九年级圆 几何综合专题练习(解析版)

九年级圆 几何综合专题练习(解析版)
九年级圆 几何综合专题练习(解析版)

九年级圆几何综合专题练习(解析版)

一、初三数学圆易错题压轴题(难)

1.在圆O中,C是弦AB上的一点,联结OC并延长,交劣弧AB于点D,联结AO 、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.

(1)如图1,当点D是弧AB的中点时,求CD的长;

(2)如图2,设AC=x,ACO

OBD

S

S=y,求y关于x的函数解析式并写出定义域;

(3)若四边形AOBD是梯形,求AD的长.

【答案】(1)2;(2)

2825

x x x

-+

(0<x<8);(3)AD=

14

5

或6.

【解析】

【分析】

(1)根据垂径定理和勾股定理可求出OC的长.

(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.

(3)分OB∥AD和OA∥BD两种情况讨论.

【详解】

解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,

∴OD⊥AB,AC=

1

2

AB=4,

在Rt△AOC中,∵∠ACO=90°,AO=5,

∴22

AO AC

-,

∴OD=5,

∴CD=OD﹣OC=2;

(2)如图2,过点O作OH⊥AB,垂足为点H,

则由(1)可得AH=4,OH=3,

∵AC=x,

∴CH=|x﹣4|,

在Rt△HOC中,∵∠CHO=90°,AO=5,

∴22

HO HC

+22

3|x4|

+-2825

x x

-+

∴CD=OD ﹣OC=5

过点DG ⊥AB 于G , ∵OH ⊥AB , ∴DG ∥OH , ∴△OCH ∽△DCG , ∴

OH OC

DG CD

=, ∴DG=OH CD OC

?

35, ∴S △ACO =

12AC ×OH=12x ×3=32

x , S △BOD =12BC (OH +DG )=12(8﹣

x )×(3

35)=3

2

(8﹣

x )

∴y=

ACO OBD

S S

=

()32

3582x x -

(0<x <8)

(3)①当OB ∥AD 时,如图3,

过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F , 则OF=AE , ∴S=12AB?OH=1

2

OB?AE , AE=

AB OH OB ?=24

5

=OF , 在Rt △AOF 中,∠AFO=90°,

AO=5,

∴75

∵OF 过圆心,OF ⊥AD ,

∴AD=2AF=14

5

②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,

则由①的方法可得DG=BM=

245

, 在Rt △GOD 中,∠DGO=90°,DO=5,

∴GO=22DO DG -=75,AG=AO ﹣GO=185

, 在Rt △GAD 中,∠DGA=90°,

∴AD=

22AG DG +=6

综上得AD=

14

5

或6.

故答案为(1)2;(2)y=()

2825x x x -+(0<x <8);(3)AD=14

5或6.

【点睛】

本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.

2.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在射线BA 上,以BP 为半径的

P 交边BC 于点E (点E 与点C 不重合),联结PE 、

PC ,设x BP =,PC y =.

(1)求证:PE //DC ;

(2)求y 关于x 的函数解析式,并写出定义域;

(3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取

值范围.

【答案】(1)证明见解析;(2)2

436(09)y x x x =-+<<;(3)36

05

R <<

【解析】 【分析】

()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据

平行线的判定定理即可得到结论;

()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形,

//PH AF ,求得2BF FG GC ===,根据勾股定理得到

22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到

223PH x =

,13BH x =,求得1

63

CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218

655

PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】

()

1证明:梯形ABCD ,AB CD =,

B DCB ∠∠∴=,

PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=, //PE CD ∴;

()2解:分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、G .

梯形ABCD 中,//AD BC , ,BC DG ⊥,BC PH ⊥,

∴四边形ADGF 是矩形,//PH AF ,

2AD =,6BC DC ==, 2BF FG GC ∴===,

在Rt ABF 中,

22226242AF AB BF =-=-=,

//PH AF ,

PH BP BH

AF AB BF

∴==6242x BH ==,

223PH x ∴=

,1

3

BH x =, 1

63

CH x ∴=-,

在Rt PHC 中,22PC PH CH =

+,

22221

(

)(6)33

y x x ∴=+-,即2436(09)y x x x =-+<<, ()3解:作//EM PD 交DC 于M .

//PE DC ,

∴四边形PDME 是平行四边形.

PE DM x ∴==,即 6MC x =-,

PD ME ∴=,PDC EMC ∠∠=, 又PDC B ∠∠=,B DCB ∠=∠, DCB EMC PBE PEB ∠∠∠∠∴===. PBE ∴∽ECM ,

PB BE

EC MC ∴=,即

232663

x

x x x =--, 解得:18

5x =,

即12

5

BE =,

1218

655

PD EC ∴==-=,

当两圆外切时,PD r R =+,即0(R =舍去);

当两圆内切时,-PD r R =,即10(R =舍去),2365

R =; 即两圆相交时,3605

R <<. 【点睛】

本题属于圆综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.

3.选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分 题甲:已知矩形两邻边的长、是方程的两根.

(1)求的取值范围;

(2)当矩形的对角线长为时,求的值;

(3)当为何值时,矩形变为正方形?

题乙:如图,是直径,于点,交于

点,且.

(1)判断直线和的位置关系,并给出证明;

(2)当,时,求的面积.

【答案】题甲(1)(2)(3)

题乙:(1)BD是切线;证明所以OB⊥BD,BD是切线(2)S=

【解析】

试题分析:题甲:(1)、是方程的两根,则其;

由得

(2)矩形两邻边的长、,矩形的对角线的平方=;矩形两邻边的长、是方

程的两根,则;因为

,所以;解得

由得

(3)矩形变为正方形,则a=b;、是方程的两根,所以方程有两个相等的实数根,即,由得

题乙:(1)BD是切线;如图所示,是弧AC所对的圆周角,

;因为,所以;于点,,所以,,在三角形OBD中

,所以OB⊥BD;BD是切线

(2),AB是圆的直径,所以OB=5;于点,交于

点,F是BC的中点;,BF=4;在直角三角形OBF中由勾股定理得

OF=;根据题意,,则

,所以

,从而,解得DF=,的面积

=

考点:直线与圆相切,相似三角形

点评:本题考查直线与圆相切,相似三角形;解本题的关键是会判断直线与圆是否相切,能判定两个三角形相似

4.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ=

3

4

,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=

1

3

CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.

(1)直接用含t 的代数式表示BQ 、DF ; (2)当0<t <1时,求矩形DEGF 的最大面积;

(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值. 【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为3

5

或3. 【解析】

试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;

(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可. 试题解析:(1)5t BQ =,2

DF=

t 3

; (2)DE=OD-OE=32t+1-52t=1-t ,()2

2211

·t 13326

S DF DE t t ??==-=--+

???,∴当t=12时,矩形DEGF 的最大面积为

1

6

; (3)当矩形DEGF 为正方形时,221133t t t t -=

-=或,解得3

35

t t ==或.

5.如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连接CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.

