﹣2,0),设平面ABE的法向量=(a,b,c),则,取a=1,得=(1,,),设二面角D﹣AE﹣B的平面角为θ,则cosθ===,∴无论点D的位置如何,二面角D﹣AE﹣B的余弦值都为定值.【点评】本题考查空间中点的位置的确定,考查二面角的余弦值为定值的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查数形结合思想,是中档题.19.(12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图(1)补全上面的频率分布直方图(用阴影表示);(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.【分析】(1)由频率分布图求出[95,105)的频率,由此能作出补全频率分布直方图;(2)求出质量指标值的样本平均数、质量指标值的样本方差;(3)运用离散型随机变量的期望和方差公式,即可求出;①由(2)知Z~N(100,104),从而求出P(79.6<Z<120.4),注意运用所给数据;②设这种产品每件利润为随机变量E(X),即可求得EX.【解答】解:(1)由频率分布直方图得:[95,105)的频率为:1﹣(0.006+0.026+0.022+0.008)×10=0.038,补全上面的频率分布直方图(用阴影表示):质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100.质量指标值的样本方差为S2=(﹣20)2×0.06+(﹣10)2×0.26+0×0.38+102×0.22+202×0.08=104.(3)①由(2)知Z~N(100,104),从而P(79.6<Z<120.4)=P(100﹣2×10.2<Z<100+2×10.2)=0.9544;②由①知一件产品的质量指标值位于区间(79.6,120.4)的概率为0.9544,该企业的年利润是EX=100000[0.9544×10﹣(1﹣0.9544)×20]=863200.【点评】本题考查频率分布直方图的作法,考查平均数、方差的求法,以及正态分布的特点及概率求解,考查运算能力,属于中档题.20.(12分)已知椭圆C过点,两个焦点.(1)求椭圆C的标准方程;(2)设直线l交椭圆C于A,B两点,且|AB|=6,求△AOB面积的最大值.【分析】(1)由已知可设椭圆方程为(a>b>0),且c=,再由椭圆定义求得a,结合隐含条件求得b,则椭圆方程可求;(2)当直线AB的斜率不存在时,设直线方程为x=m,由弦长求得m,可得三角形AOB的面积;当直线AB 的斜率存在时,设直线方程为y=kx+m,联立直线方程与椭圆方程,结合根与系数的关系及弦长可得m与k 的关系,再由点到直线的距离公式求出原点O到AB的距离,代入三角形面积公式,化简后利用二次函数求最值,则答案可求.【解答】解:(1)由题意,设椭圆方程为(a>b>0),且c=,2a==12,则a=6,∴b2=a2﹣c2=12.∴椭圆C的标准方程为;(2)当直线AB的斜率不存在时,设直线方程为x=m,得|AB|=,由|AB|==6,解得m=±3,此时;当直线AB的斜率存在时,设直线方程为y=kx+m,联立,得(3k2+1)x2+6kmx+3m2﹣36=0.△=36k2m2﹣4(3k2+1)(3m2﹣36)=432k2﹣12m2+144.设A(x1,y1),B(x2,y2),则,.由|AB|==6,整理得:,原点O到AB的距离d=.∴===.当时,△AOB面积有最大值为<9.综上,△AOB面积的最大值为9.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,考查计算能力,是中档题.21.(12分)已知函数f(x)=e x﹣有两个极值点.(1)求实数a的取值范围;(2)若函数f(x)的两个极值点分别为x1,x2,求证:x1+x2>2.【分析】(1)f′(x)=e x﹣ax.函数f(x)=e x﹣有两个极值点⇔f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a=,令g(x)=,(x≠0).利用导数已经其单调性即可得出.(2)由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.x1+x2>2⇔x2>2﹣x1>1⇔>,由=,因此即证明:>.构造函数h(x)=﹣,0<x<1,2﹣x>1.利用导数已经其单调性即可得出.【解答】(1)解:f′(x)=e x﹣ax.∵函数f(x)=e x﹣有两个极值点.∴f′(x)=e x﹣ax=0有两个实数根.x=0时不满足上述方程,方程化为:a=,令g(x)=,(x≠0).g′(x)=,可得:x<0时,g′(x)<0,函数g(x)单调递减;0<x<1时,g′(x)<0,函数g(x)单调递减;x>1时,g′(x)>0,函数g(x)单调递增.a>e时,方程f′(x)=e x﹣ax=0有两个实数根.∴实数a的取值范围是(e,+∞).(2)证明:由(1)可知:a>e时,函数f(x)有两个极值点分别为x1,x2,不妨设x1<x2.证明:x1+x2>2⇔x2>2﹣x1>1⇔>,由=,因此即证明:>.构造函数h(x)=﹣,0<x<1,2﹣x>1.h′(x)=﹣=(x﹣1),令函数u(x)=,(0<x).u′(x)=.可得函数u(x)在(0,1)内单调递减,于是函数v(x)=﹣在(0,1)内单调递减.v(x)≥v(1)=0.∴x=1时,函数h(x)取得极小值即最小值,h(1)=0.∴h(x)>h(1)=0.∴>.因此x1+x2>2成立.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-:4:坐标系与参数方程]22.(10分)已知曲线C的极坐标方程为ρ=,直线l的参数方程为(t为参数,0≤α<π).(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.【分析】(1)利用即可得出直角坐标方程;(2)直线l的参数方程(t为参数,0≤α<π).可得l经过点(0,1);若直线l经过点(1,0),得到,得到直线l新的参数方程为(t为参数).代入抛物线方程可得t+2=0,设A、B对应的参数分别为t1,t2,利用|AB|=即可得出.【解答】解:(1)曲线C的极坐标方程ρ=化为ρ2sin2θ=4ρcosθ,得到曲线C的直角坐标方程为y2=4x,故曲线C是顶点为O(0,0),焦点为F(1,0)的抛物线;(2)直线l的参数方程为(t为参数,0≤α<π).故l经过点(0,1);若直线l经过点(1,0),则,∴直线l的参数方程为(t为参数).代入y2=4x,得t+2=0设A、B对应的参数分别为t1,t2,则t1+t2=﹣6,t1t2=2.|AB|=|t1﹣t2|===8.【点评】本题考查了极坐标方程和直角坐标方程的转换、直线的参数方程及其应用,考查了计算能力,属于中档题..[选修4-:5:不等式选讲]23.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.【分析】(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.【解答】解:(1)∵函数定义域为R,∴|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值,又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.【点评】本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八校联考2019届高三年级语文试题注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔在答题卡上填写自己的准考证号、姓名、试室号和座位号。

