人教数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案

人教数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案
人教数学锐角三角函数的专项培优 易错 难题练习题(含答案)及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长.

【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62

23

.

【解析】

【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;

(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;

(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.

【详解】(1)如图1中,延长EO交CF于K,

∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,

∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,

∵△EFK是直角三角形,∴OF=1

2

EK=OE;

(2)如图2中,延长EO交CF于K,

∵∠ABC=∠AEB=∠CFB=90°,

∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,

∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,

∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,

∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;

(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,

∵|CF﹣AE|=2,3AE=CK,∴FK=2,

在Rt△EFK中,tan∠3

∴∠FEK=30°,∠EKF=60°,

∴EK=2FK=4,OF=1

2

EK=2,

∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,

在Rt△PHF中,PH=1

2

PF=1,3OH=23

∴()2

2

12362

+-=

如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°, ∴∠BOP=90°, ∴OP=

33OE=233

, 综上所述:OP 的长为62 或

23

3

. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.

2.已知Rt △ABC 中,AB 是⊙O 的弦,斜边AC 交⊙O 于点D ,且AD=DC ,延长CB 交⊙O 于点E .

(1)图1的A 、B 、C 、D 、E 五个点中,是否存在某两点间的距离等于线段CE 的长?请说明理由;

(2)如图2,过点E 作⊙O 的切线,交AC 的延长线于点F . ①若CF=CD 时,求sin ∠CAB 的值;

②若CF=aCD (a >0)时,试猜想sin ∠CAB 的值.(用含a 的代数式表示,直接写出结果)

【答案】(1)AE=CE ;(2)①;②

【解析】

试题分析:(1)连接AE 、DE ,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于

AD=DC,根据垂直平分线的性质可得AE=CE;

(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD?AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得

sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.

试题解析:(1)AE=CE.理由:

连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,

∴AE=CE;

(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,

∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD?AF.

①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC?3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;

②当CF=aCD(a>0)时,sin∠CAB=.

∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=DC?(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,

∴sin∠CAB=sin∠CED==.

考点:1.圆的综合题;2.探究型;3.存在型.

3.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.

(1)求证:KE=GE;

(2)若KG2=KD?GE,试判断AC与EF的位置关系,并说明理由;

(3)在(2)的条件下,若sinE=,AK=,求FG的长.

【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .

【解析】

试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出

∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;

(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD?GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;

(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.

试题解析:(1)如图1,连接OG.

∵EG为切线,

∴∠KGE+∠OGA=90°,

∵CD⊥AB,

∴∠AKH+∠OAG=90°,

又∵OA=OG,

∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE,

∴KE=GE.

(2)AC∥EF,理由为连接GD,如图2所示.

∵KG2=KD?GE,即,

∴,

又∵∠KGE=∠GKE,

∴△GKD∽△EGK,

∴∠E=∠AGD,

又∵∠C=∠AGD,

∴∠E=∠C,

∴AC∥EF;

(3)连接OG,OC,如图3所示,

∵EG为切线,

∴∠KGE+∠OGA=90°,

∵CD⊥AB,

∴∠AKH+∠OAG=90°,

又∵OA=OG,

∴∠OGA=∠OAG,

∴∠KGE=∠AKH=∠GKE,

∴KE=GE.

∵sinE=sin∠ACH=

,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,

∴CK=AC=5t,

∴HK=CK-CH=t.

在Rt △AHK 中,根据勾股定理得AH 2+HK 2=AK 2, 即(3t )2+t 2=(2

)2,解得t=

设⊙O 半径为r ,在Rt △OCH 中,OC=r ,OH=r-3t ,CH=4t , 由勾股定理得:OH 2+CH 2=OC 2, 即(r-3t )2+(4t )2=r 2,解得r= t=

∵EF 为切线,

∴△OGF 为直角三角形, 在Rt △OGF 中,OG=r=

,tan ∠OFG=tan ∠CAH=

∴FG=

【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.