(1)连结BC,求证:△BCD≌△DFB;

(2)求证:PC是⊙O的切线;

(3)若tan F=2

3

,AG﹣BG=

5

3

3

,求ED的值.

【答案】(1)详见解析;(2)详见解析;(3)DE

133

【解析】

【分析】

(1)由BE=DE可知∠CDB=∠FBD,而∠BFD=∠DCB,BD是公共边,结论显然成立.(2)连接OC,只需证明OC⊥PC即可.根据三角形外角知识以及圆心角与圆周角关系可知∠PEC=2∠CDB=∠COB,由PC=PE可知∠PCE=∠PEC=∠COB,注意到AB⊥CD,于是

∠COB+∠OCG=90°=∠OCG+∠PEC=∠OCP,结论得证.

(3)由于∠BCD=∠F,于是tan∠BCD=tanF=2

3

=

BG

CG

,设BG=2x,则CG=3x.注意到AB是

直径,连接AC,则∠ACB是直角,由射影定理可知CG2=BG?AG,可得出AG的表达式(用

x表示),再根据53

求出x的值,从而CG、CB、BD、CD的长度可依次得出,

最后利用△DEB∽△DBC列出比例关系算出ED的值.【详解】

解:(1)证明:因为BE=DE,

所以∠FBD=∠CDB,

在△BCD和△DFB中:

∠BCD=∠DFB

∠CDB=∠FBD

BD=DB

所以△BCD≌△DFB(AAS).

(2)证明:连接OC.

因为∠PEC=∠EDB+∠EBD=2∠EDB,∠COB=2∠EDB,

所以∠COB=∠PEC,

因为PE=PC,

所以∠PEC=∠PCE,

所以∠PCE=∠COB,

因为AB⊥CD于G,

所以∠COB+∠OCG=90°,

所以∠OCG+∠PEC=90°,

即∠OCP=90°,

所以OC⊥PC,

所以PC是圆O的切线.

(3)因为直径AB⊥弦CD于G,

所以BC=BD,CG=DG,

所以∠BCD=∠BDC,

因为∠F=∠BCD,tanF=2

3

所以∠tan∠BCD=2

3

BG

CG

设BG=2x,则CG=3x.

连接AC,则∠ACB=90°,

由射影定理可知:CG2=AG?BG,

所以AG=

22

99

22

x

C x

G x

G

B

==,

因为AG﹣BG=53

3

所以

53 23

9

2

x

x

-=,

解得x 23

所以BG=2x 43

CG=3x=3

所以BC =22239

3

CG BG +=, 所以BD =BC =

239

, 因为∠EBD =∠EDB =∠BCD , 所以△DEB ∽△DBC , 所以

B

DB DC DE

D =, 因为CD =2CG =43,

所以DE =2133

9

DB CD =

. 【点睛】

本题为圆的综合题,主要考查了垂径定理,圆心角与圆周角的性质、等腰三角形的性质、全等三角形的判定与性质、切线的判定、射影定理、勾股定理、相似三角形的判定与性质等重要知识点.第(1)、(2)问解答的关键是导角,难度不大,第(3)问解答的要点在于根据射影定理以及条件当中告诉的两个等量关系求出BG 、CG 、BC 、BD 、CD 的值,最后利用“共边子母型相似”(即△DEB ∽△DBC )列比例方程求解ED .

6.如图,∠ACL =90°,AC =4,动点B 在射线CL ,CH ⊥AB 于点H ,以H 为圆心,HB 为半径作圆交射线BA 于点D ,交直线CD 于点F ,交直线BC 于点E .设BC =m .

(1)当∠A =30°时,求∠CDB 的度数; (2)当m =2时,求BE 的长度; (3)在点B 的整个运动过程中,

①当BC =3CE 时,求出所有符合条件的m 的值. ②连接EH ,FH ,当tan ∠FHE =5

12

时,直接写出△FHD 与△EFH 面积比. 【答案】(1)60°;(2)45;(3)①m =2或226 【解析】 【分析】

(1)根据题意由HB =HD ,CH ⊥BD 可知:CH 是BD 的中垂线,再由∠A =30°得:∠CDB =

∠ABC=60°;

(2)由题意可知当m=2时,由勾股定理可得:AB=25,cos∠ABC=5

,过点H作

HK⊥BC于点K,利用垂径定理可得结论;

(3))①要分两种情况:I.当点E在C右侧时,II.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;

②根据题意先证明EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比

等于底之比,再由tan∠FHE=

5

12

可求得

DH

EF

的值即可.

【详解】

解:(1)∵∠A=30°,∠ACB=90°,∴∠ABC=60°,

∵HB=HD,CH⊥BD,

∴CH是BD的中垂线,

∴CB=CD,

∴∠CDB=∠ABC=60°;

(2)如图1,过点H作HK⊥BC于点K,

当m=2时,BC=2,

∴AB22

AC BC

5,

∴cos∠ABC=BC

AB 5

∴BH=BC?cos∠ABC25,

∴BK=BH?cos∠ABC=2

5

∴BE=2BK=4

5

(3)①分两种情况:

I.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC,

∵BC=3CE=m,

∴CE=1

3m,BE=

2

3

m,

∵DE∥AC,

∴△DEB~△ACB,

∴DE

AC =

BE

BC

2

3

∴DE=2

3AC=

8

3

∵CD=CB=m,

∴Rt△CDE中,由勾股定理得:

22

81

m

33

????

?

??

+?

??

=m2,

∵m>0,

∴m=22;

II.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC,

∵BC=3CE,

∴CE=1

3m,BE=

3

2

m,

∵DE∥AC,

∴△DEB~△ACB,

∴DE

AC =

BE

BC

3

2

∴DE =

3

2

AC =6, ∵CD =CB =m ,

∴Rt △CDE 中,由勾股定理得:62+2

1m 3?? ???

=m 2, ∵m >0, ∴m =42;

综上所述,①当BC =3CE 时,m =22或42. ②如图4,过F 作FG ⊥HE 于点G ,

∵CH ⊥AB ,HB =HD , ∴CB =CD , ∴∠CBD =∠CDB ,

∴DFE BEF =,即DF EF BE EF +=+, ∴DF BE =, ∴EF ∥BD ,

∴FHD EFH

S S

DH

EF

, ∵在Rt △FHG 中,

FG HG =tan ∠FHE =5

12

, 设FG =5k ,HG =12k ,则FH 22FG HG +22(5)(12)k k +=13k , ∴DH =HE =FH =13k ,EG =HE ﹣HG =13k ﹣12k =k , ∴EF 22FG EG +22(5)k k +26k , ∴

FHD EFH

S

S

26k 26

. 【点睛】

本题考查的是圆的几何综合题,主要考查圆的性质,垂径定理,勾股定理,相似三角形判定及性质,解直角三角形知识等;综合性较强,有一定难度,解题要求对所学知识点熟练掌握和运用数形结合思维分析.

7.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延

长交

O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且

2180APB PEB ∠+∠=?.