用2B型铅笔把答题卡上试室号、座位号对应的信息点涂黑。

2.选择题每小题选出答案后,用2B型铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡整洁。

考试结束后,将试卷和答题卡一并交回。

第I卷阅读题一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成各题宠物猫——占领都市圈与互联网在进化与人工培育繁殖过程中,家猫的面部特征相比野猫更加圆润,拥有更圆的脸型、更大的眼睛和更小的嘴。

这种形似人类婴幼儿的幼态化长相激起了人类原始的保护欲,也让人类在猫面前更容易放松且获得愉悦。

因此很久之前,即使家猫不捕鼠甚至丧失了捕鼠功能,人们也心甘情愿养猫。

最早的“猫奴”还要追溯到古埃及时代。

希腊史学家希罗多徳在游览埃及时曾记述说:“在埃及,如果谁家的猫寿终正寝了,主人必将剃眉致哀;如果谁家宅子不慎发生火灾,主人通常先抢救家里的猫。

”他甚至记录了赫赫有名的“培琉喜阿姆之战”中埃及人失利的原因:公元前525年,波斯帝国国王冈比斯为了征服埃及,率领大军,骑在骆驼背上穿越90千米的沙漠,来到埃及的前哨站培琉喜阿姆,在那里与埃及军队遭遇,但后者竞因波斯人盾牌上画的圣猫像而不愿进行反击。

”我国唐宋时期,从皇宫贵族到平民百姓,爱猫者也大有人在。

诗文书画中,猫嬉闹花间月下的身影常常可见。

想得到一只猫不是件容易事,得用盐和茶叶来换,如宋代曾几的《乞猫》:“春来鼠壤有余蔬,乞得猫奴亦已无。

青蒻裏盐仍襄茗,烦君为致小於菟。

”得到猫以后,也要费心照料,给予其他家畜完全不同的级别待遇,如陆游的《赠猫》:“裹盐迎得小狸奴,尽护山房万卷书。

惭愧家贫策勋薄,寒无毡坐食无鱼。

”今天,世界上家猫的数量是家犬的三倍,随着城市化进程的深入,未来会有越来越多的养猫人。

究其原因,一是猫的活动领域相比狗要小得多,很多家猫对于常年独处一室悠然自得,甚至可以一辈子不出门。

二是猫若即若离的神游性格并不像狗那样需要主人陪伴。

猫与主人的关系如同一个低要求的房客,既可以满足主人的情感陪伴,又不用其负担陪伴压力。

因此不少人都选择了养猫。

猫的热度甚至延伸到了工作场所:一二线城市的互联网企业喜欢将养猫作为公司福利的一部分,如同下午茶放松员工的神经,加班夜晚的“猫咪精神鼓励员”也是互联网公司的独特企业文化。