4.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C

连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα?<

(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).

【答案】(Ⅰ)点D 的坐标为5472

(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258

);(Ⅲ)60α=?或300?. 【解析】

【分析】

(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明

△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数. 【详解】

(Ⅰ)∵点()30A ,

,点()04C ,, ∴3,4OA OC ==. ∵四边形OABC 是矩形, ∴AB=OC=4,

∵矩形DAFE 是由矩形AOBC 旋转得到的 ∴3AD AO ==.

在Rt OAB ?中,5OB =, 过A D 、分别作B,DN OA AM O ⊥⊥ 在Rt ΔOAM 中,OM OA 3

cos BOA OA OB 5

∠===, ∴9OM 5

=

∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5

==

. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =3

5

, ∴72DN 25=

,54ON 25

=

. ∴点D 的坐标为5472,2525??

???

.

(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===?==. ∴OD AD =.

DOA ODA ∠∠=.

又∵DOA OBA 90∠∠+=?,BDH ADO 90∠∠+=? ∴ABD BDE ∠∠=.

又∵BD BD =, ∴ΔBDE ΔDBA ?.

②由ΔBDE ΔDBA ?,得BEH DAH ∠∠=,BE AD 3==, 又∵

BHE DHA ∠∠=,

∴ΔBHE ΔDHA ?. ∴DH=BH ,

设AH x =,则DH BH 4x ==-, 在Rt ΔADH 中,222AH AD DH =+, 即()2

22x 34x =+-,得25x 8

=, ∴25AH 8

=

. ∴点H 的坐标为253,

8?? ???

. (Ⅲ)如图,过F 作FO ⊥AB , 当0<α≤180°时,

∵点B 与点F 是对应点,A 为旋转中心, ∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4, ∵FA=FB ,FO ⊥AB , ∴OA=

1

2

AB=2, ∴cos ∠BAF=

OA AF =1

2

, ∴∠BAF=60°,即α=60°, 当180°<α<360°时,

同理解得:∠BAF′=60°, ∴旋转角α=360°-60°=300°.

综上所述:α60=?或300?. 【点睛】

本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.

5.如图,已知,在

O 中,弦AB 与弦CD 相交于点E ,且AC BD =.

(1)求证:AB CD =;

(2)如图,若直径FG 经过点E ,求证:EO 平分AED ∠;

(3)如图,在(2)的条件下,点P 在CG 上,连接FP 交AB 于点M ,连接MG ,若

AB CD ⊥,MG 平分PMB ∠,2MG =,FMG ?的面积为2,求O 的半径的长.

【答案】(1)见解析;(2)见解析;(3)O 的半径的长为10.

【解析】 【分析】

(1) 利用相等的弧所对的弦相等进行证明;

(2)连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,证明

AOJ DOQ ???得出OJ OQ =,根据角平分线的判定定理可得结论;

(3)如图,延长GM 交

O 于点H ,连接HF ,求出2FH =,在HG 上取点L ,使

HL FH =,延长FL 交O 于点K ,连接KG ,求出22FL =,设HM n =,则有

22LK KG n ==

,2222

FK FL LK n =+=+,再证明KFG EMG HMF ∠=∠=∠,从而得到tan tan KFG HMF ∠=∠,

KG HF

FK HM

=,再代入LK 和FK 的值可得n=4,再求得FG 的长,最后得到圆的半径为10. 【详解】

解:(1)证明:∵AC BD =,∴AC CB BD CB +=+, ∴AB CD =, ∴AB CD =.

(2)证明:如图,连接AO 、DO ,过点O 作OJ AB ⊥于点J ,OQ CD ⊥于点Q ,

∴90AJO DQO ∠=∠=?,11

22

AJ AB CD DQ ===, 又∵AO DO =, ∴AOJ DOQ ???, ∴OJ OQ =,

又∵OJ AB ⊥,OQ CD ⊥,

∴EO 平分AED ∠.