(1)如图1,求证://PF AD ;

(2)如图2,连接AE ,若90APB ∠=?,求证:PE 平分AEB ∠; (3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,

4

sin 5

ABD ∠=

,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257

【解析】 【分析】

(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=?,由四边形内角和是

360?,得180∠+∠=?P AOB ,由同弧所对的圆心角是圆周角的一半,得到

2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;

(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=?得290PEB ∠=?,从而45PEB ∠=?,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=?,得

PE PK =,从而90APE EPB ?∠=-∠,进而APE BPK ∠=∠,即可证得

APE BPK ??≌由此45K AEP ∠=∠=?,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由

45ADE ∠=?,90AED ∠=?,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ??≌,由直径所对的圆周角是直角,可得90ADM ∠=?,在

Rt ADM ?中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对

角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ?中,252OP OA =

=延长EO

交AD 于K ,在Rt OEP ?中,由勾股定理得7PE =,在Rt OEH ?中,由勾股定理得

257

PH =

. 【详解】 (1)连接OA 、OB

∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径, ∴OA AP ⊥,OB BP ⊥, ∴90OAP OBP ∠=∠=?,

∴在四边形AOBP 中,360180180P AOB ∠+∠=?-?=?, ∵AB AB =, ∴2AOB ADB ∠=∠, ∴2180P ADB ∠+∠=?, ∵2180P PEB ∠+∠=?, ∴ADB PEB ∠=∠, ∴//PF AD

(2)过点P 做PK PF ⊥交EB 延长线于点K

∵90APB ∠=?,

∴21809090PEB ∠=?-?=?, ∴45PEB ∠=?,

∵PA 、PB 为圆O 的切线, ∴PA PB =,

∵PK PE ⊥,45PEK ∠=?, ∴PE PK = ,

∵9090APE EPB KPB EPB ??∠=-∠=∠=-∠, ∴APE BPK ∠=∠, ∴APE BPK ??≌, ∴45K AEP ∠=∠=?, ∴AEP PEB ∠=∠, ∴PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM

∵45ADE ∠=?,90AED ∠=?, ∴DE AE =, ∵OA 、OD 为半径, ∴OA OD =, ∵OE OE =, ∴DEO AEO ??≌, ∴1

452

AEO OED AED ∠=∠=∠=?, ∴90OEP ∠=?, ∵AM 为圆O 的直径, ∴90ADM ∠=?, ∵弧AD =弧AD , ∴ABD AMD ∠=∠,

在Rt ADM ?中,8AD =,4

sin 5

AMD ∠=,则10AM =, ∴5OA OB ==,

由题易证四边形OAPB 为正方形, ∴对角线AB 垂直平分OP ,AB OP =, ∵H 在AB 上, ∴OH PH =, 在Rt OAP ?中,252OP OA ==

延长EO 交AD 于K ,

∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠, ∴4DK KE ==,3OK =,1OE = ∴在Rt OEP ?中,227PE OP OE =-= 在Rt OEH ?中,222OH OE EH =+ ∵OH PH =,7EH PE HP PH =-=- ∴()2

2217PH PH =+-

∴257

PH =

. 【点睛】

本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.

8.如图①②,在平面直角坐标系中,边长为2的等边CDE ?恰好与坐标系中的OAB ?重合,现将CDE ?绕边AB 的中点(G G 点也是DE 的中点),按顺时针方向旋转180?到△1C DE 的位置. (1)求1C 点的坐标;

(2)求经过三点O 、A 、1C 的抛物线的解析式; (3)如图③,

G 是以AB 为直径的圆,过B 点作G 的切线与x 轴相交于点F ,求切

线BF 的解析式;

(4)抛物线上是否存在一点M ,使得:16:3AMF OAB S S ??=.若存在,请求出点M 的坐标;若不存在,请说明理由.

【答案】(1)13)C ;(2)23333y x x =

-;(3)323

33

y x =+

;(4)1283834,,2,33M M ???- ? ? ????

. 【解析】 【分析】

(1)利用中心对称图形的性质和等边三角形的性质,可以求出. (2)运用待定系数法,代入二次函数解析式,即可求出.

(3)借助切线的性质定理,直角三角形的性质,求出F ,B 的坐标即可求出解析式. (4)当M 在x 轴上方或下方,分两种情况讨论. 【详解】

解:(1)将等边CDE ?绕边AB 的中点G 按顺时针方向旋转180?到△1C DE , 则有,四边形'OAC B 是菱形,所以1C 的横坐标为3, 根据等边CDE ?的边长是2, 利用等边三角形的性质可得13)C ; (2)

抛物线过原点(0,0)O ,设抛物线解析式为2y ax bx =+,

把(2,0)A

,C '

代入,得420

93a b a b +=???+=??

解得3

a =

,b =

抛物线解析式为2y x x =

-;

(3)90ABF ∠=?,60BAF ∠=?,

30AFB ∴∠=?, 又2AB =, 4AF ∴=, 2OF ∴=,

(2,0)F ∴-,

设直线BF 的解析式为y kx b =+,

把B ,(2,0)F -

代入,得20

k b k b ?+=??

-+=??,

解得k =

b = ∴直线BF

的解析式为33

y x =

+

(4)①当M 在x

轴上方时,存在2()M x ,

211

:[4)]:[216:322

AMF OAB S S ??=???=,

得2280x x --=,解得14x =,22x =-, 当14x =

时,244y , 当12x =-

时,2(2)(2)y =--=

1M ∴

,2(M -; ②当M 在x

轴下方时,不存在,设点2()M x x ,

211

:[4)]:[216:322

AMF OAB S S ??=-???=,

得2280x x -+=,240b ac -<无解,

综上所述,存在点的坐标为

1

83 (4,)

M,

2

83 (2,)

M-.

【点睛】

此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.

9.已知点A为⊙O外一点,连接AO,交⊙O于点P,AO=6.点B为⊙O上一点,连接BP,过点A作CA⊥AO,交BP延长线于点C,AC=AB.

(1)判断直线AB与⊙O的位置关系,并说明理由.

(2)若3 PB的长.

(3)若在⊙O上存在点E,使△EAC是以AC为底的等腰三角形,则⊙O的半径r的取值范围是___________.

【答案】(1)AB与⊙O相切,理由见解析;(2)

3

3

PB=;(3)

65

6

5

r

≤<

【解析】

【分析】

(1)连接OB,有∠OPB=∠OBP,又AC=AB,则∠C=∠ABP,利用∠CAP=90°,即可得到结论成立;

(2)由AB=AC,利用勾股定理先求出半径,作OH⊥BP与H,利用相似三角形的判定和性质,即可求出PB的长度;

(3)根据题意得出OE=1

2

AC=

1

2

22

1

6r

2

-22

1

6

2

r r

-≤,即可求出取

值范围.