养多只猫于店中,供客人就餐时观赏逗摸的猫咖啡和猫餐厅也同样火爆。

2014年,互联网的发明者蒂姆·伯纳斯·李接受采访,当被问到网络最出乎他意料的应用是什么时,他毫不犹豫地回答:“小猫”。

猫比狗的面部肌肉少,能做出的表情也少。

“面瘫”的表情也许琢磨不透,但在互联网时代的表情包里,却能随意被加上对话,作为人类对于自身情绪的某种表达。

猫曾为其招致杀身之祸的性格,如今却帮助其打了一个翻身仗,一跃成为互联网时代的大“赢家”。

在英国,每天上传到互联网的自拍照片是140万张,而上传的猫咪照片却有380万张。

人们喜爱在网上用猫来社交,因此诞生了许多流量不低于明星的“网红猫”,即使不养猫,年轻人也喜欢交流分享猫咪图片与视频,将这种对猫的喜爱方式称为“云吸猫”。

(摘编自2018年《新华文摘》第22期)1. 下列关于原文内容的理解和分析,正确的一项是( )A. 人们之所以心甘情愿地养猫,主要是因为家猫不捕鼠甚至丧失了捕鼠功能。

B. 将可爱猫咪的相关视频、图片发布在互联网上获取巨大的流量,这个产业叫“云吸猫”。

C. “生荣死哀”这个词用来形容古埃及家猫的生活再合适不过,无论王室还是平民,对死去家猫都要予以哀悼。

D. 因城市化进程的加速发展和现代人无处宣泄的情感焦虑,不少人选择养猫。

2. 下列对原文论证的相关分析,正确的一项是( )A. 文章主要使用引证法和例证法,全方位展示了猫在互联网迅猛发展、城市化加速发展的今天的处境。

B. 文章在对猫和狗的对比论证中言之凿凿地说明了猫更受都市人宠爱的原因。

C. 文章引用曾几的《乞猫》和陆游的《赠猫》主要是为了彰显猫通人性,可差遣,对人的影响至关重要。

D. 文章先提出问題,接着具体分析,最后明确猫是互联网最大的赢家,层次分明。

3. 下面关于人和猫的关系推断不正确的一项是( )A. 在埃及,如果谁家的猫寿终正寝了,主人必将剃眉致哀,主要原因之一是猫能将在谷物中泛滥的毒蛇和鼠类消灭。

B. 人类历史上最伟大航海中也有猫的陪伴,猫除了能消灭船上的鼠患以外,还能使孤独的远航者获得放松和愉悦。

C. 中世纪欧洲大规模的黑死病(鼠疫)蔓延的主要原因之一就是老鼠的天敌——猫被大量屠杀。

D. 猫在陪伴人类的历史中也曾惨遭厄运,这主要跟人们在它身上赋予的神性被消解有关。

【答案】1. C 2. B 3. D【解析】【1题详解】试题分析:本题考查筛选并整合文中重要信息的能力。

这类题目解答时一般要找出文章中相对应的语句,注意将选项转述内容与原文内容逐一比对,寻找细微的差别确定答案。

A项,“主要是因为家猫不捕鼠甚至丧失了捕鼠功能”强加因果,由原文可知,主要原因是家猫形似人类婴幼儿的幼态化长相激起了人类原保护欲,也让人类在猫面前更容易放松且获得愉悦。

B项,对“云吸猫”概念理解有误,由原文可知,年轻人喜欢交流分享猫咪图片与视频,将这种对猫的喜爱方式称为“云吸猫”。

D项,无中生有,“现代人无处宣泄的情感焦虑”文中没有依据。

故选C项。

【2题详解】试题分析:本题要求选出“对原文论证的相关分析,不正确的一项”,考查分析论点、论据和论证方法的能力。

答题时,要在整体通读全文的基础上,根据文本具体内容对各选项表述进行认真比照,确定其表述正确与否。

A项,“全方位展示了猫在互联网迅猛发展、城市化加速发展的今天的处境”以偏概全。

文章先论述了古埃及、我国唐宋时期猫的现状,然后才论述了互联网时代猫的处境。

C项,论据分析错误,“曾几的《乞猫》和陆游的《赠猫》主要是为了彰显猫通人性……”不正确,陆游的诗表达的是诗人把猫请回了家,就是希望能消灭老鼠保护自己的藏书,可惜家里太穷喂不起好吃的,不能让猫享受富裕的生活的内疚之情。