(3)解:∵CD AB ⊥,∴90AED ∠=?,

由(2)知,1

452

AEF AED ∠=

∠=?, 如图,延长GM 交O 于点H ,连接HF ,

∵FG 为直径,∴90H ∠=?,1

22

MFG S MG FH ?=??=, ∵2MG =,∴2FH =,

在HG 上取点L ,使HL FH =,延长FL 交O 于点K ,连接KG ,

∴45HFL HLF ∠=∠=?,45KLG HLF ∠=∠=?, ∵FG 为直径,∴90K ∠=?,

∴9045KGL KLG KLG ∠=?-∠=?=∠,∴LK KG =, 在Rt FHL ?中,222FL FH HL =+,22FL = 设HM n =,2HL MG ==,

∴GL LM MG HL LM HM n =+=+==, 在Rt LGK ?中,222LG LK KG =+,22

LK KG ==

,2

222

FK FL LK n =+=, ∵GMP GMB ∠=∠,∵PMG HMF ∠=∠,∴HMF GMB ∠=∠, ∵1

452

AEF AED ∠=

∠=?, ∴45MGF EMG MEF ∠+∠=∠=?,45MGF KFG HLF ∠+∠=∠=?, ∴KFG EMG HMF ∠=∠=∠, ∴tan tan KFG HMF ∠=∠,

∴KG HF

FK HM

=,∴

2

2

2

2

22

2

n

n

n

=

+

,4

n=,

∴6

HG HM MG

=+=,

在Rt HFG

?中,222

FG FH HG

=+,210

FG=,10

FO=.

即O的半径的长为10.

【点睛】

考查了圆的综合题,本题是垂径定理、圆周角定理以及三角函数等的综合应用,适当的添加辅助线是解题的关键.

6.如图,在?ABCD中,AC与BD交于点O,AC⊥BC于点C,将△ABC沿AC翻折得到

△AEC,连接DE.

(1)求证:四边形ACED是矩形;

(2)若AC=4,BC=3,求sin∠ABD的值.

【答案】(1)证明见解析(2)

613

【解析】

【分析】

(1)根据?ABCD中,AC⊥BC,而△ABC≌△AEC,不难证明;

(2)依据已知条件,在△ABD或△AOC作垂线AF或OF,求出相应边的长度,即可求出∠ABD的正弦值.

【详解】

(1)证明:∵将△ABC沿AC翻折得到△AEC,

∴BC=CE,AC⊥CE,

∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∴AD=CE,AD∥CE,

∴四边形ACED是平行四边形,

∵AC⊥CE,

∴四边形ACED是矩形.

(2)解:方法一、如图1所示,过点A作AF⊥BD于点F,

∵BE=2BC=2×3=6,DE=AC=4,

∴在Rt △BDE 中,

2

2

2

2

BD BE DE 64213=+=+=∵S △BDE =

12

×DE?AD

=1

2

AF?BD , ∴AF =

613

213

=, ∵Rt △ABC 中,AB =2234+=5, ∴Rt △ABF 中,

sin ∠ABF =sin ∠ABD =613613

13655

AF AB ==

方法二、如图2所示,过点O 作OF ⊥AB 于点F , 同理可得,OB =1

132

BD =, ∵S △AOB =11

OF AB OA BC 22

?=?, ∴OF =

23655

?=, ∵在Rt △BOF 中,

sin ∠FBO =

0613

513F OB ==

, ∴sin ∠ABD =

613

【点睛】

本题考查直角三角形翻折变化后所得图形的性质,矩形的判定和性质,平行四边形的性质和解直角三角形求线段的长度,关键是正确添加辅助线和三角形面积的计算公式求出

sin∠ABD.

7.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.

(1)填空:点的坐标为,抛物线的解析式为;

(2)当点在线段上运动时(不与点,重合),

①当为何值时,线段最大值,并求出的最大值;

②求出使为直角三角形时的值;

(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.