【详解】

解:(1)连接OB,如图:

∵OP=OB ,

∴∠OPB=∠OBP=∠APC , ∵AC=AB , ∴∠C=∠ABP , ∵AC ⊥AO , ∴∠CAP=90°, ∴∠C+∠APC=90°, ∴∠ABP+∠OBP=90°, 即OB ⊥AB , ∴AB 为切线; (2)∵AB=AC ∴22AB AC =,

∴2222CP AP OA OB -=-, 设半径为r ,则

2222(43)(6)6r r --=-

解得:r=2; 作OH ⊥BP 与H ,

则△ACP ∽△HOP , ∴

PH OP

AP CP

=,即443PH = ∴33

PH =

,

解析几何专题训练理科用

解析几何专项训练 班级 学号 成绩 (一)填空题 1、若直线m my x m y mx 21=++=+与平行,则m =_-1____. 2、若直线2+=kx y 与抛物线x y 42 =仅有一个公共点,则实数=k 1 ,02 3、若直线l 的一个法向量为()2,1n =,则直线l 的倾斜角为 arctan2π- (用反三角函数值表示) 4、已知抛物线2 0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则 m = -16 5、已知圆C 过双曲线 116 92 2=-y x 的一个顶点和一个焦点,且圆心C 在此双曲线上,则圆心C 到双曲线中心的距离是 16 3 6、已知直线1l :210x y +-=,另一条直线的一个方向向量为(1,3)d =,则直线1l 与2l 的夹角是 4 π 7、已知直线:0l ax by c ++=与圆1:2 2 =+y x O 相交于A 、B 两点,3||=AB , 则OA ·OB = 12 - 8、若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得线段的长为22,则 直线m 的倾斜角是 0015,75 . 9、若经过点(0,2)P 且以()1,d a =为方向向量的直线l 与双曲线132 2 =-y x 相交于 不同两点A 、B ,则实数a 的取值围是 2215,3a a <≠ . 10、(理科)设曲线C 定义为到点)1,1(--和)1,1(距离之和为4的动点的轨迹.若将曲线

C 绕坐标原点逆时针旋转 45,则此时曲线C 的方程为__22 142 y x +=___________. 11、等腰ABC ?中,顶点为,A 且一腰上的中线长为3,则 三角形ABC 的面积的最大值 2 12、如图,已知OAP ?的面积为S ,1OA AP ?=. 设||(2)OA c c =≥,3 4 S c =,并且以O 为中心、A 为焦点的椭 圆经过点P .当||OP 取得最小值时,则此椭圆的方程为 22 1106 x y += . (二)选择题 13、“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的( B )条件 (A )充要;(B )充分不必要;(C )必要不充分;(D )既不充分也不必要 14、如果i +2是关于x 的实系数方程02 =++n mx x 的一个根,则圆锥曲线 12 2=+n y m x 的焦点坐标是( D )(A))0,1(±; (B))1,0(±; (C))0,3(± ;(D))3, 0(± 15、已知:圆C 的方程为0),(=y x f ,点),(00y x P 不在圆C 上,也不在圆C 的圆心上, 方程0),(),(:'00=-y x f y x f C ,则下面判断正确的是……( B ) (A) 方程'C 表示的曲线不存在; (B) 方程'C 表示与C 同心且半径不同的圆; (C) 方程'C 表示与C 相交的圆; (D) 当点P 在圆C 外时,方程'C 表示与C 相离的圆。 16、若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线22 2222222 :1(0,0)x y C a b a b -=>>的 焦点相同,且12a a >给出下列四个结论:①2222 1221a a b b -=-; ②1221 a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2121b b a a +>+;其中所有正确的结论 序号是( B )A. ①② B, ①③ C. ②③ D. ①④ y P x o A

解析几何(大题)

21.(本小题满分12分)[2017皖南八校]如图,点()2,0A -,()2,0B 分别为椭圆 ()22 22:10x y C a b a b +=>>的左右顶点,,,P M N 为椭圆C 上非顶点的三点,直线 ,AP BP 的斜率分别为12,k k ,且121 4 k k =- ,AP OM ∥,BP ON ∥. (1)求椭圆C 的方程; (2)判断OMN △的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由. 【答案】(1)2 2:14 x C y +=;(2)定值1. 【解析】(1)22 1,1144 2,AP BP b k k b a a ?=?=-??=??=? ,椭圆22:14x C y +=. (2)设直线MN 的方程为y kx t =+,()11,M x y ,()22,N x y , ()222 22 , 4184401,4 y kx t k x ktx t x y =+???+++-=?+=??, 122841 kt x x k +=-+,2122 44 41t x x k -=+, ()()1212121212121211 404044 y y k k y y x x kx t kx t x x x x ?=- ??=-?+=?+++=, ()()2 2121241440k x x kt x x t ++++=, ()22 22222448414402414141t kt k kt t t k k k ?? -+-+=?-= ?++?? , ()() ()( )2 2 2 2 1 2 1 2 1 2114MN k x x k x x x x ??= +-= ++-??

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

空间解析几何练习题

习题一 空间解析几何 一、填空题 1、过两点(3,-2)和点(-1,0)的直线的参数方程为 。 2、直线2100x y --=方向向量为 。 3、直角坐标系XY 下点在极坐标系中表示为 。 4、平行与()6,3,6a =-的单位向量为 。 5、过点(3,-2,1)和点(-1,0,2)的直线方程为 。 6、过点(2,3)与直线2100x y +-=垂直的直线方程为 。 7、向量(3,-2)和向量(1,-5)的夹角为 。 8、直角坐标系XY 下区域01y x ≤≤≤≤在极坐标系中表示为 。 9、设 (1,2,3),(5,2,1)=-=-a b , 则(3)?a b = 。 10、点(1,2,1)到平面2100x y z -+-=的距离为 。 二、解答题 1、求过点(3,1,1)且与平面375120x y z -+-=平行的平面方程。 2、求过点(4,2,3) 且平行与直线 31215 x y z --==的直线方程。 3、求过点(2,0,-3) 且与直线247035210x y z x y z -+-=??+-+=? 垂直的平面方程。 4、一动点与两定点(2,3,2)和(4,5,6)等距离, 求这动点的方程。

5、求222,01z x y z =+≤≤在XOZ 平面上的投影域。 6、求222 19416 x y z ++=在XOY 平面上的投影域。 7、求2z z =≤≤在XOZ 平面上的投影域。 8、求曲线222251x y z x z ?++=?+=? 在XOY 平面上的投影曲线。 9、求曲线 22249361x y z x z ?++=?-=? 在XOY 平面上的投影曲线。 10、求由曲面22z x y =+与曲面2222x y z ++=所围成的区域在柱面坐标系下的表示。

解析几何大题题型总结(1)

圆锥曲线大题训练1 (求范围)例1、已知过点A (0,1)且斜率为k 的直线l 与圆C :1)3()2(22=-+-y x 交于M 、N 两点。 (1)求k 的取值范围; (2)若12=?ON OM ,其中O 为坐标原点,求|MN | (定值问题)例2、已知椭圆C :12222=+b y a x (0>>b a )的离心率为2 2,点(2,2)在C 上。 (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M 。证明:直线OM 的斜率与直线l 的斜率的乘积为定值。