D项,论证分析错误。

文章不是按照提出问题的思路来论述的,而是通过因果思维着重论证宠物猫是因何、如何占领都市圈和互联网的。

故选B项。

【3题详解】试题分析:本题考查概括文章要点分析概括作者在文中观点态度的能力,题目的设误类型一般为可能说成绝对,扩大范围或缩小范围。

这类题目解答时一般要注意仔细阅读题干要求,分析各个选项,找出答案。

D项,“这主要跟人们在它身上赋予的神性被消解有关”错误。

猫惨遭厄运,文章并没有提到猫身上神性的消解。

其它三项的判断在原文中都能找到直接或间接的依据,其中干扰项C要借助历史常识来分析,“黑死病”就是鼠疫,鼠疫泛滥肯定是因为猫大量减少,猫大量减少不可能是生物性原因,而应是人类屠杀的原因,故C项正确。

答案为D项。

【点睛】第2题解答时首要的就是整体阅读,把握中心论点或论题,找出文中所用论据,分析论证方法,明辨论据与论点之间的关系,不仅要明辨中心论点与论据之间的关系,更要明辨各个分论点与论据之间的关系,最后提炼整合。

同时还要注意论述类试题设题常见陷阱:以偏概全、混淆时态、因果混乱、主次颠倒、混淆是非、无中生有、张冠李戴,等等。

对于试题选项内容一定要在原文中找到对应信息区间,然后再进行判断。

(二)实用类文本阅读(本题共3小题,12分)阅读下面的文字,完成各题。

材料一:站在纪念改革开放40周年的历史节点上,回顾中国电影这一路的艺术轨迹,其美学流变与文化变迁之脉络清晰可辨。

八十年代,随着国家层面改革开放的推进,中国电影业逐渐从六七十代"八亿人民八部戏”的荒芜寂静中复苏,创作思维突破了以往的诸多思想桎梏,主体创新意识越来越强。

从九十年代以后,电影业开始探索以市场经济规律为指导的企业化运作方式,在发行环节上引入竞争机制,推进国有制片业股份制改革。

面对初兴的电视业和风靡内地的港台影视剧的激烈竞争,中国电影业感受到了成长的阵痛,市场萎缩,观众锐减,票房不佳。

在低迷之中,《甲方乙方》《不见不散》等以风趣幽默自成一派的喜剧电影在市场上打开了局面,找到了一条类型探索之路。

新世纪以来,中国电影业逐渐从20世纪末的低潮中走了出来,开启了高速发展的黄金时代。

这一变化最突出的表现是票房,十几年间涨了数十倍。

中国电影制片、发行、放映领域的准入门槛逐步降低,电影投资主体愈发多元,产业化水平日益提高,创作生产能力稳步提高,类型生产和艺术探索也呈现出多样性和丰富性的发展态势。

特别是信息时代来临,互联网技术与思维介入电影业,带来了电影媒介融合、理念变革和人才跨界的新可能,逐渐形成了“互联网+电影”的大产业格局。

(摘编自2018年10月19日《人民网》,原题为:《改革开放40年中国电影:在探索中奏响时代主旋律》作者:陈旭光) 材料二:材料三:国家电影局2018年12月31日晚发布的数据显示,2018年全国电影总票房为609.76亿元,同比增长9.06%,国产电影总票房为378.97亿元,占比为62.15%。

与这一华丽数字相比,中国电影呈现的“创作暖春”更令人感到欣喜,唤起人们对未来的憧憬。

这一年,现实主义创作成绩斐然:《我不是药神》《找到你》《红海行动》《后来的我们》《暴裂无声》《春天的马拉松》《照相师》等一批优秀的现实主义题材影片深刻地反映了现实,引起了观众的强烈反响;体现电影工业实力的电影《无双》《唐人街探案2》《捉妖记2》《超时空同居》《前任攻略3》等均取得了不俗的票房成绩,也表达了积极的价值观;关注人文品格和人性关怀的《阿拉姜色》《米花之味》等艺术电影表现出探索者矢志不渝的追求。

(摘编自2019年01月04日《光明日报》记者牛梦笛通讯员胡琪) 材料四:截至2018年底,全国银幕总数突破6万块,位居世界首位。

与高速增长的影院数量相比,近几年来,全国影院的场均观影人次持续下降。

以位居全国票房收入首位的万达院线为例,2016年场均人次为31人,2017年为25人,2018年则再度下降至22人。

这样的情况在各大院线普遍存在。

数据显示,2018年票房前10名的影院主要集中在北京、上海、广州3个城市,票房前50名的影院也主要集中在一二线大城市,其中,位于北京的影院占比尤其高。

“这种现象反映出当前影院建设的不平衡不充分。

”中国电影发行放映协会会长韩晓黎认为,在一些经济发达地区,影院过度集中造成单厅人次下降,而在中西部地区特别是县级城市及以下地区,影院覆盖明显不足。

相关文档
最新文档