例3、已知直线l 的方程为y = k ( x — 1 )(k >0),曲线C 的方程为 y 2 = 2x ,直线l 与曲线C 交于A 、B 两点,O 为坐标系原点。求证:OB OA ?错误!未找到引用源。是定值 例4、已知双曲线C :)0(122 22>>=-b a b y a x 的两条渐进线的夹角的正切值为724,点A (5,49)是C 上一点,直线l :)4(4 5>+-=m m x y 与曲线C 交于M 、N 两点。 (1)求双曲线C 的标准方程; (2)当m 的值变化时,求证:0=+AN AM k k

例5、已知椭圆C :)0(122 22>>=+b a b y a x 过A (2,0),B (0,1)两点 (1)求椭圆C 的方程及离心率 (2)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值。 (轨迹方程)例6、已知点P (2,2),圆C :x 2+y 2—8y=0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点。 (1)求M 的轨迹方程; (2)当|OP|=|OM|时,求l 的方程及△POM 的面积。 例7、已知椭圆的中心在原点,焦点在x 轴上,一个顶点为B (0,-1),离心率为 36 (1)求椭圆的方程; (2)设过点A (0, 2 3)的直线l 与椭圆交于M 、N 两点,且|BM |=|BN |,求直线l 的方程。

高中数学解析几何大题专项练习.doc

解析几何解答题 2 2 x y 1、椭圆G:1(a b 0) 2 2 a b 的两个焦点为F1、F2,短轴两端点B1、B2,已知 F1、F2、B1、B2 四点共圆,且点N(0,3)到椭圆上的点最远距离为 5 2. (1)求此时椭圆G 的方程; (2)设斜率为k(k≠0)的直线m 与椭圆G相交于不同的两点E、F,Q 为EF的中点,问E、F 两点能否关于 过点P(0, 3 3 )、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线 2 2 1 x y 的左、右顶点分别为A1、A2 ,动直线l : y kx m 与圆 2 2 1 x y 相切,且与双曲 线左、右两支的交点分别为P1 (x1, y1 ), P2 ( x2 , y2) . (Ⅰ)求 k 的取值范围,并求x2 x1 的最小值; (Ⅱ)记直线P1A1 的斜率为k1 ,直线P2A2 的斜率为k2 ,那么,k1 k2 是定值吗?证明你的结论.

3、已知抛物线 2 C : y ax 的焦点为F,点K ( 1,0) 为直线l 与抛物线 C 准线的交点,直线l 与抛物线C 相交于A、 B两点,点 A 关于x 轴的对称点为 D .(1)求抛物线C 的方程。 (2)证明:点F 在直线BD 上; u u u r uu u r 8 (3)设 FA ?FB ,求BDK 的面积。.9 4、已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为中点 T 在直线OP 上,且A、O、B 三点不共线. (I) 求椭圆的方程及直线AB的斜率; ( Ⅱ) 求PAB面积的最大值.1 2 ,点 P(2,3)、A、B在该椭圆上,线段AB 的

浙江高考解析几何大题

浙江高考历年真题之解析几何大题 1、(2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴12A A 的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若直线1l :x =m (|m |>1),P 为1l 上的动点,使12F PF ∠ 最大的点P 记为Q ,求点Q 的坐标(用m 表示). 解析:(Ⅰ)设椭圆方程为()22 2210x y a b a b +=>>,半焦距为c , 则2111,a MA a A F a c c =-=- ,()2 222 224 a a a c c a a b c ?-=-??? =??=+??? 由题意,得 2,3,1a b c ∴=== ,22 1.43 x y +=故椭圆方程为 (Ⅱ) 设()0,,||1P m y m >,当00y >时,120F PF ∠=; 当00y ≠时,22102 F PF PF M π <∠<∠<,∴只需求22tan F PF ∠的最大值即可设直线1PF 的斜率011y k m = +,直线2PF 的斜率0 21 y k m =-, 002122222212002||tan 1121||1 y k k F PF k k m y m y m -∴∠= =≤= +-+-?- 2 01||m y -=时,12F PF ∠最大,(2,1,||1Q m m m ∴±->

2、(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)、B(0,1)的直线有且只有一个公共点T ,且椭圆的 离心率e= 2 3 。 (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,M 为线段AF 2的中点,求证:∠ATM=∠AF 1T 。 解析:(Ⅰ)过 A 、B 的直线方程为 12 x y += 因为由题意得??? ????+-==+1211 2222x y b y a x 有惟一解, 即0)4 1(22222 22 =-+-+ b a a x a x a b 有惟一解, 所以22 2 2 (44)0(0),a b a b ab ?=+-=≠故442 2 -+b a =0; 又因为e 3 c =即 22234 a b a -= , 所以2 2 4a b = ;从而得22 1 2,,2 a b == 故所求的椭圆方程为22212x y += (Ⅱ)由(Ⅰ)得6c = , 所以 1266((F F ,从而M (1+4 6 ,0) 由 ?? ???+-==+1 211222 2x y y x ,解得 121,x x == 因此1(1,)2T = 因为126tan 1-= ∠T AF ,又21 tan =∠TAM ,6 2tan =∠2TMF ,得 12 6 6 1 121 62 tan -= + -= ∠ATM ,因此,T AF ATM 1∠=∠ 3、(2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S .

解析几何大题带答案

三、解答题 26.(江苏18)如图,在平面直角坐标系中,M N分别是椭圆的顶点,过坐标原点的直线交 椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k (1)当直线PA平分线段MN求k的值; (2)当k=2时,求点P到直线AB的距离d; (3)对任意k>0,求证:PA! PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,所以线段MN中点的坐标为,由于直线PA平分线段MN故直线PA过线段MN的中点,又直线PA过坐标 原点,所以 (2)直线PA的方程 解得 于是直线AC的斜率为 ( 3)解法一: 将直线PA的方程代入 则 故直线AB的斜率为 其方程为 解得. 于是直线PB的斜率 因此 解法二:设. 设直线PB, AB的斜率分别为因为C在直线AB上,所以从而 因此 28. (北京理19) 已知椭圆?过点(m,0)作圆的切线I交椭圆G于A, B两点. (I )求椭圆G的焦点坐标和离心率; (II )将表示为m的函数,并求的最大值? (19)(共14 分) 解:(I)由已知得 所以 所以椭圆G的焦点坐标为 离心率为 (n)由题意知,? 当时,切线l 的方程,点A、 B 的坐标分别为 此时 当m=- 1 时,同理可得当时,设切线l 的方程为由 设A、B 两点的坐标分别为,则

又由l 与圆 所以 由于当时, 所以. 因为且当时,|AB|=2 ,所以|AB| 的最大值为 2. 32. (湖南理21) 如图7椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。 (I)求C1, C2的方程; (H)设C2与y轴的焦点为M过坐标原点o的直线与C2相交于点A,B,直线MA,MB分别与C1 相交与 D,E. (i )证明:MDL ME; (ii )记厶MAB,A MDE勺面积分别是.问:是否存在直线I,使得?请说明理由。 解:(I)由题意知 故C1, C2的方程分别为 (H) (i )由题意知,直线I的斜率存在,设为k,则直线I的方程为. 由得 设是上述方程的两个实根,于是 又点M的坐标为(0,—1),所以 故MAL MB 即MDL ME. (ii )设直线MA的斜率为k1,则直线MA的方程为解得则点A的坐标为. 又直线MB的斜率为,同理可得点 B 的坐标为于是 由得 解得 则点D的坐标为 又直线ME的斜率为,同理可得点E的坐标为于是. 因此 由题意知, 又由点A、 B 的坐标可知,故满足条件的直线l 存在,且有两条,其方程分别为 34. (全国大纲理21) 已知0为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B 两点,点P 满足 (I)证明:点P在C上; (n)设点P关于点O的对称点为Q证明:A、P、B、Q四点在同一圆上.

解析几何专题训练理科用

解析几何专项训练 姓名 班级 学号 成绩 (一)填空题 1、若直线m my x m y mx 21=++=+与平行,则m =_-1____. 2、若直线2+=kx y 与抛物线x y 42 =仅有一个公共点,则实数=k 1,02 3、若直线l 的一个法向量为()2,1n =,则直线l 的倾斜角为 arctan2π- (用反三角函数值表示) 4、已知抛物线2 0x my +=上的点到定点(0,4)和到定直线4y =-的距离相等,则 m = -16 5、已知圆C 过双曲线 116 92 2=-y x 的一个顶点和一个焦点,且圆心C 在此双曲线上,则圆心C 到双曲线中心的距离是 16 3 6、已知直线1l :210x y +-=,另一条直线的一个方向向量为(1,3)d =,则直线1l 与2l 的夹角是 4 π 7、已知直线:0l ax by c ++=与圆1:2 2 =+y x O 相交于A 、B 两点,3||=AB , 则OA ·OB = 12 - 8、若直线m 被两平行线1:10l x y -+=与2:30l x y -+=所截得线段的长为22则 直线m 的倾斜角是 0015,75 . 9、若经过点(0,2)P 且以()1,d a =为方向向量的直线l 与双曲线132 2 =-y x 相交于 不同两点A 、B ,则实数a 的取值范围是 2215,3a a <≠ .

10、(理科)设曲线C 定义为到点)1,1(--和)1,1(距离之和为4的动点的轨迹.若将曲线 C 绕坐标原点逆时针旋转 45,则此时曲线C 的方程为__22 142 y x +=___________. 11、等腰ABC ?中,顶点为,A 且一腰上的中线长为3,则 三角形ABC 的面积的最大值 2 12、如图,已知OAP ?的面积为S ,1OA AP ?=. 设||(2)OA c c =≥,3 4 S c =,并且以O 为中心、A 为焦点的椭 圆经过点P .当||OP 取得最小值时,则此椭圆的方程为 22 1106 x y += . (二)选择题 13、“2a =”是“直线210x ay +-=与直线220ax y +-=平行”的( B )条件 (A )充要;(B )充分不必要;(C )必要不充分;(D )既不充分也不必要 14、如果i +2是关于x 的实系数方程02 =++n mx x 的一个根,则圆锥曲线 12 2=+n y m x 的焦点坐标是( D )(A))0,1(±; (B))1,0(±; (C))0,3(± ;(D))3, 0(± 15、已知:圆C 的方程为0),(=y x f ,点),(00y x P 不在圆C 上,也不在圆C 的圆心上, 方程0),(),(:'00=-y x f y x f C ,则下面判断正确的是……( B ) (A) 方程'C 表示的曲线不存在; (B) 方程'C 表示与C 同心且半径不同的圆; (C) 方程'C 表示与C 相交的圆; (D) 当点P 在圆C 外时,方程'C 表示与C 相离的圆。 16、若双曲线221112211:1(0,0)x y C a b a b -=>>和双曲线22 2222222 :1(0,0)x y C a b a b -=>>的 焦点相同,且12a a >给出下列四个结论:①2222 1221a a b b -=-; ②1221 a b a b >; ③双曲线1C 与双曲线2C 一定没有公共点; ④2121b b a a +>+;其中所有正确的结论 序号是( B )A. ①② B, ①③ C. ②③ D. ①④ y P x o A

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称若能,求出k 的取值范围;若不能,请说明理由. ; 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆22 1x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11P A 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗证明你的结论. @ [

3、已知抛物线2 :C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 ~ (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?=,求BDK ?的面积。. { — 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值. - 、

高等数学 空间解析几何与向量代数练习题与答案

空间解析几何与矢量代数小练习 一 填空题 5’x9=45分 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________ 3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 4、方程0242222=++-++z y x z y x 表示______________曲面. 5、方程22x y z +=表示______________曲面. 6、222x y z +=表示______________曲面. 7、 在空间解析几何中2x y =表示______________图形. 二 计算题 11’x5=55分 1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程. 2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 3、求过点(1,2,3)且平行于直线51 132-=-=z y x 的直线方程. 4、求过点(2,0,-3)且与直线???=+-+=-+-012530 742z y x z y x 垂直的平面方 5、已知:k i 3+=,k j 3+=,求OAB ?的面积。

参考答案 一 填空题 1、?????? -±116,117,116 2、21M M =2,21cos ,22 cos ,21 cos ==-=γβα,3 ,43,32π γπ βπ α=== 3、14)2()3()1(222=++-+-z y x 4、以(1,-2,-1)为球心,半径为6的球面 5、旋转抛物面 6、 圆锥面 7、 抛物柱面 二 计算题 1、04573=-+-z y x 2、029=--z y 3、53 1221-=-=-z y x 4、065111416=---z y x 5 219 ==?S

空间解析几何(练习题参考答案)

1. 过点Mo (1,1-,1)且垂直于平面01201=+++=+--z y x z y x 及的平面方程. 39.02=+-z y 3. 在平面02=--z y x 上找一点p ,使它与点),5,1,2()1,3,4(-)3,1,2(--及之间的距离 相等. 7.)5 1,1,57(. 5.已知:→ →-AB prj D C B A CD ,则)2,3,3(),1,1,1(),7,1,5(),3,2,1(= ( ) A.4 B .1 C. 2 1 D .2 7.设平面方程为0=-y x ,则其位置( ) A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.过z 轴. 8.平面0372=++-z y x 与平面0153=-++z y x 的位置关系( ) A .平行 B .垂直 C .相交 D.重合 9.直线 3 7423z y x =-+=-+与平面03224=---z y x 的位置关系( ) A.平行 B.垂直 C .斜交 D.直线在平面内 10.设点)0,1,0(-A 到直线?? ?=-+=+-0 720 1z x y 的距离为( ) A.5 B . 6 1 C. 51 D.8 1 5.D 7.D 8.B 9.A 10.A. 3.当m=_____________时,532+-与m 23-+互相垂直. 4 . 设 ++=2, 22+-=, 243+-=,则 )(prj c += . 4. 过点),,(382-且垂直平面0232=--+z y x 直线方程为______________. 10.曲面方程为:442 2 2 =++z y x ,它是由曲线________绕_____________旋转而成的.

(完整版)解析几何大题的解题技巧

目录 解析几何大题的解题技巧(只包括椭圆和抛物线) (1) 一、设点或直线 (1) 二、转化条件 (1) (1)求弦长 (2) (2)求面积 (2) (3)分式取值判断 (2) (4)点差法的使用 (4) 四、能力要求 (6) 五、补充知识 (6) 关于直线 (6) 关于椭圆: (7) 例题 (7) 解析几何大题的解题技巧(只包括椭圆和抛物线)——————————————————一条分割线——————————————— 一、设点或直线 做题一般都需要设点的坐标或直线方程,其中点或直线的设法有很多种。直线与曲线的两个交点一般可以设为等。对于椭圆上的唯一的动点,还可以设为。在 抛物线上的点,也可以设为。◎还要注意的是,很多点的坐标都是设而不求 的。对于一条直线,如果过定点并且不与y轴平行,可以设点斜式,如果不与x轴平行,可以设(m是倾斜角的余切,即斜率的倒数,下同)。如果只是过定点而且需要求与长度或面积有关的式子,可以设参数方程,其中α是直线的倾斜角。一般题目中涉及到唯一动直线时才可以设直线的参数方程。如果直线不过定点,干脆在设直线时直接设为y=kx+m或x=my+n。(注意:y=kx+m不表示平行于y轴的直线,x=my+n不表示平行于x轴的直线)由于抛物线的表达式中不含x的二次 项,所以直线设为或x=my+n联立起来更方便。 二、转化条件 有的时候题目给的条件是不能直接用或直接用起来不方便的,这时候就需要将这些条件转化一下。对于一道题来说这是至关重要的一步,如果转化得巧,可以极大地降低运算量。下面列出了一些转化工具所能转化的条件。向量:平行、锐角或点在圆外(向量积大于0)、直角或点在圆上、钝角或点在圆内(向量积小于0),平行四边形斜率:平行(斜率差为0)、垂 直(斜率积为-1)、对称(两直线关于坐标轴对称则斜率和为0,关于y=±x对称则斜率积为1

高中数学解析几何大题专项练习

解析几何解答题 1、椭圆G :)0(122 22>>=+b a b y a x 的两个焦点为F 1、F 2,短轴两端点B 1、B 2,已知 F 1、F 2、B 1、B 2四点共圆,且点N (0,3)到椭圆上的点最远距离为.25 (1)求此时椭圆G 的方程; (2)设斜率为k (k ≠0)的直线m 与椭圆G 相交于不同的两点E 、F ,Q 为EF 的中点,问E 、F 两点能否关于 过点P (0, 3 3)、Q 的直线对称?若能,求出k 的取值范围;若不能,请说明理由. 2、已知双曲线221x y -=的左、右顶点分别为12A A 、,动直线:l y kx m =+与圆221x y +=相切,且与双曲线左、右两支的交点分别为111222(,),(,)P x y P x y . (Ⅰ)求k 的取值范围,并求21x x -的最小值; (Ⅱ)记直线11PA 的斜率为1k ,直线22P A 的斜率为2k ,那么,12k k ?是定值吗?证明你的结论.

3、已知抛物线2:C y ax =的焦点为F ,点(1,0)K -为直线l 与抛物线C 准线的交点,直线l 与抛物线C 相交于A 、 B 两点,点A 关于x 轴的对称点为D . (1)求抛物线 C 的方程。 (2)证明:点F 在直线BD 上; (3)设8 9 FA FB ?= ,求BDK ?的面积。. 4、已知椭圆的中心在坐标原点O ,焦点在x 轴上,离心率为1 2 ,点P (2,3)、A B 、在该椭圆上,线段AB 的中点T 在直线OP 上,且A O B 、、三点不共线. (I)求椭圆的方程及直线AB 的斜率; (Ⅱ)求PAB ?面积的最大值.

最新高三数学解析几何大题专项训练

解析几何大题专项训练 1 由于解析几何大题重点考察直线与圆锥曲线的几何性质和交叉知识的综合 2 应用,涉及的内容丰富,易于纵横联系,对于考察学生的数学素质,综合解答 3 问题的能力和继续学习能力有着重要的作用。同时,解析几何大题又是学生的 4 一大难点,经常是入题容易,出来难。因此加大解析几何大题的专题训练很有 5 必要。 6 例1、山东07年(21)(本小题满分13分)已知椭圆C 的中心在坐标原点, 7 焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. 8 (I)求椭圆C 的标准方程; 9 (II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以10 AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标. 11 12 13 例2、湖北(本小题满分12分) 14 在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)15 相交于A B ,两点. 16 (I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值; 17 (II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长18 恒为定值?若存在,求出l 的方程;若不存在,说明理由. 19

20 21 22 例3、(本小题满分13分)如图,设抛物线214C y mx =:(0)m >的准线与x 轴 23 交于1F ,焦点为2F ;以12F F 、为焦点,离心率12 e =的椭圆2C 与抛物线1C 在x 轴 24 上方的一个交点为P . 25 (Ⅰ)当1m =时,求椭圆的方程及其右准线的方程; 26 (Ⅱ)在(Ⅰ)的条件下,直线l 经过椭圆2C 的右焦点2F ,与抛物线1C 交于 27 12A A 、,如果 28 以线段12A A 为直径作圆,试判断点P 与圆的位置关系,并说明理由; 29 (Ⅲ)是否存在实数m ,使得△12PF F 的边长是连续的自然数,若存在,30 求出这样的实数m ;若不存在,31 请说明理由. 32 33 34 例4、(小题满分14分) 35

解析几何大题带规范标准答案

三、解答题 26.(江苏18)如图,在平面直角坐标系xOy 中,M 、N 分别是椭圆1 242 2=+y x 的顶点, 过坐标原点的直线交椭圆于P 、A 两点,其中P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线PA 的斜率为k (1)当直线PA 平分线段MN ,求k 的值; (2)当k=2时,求点P 到直线AB 的距离d ; (3)对任意k>0,求证:PA ⊥PB 本小题主要考查椭圆的标准方程及几何性质、直线方程、直线的垂直关系、点到直线的距离等基础知识,考查运算求解能力和推理论证能力,满分16分. 解:(1)由题设知,),2,0(),0,2(,2,2--= =N M b a 故所以线段MN 中点的坐标为 ) 22 ,1(- -,由于直线PA 平分线段MN ,故直线PA 过线段MN 的中点,又直线PA 过 坐标 原点,所以 .22122 =-- = k (2)直线PA 的方程2221, 42x y y x =+=代入椭圆方程得 解得 ). 34 ,32(),34,32(,32--±=A P x 因此 于是), 0,32(C 直线AC 的斜率为.032,1323234 0=--=++ y x AB 的方程为故直线

. 32 21 1| 323432|,21=+--=d 因此 (3)解法一: 将直线PA 的方程kx y = 代入 221,42x y x μ+==解得记 则)0,(),,(),,(μμμμμC k A k P 于是-- 故直线AB 的斜率为 ,20k k =++μμμ 其方程为 ,0)23(2)2(),(222222=+--+-= k x k x k x k y μμμ代入椭圆方程得 解得 223 2 2 2 (32) (32)( , ) 222k k k x x B k k k μμμμ++= =-+++或因此. 于是直线PB 的斜率 .1 ) 2(23) 2(2)23(22 2232 22 3 1k k k k k k k k k k k k -=+-++-= ++-+= μμμ 因此.,11PB PA k k ⊥-=所以 解法二: 设)0,(),,(,,0,0),,(),,(11121212211x C y x A x x x x y x B y x P --≠>>则. 设直线PB ,AB 的斜率分别为21,k k 因为C 在直线AB 上,所以 . 2 2)()(0111112k x y x x y k ==---= 从而 1 ) () (212112*********+----?--? =+=+x x y y x x y y k k k k .044)2(1222 1 222122222221222122=--=-+=+--=x x x x y x x x y y

04-14浙江历年高考题解析几何大题

浙江高考历年真题之解析几何大题 2004年(22)(本题满分14分) 已知双曲线的中心在原点,右顶点为A (1,0).点P 、Q 在双曲线的右支上,点M (m ,0)到直线AP 的距离为1. (Ⅰ)若直线AP 的斜率为k ,且]3,3 3[∈k ,求实数m 的取值范围; (Ⅱ)当12+= m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程. (2005年)如图,已知椭圆的中心在坐标原点,焦点12,F F 在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭圆的方程; (Ⅱ)若点P 在直线l 上运动,求∠F 1PF 2的最大值.

(2006年)如图,椭圆b y a x 2 22+=1(a >b >0)与过点A (2,0)B(0,1)的直线有且只有一个公共点T 且椭圆的离心率e= 23. (Ⅰ)求椭圆方程; (Ⅱ)设F 1、F 2分别为椭圆的左、右焦点,求证:2121||||||2 AT AF AF = 。 (2007年)如图,直线y kx b =+与椭圆2 214 x y +=交于A B ,两点,记AOB △的面积为S . (I )求在0k =,01b <<的条件下,S 的最大值; (II )当2AB =,1S =时,求直线AB 的方程.

(2008年)已知曲线C 是到点P (83,21-)和到直线8 5-=y 距离相等的点的轨迹。 是过点Q (-1,0)的直线,M 是C 上(不在l 上)的动点;A 、B 在l 上,,MA l MB x ⊥⊥ 轴(如图)。 (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得 QA QB 2为常数。 (2009年)已知抛物线C :x 2=2py (p >0)上一点A (m ,4)到焦点的距离为 174 . (I )求p 于m 的值; (Ⅱ)设抛物线C 上一点p 的横坐标为t (t >0),过p 的直线交C 于另一点Q ,交x 轴于M 点,过点Q 作PQ 的垂线交C 于另一点N.若MN 是C 的切线,求t 的最小值;

高三数学解析几何训练试题_题型归纳

高三数学解析几何训练试题_题型归纳 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知圆x2+y2+Dx+Ey=0的圆心在直线x+y=1上,则D与E的关系是() A.D+E=2 B.D+E=1 C.D+E=-1 D.D+E=-2[来X k b 1 . c o m 解析D依题意得,圆心-D2,-E2在直线x+y=1上,因此有-D2-E2=1,即D+E =-2. 2.以线段AB:x+y-2=0(02)为直径的圆的方程为() A.(x+1)2+(y+1)2=2 B.(x-1)2+(y-1)2=2 C.(x+1)2+(y+1)2=8 D.(x-1)2+(y-1)2=8 解析B直径的两端点为(0,2),(2,0),圆心为(1,1),半径为2,圆的方程为(x-1)2+(y-1)2=2. 3.已知F1、F2是椭圆x24+y2=1的两个焦点,P为椭圆上一动点,则使|PF1||PF2|取最大值的点P为() A.(-2,0) B.(0,1) C.(2,0) D.(0,1)和(0,-1) 解析D由椭圆定义,|PF1|+|PF2|=2a=4,|PF1||PF2||PF1|+|PF2|22=4, 当且仅当|PF1|=|PF2|,即P(0,-1)或(0,1)时,取“=”. 4.已知椭圆x216 +y225=1的焦点分别是F1、F2,P是椭圆上一点,若连接F1、F2、P三点恰好能构成直角三角形,则点P到y轴的距离是() A.165 B.3 C.163 D.253 解析A椭圆x216+y225=1的焦点分别为F1(0,-3)、F2(0,3),易得F1PF22,PF1F2=2或PF2F1=2,点P到y轴的距离d=|xp|,又|yp|=3,x2p16+y2p25=1,解得|xP|=165,故选A. 5.若曲线y=x2的一条切线l与直线x+4y-8=0垂直,则l的方程为()

解析几何综合运用练习题-含答案

学校:___________姓名:___________班级:___________考号:___________ 一、选择题(题型注释) 1.已知直线1:210l ax y ++=与直线2:(3)0l a x y a --+=,若12//l l ,则a 的值为( ) A .1 B .2 C .6 D .1或2 2.已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为( ) A .(x +1)2+y 2=2 B .(x -1)2+y 2 =1 C .(x +1)2+y 2=4 D .(x -2)2+y 2 =4 3.设抛物线C :y 2 =2px(p>0)的焦点为F ,点M 在C 上,|MF|=5.若以MF 为直径的圆过点(0,2),则C 的方程为( ) A .y 2=4x 或y 2=8x B .y 2=2x 或y 2 =8x C .y 2=4x 或y 2=16x D .y 2=2x 或y 2 =16x 4.双曲线x 2 1( ) A . B. m≥1 C .m>1 D. m>2 二、填空题(题型注释) 5.经过圆x 2+2x +y 2 =0的圆心C ,且与直线x +y =0垂直的直线方程是________. 6.已知抛物线y 2 =4x 的焦点F 1(a>0,b>0)的右顶点,且双 曲线的渐近线方程为y ,则双曲线方程为________. 三、解答题(题型注释) 7.已知点A(3,3),B(5,2)到直线l 的距离相等,且直线l 经过两直线l 1:3x -y -1=0和l 2:x +y -3=0的交点,求直线l 的方程. 8.如图,在直角坐标系中,已知△PAB 的周长为8,且点A ,B 的坐标分别为(-1,0),(1,0). (1)试求顶点P 的轨迹C 1的方程;

相关文档
最新文档