【答案】(1),;

(2)①当时,有最大值是3;②使为直角三角形时的值为3或;(3)点,,,构成的四边形的面积为:6或或.

【解析】

【分析】

(1)把点A坐标代入直线表达式y=,求出a=?3,把点A、B的坐标代入二次函数表达式,即可求解;

(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求

解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;

(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.

【详解】

解:(1)把点坐标代入直线表达式,

解得:,则:直线表达式为:,令,则:,

则点坐标为,

将点的坐标代入二次函数表达式得:,

把点的坐标代入二次函数表达式得:,

解得:,

故:抛物线的解析式为:,

故:答案为:,;

(2)①∵在线段上,且轴,

∴点,,

∴,

∵,

∴抛物线开口向下,

∴当时,有最大值是3,

②当时,点的纵坐标为-3,

把代入抛物线的表达式得:,解得:或0(舍去),∴;

当时,∵,两直线垂直,其值相乘为-1,

设:直线的表达式为:,

把点的坐标代入上式,解得:,则:直线的表达式为:,

将上式与抛物线的表达式联立并解得:或0(舍去),

当时,不合题意舍去,

故:使为直角三角形时的值为3或;

(3)∵,,

在中,,则:,,

∵轴,

∴,

若抛物线上有且只有三个点到直线的距离是,

则只能出现:在直线下方抛物线与过点的直线与抛物线有一个交点,在直线上方的交点有两个.

当过点的直线与抛物线有一个交点,

点的坐标为,设:点坐标为:,

则:,过点作的平行线,

则点所在的直线表达式为:,将点坐标代入,

解得:过点直线表达式为:,

将拋物线的表达式与上式联立并整理得:,

将代入上式并整理得:,

解得:,则点的坐标为,

则:点坐标为,则:,

∵,,∴四边形为平行四边形,则点到直线的距离等于点到直线的距离,

即:过点与平行的直线与抛物线的交点为另外两个点,即:、,

直线的表达式为:,将该表达式与二次函数表达式联立并整理得:

,解得:,

则点、的横坐标分别为,,

作交直线于点,

则,

作轴,交轴于点,则:,,

则:,

同理:,

故:点,,,构成的四边形的面积为:6或或.

【点睛】

本题考查的是二次函数知识的综合运用,涉及到一次函数、解直角三角形等相关知识,其中(3)中确定点N的位置是本题的难点,核心是通过△=0,确定图中N点的坐标.

8.如图,湿地景区岸边有三个观景台、、.已知米,米,点位于点的南偏西方向,点位于点的南偏东方向.

(1)求的面积;

(2)景区规划在线段的中点处修建一个湖心亭,并修建观景栈道.试求、间的距离.(结果精确到米)

(参考数据:,,,,,,

)

【答案】(1)560000(2)565.6

【解析】

试题分析:(1)过点作交的延长线于点,,然后根据直角三角形的内角和求出∠CAE,再根据正弦的性质求出CE的长,从而得到△ABC的面积;

(2)连接,过点作,垂足为点,则.然后根据中点的性质和余弦值求出BE、AE的长,再根据勾股定理求解即可.

试题解析:(1)过点作交的延长线于点,

在中,,

所以米.

所以(平方米).

(2)连接,过点作,垂足为点,则.

因为是中点,

所以米,且为中点,

米,

所以米.

所以米,由勾股定理得,

米.

答:、间的距离为米.

考点:解直角三角形

9.已知:如图,在Rt △ABO 中,∠B =90°,∠OAB =30°,OA =3.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN =60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题: (发现)(1)MN 的长度为多少;

(2)当t =2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积. (探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.

(拓展)当MN 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.

【答案】【发现】(1)MN 的长度为π3;(23

P 的坐标为10(,);或3

03()或23

03

-();【拓展】t 的取值范围是23t ≤<或45t ≤<,理由见解析.

【解析】 【分析】

发现:(1)先确定出扇形半径,进而用弧长公式即可得出结论; (2)先求出PA =1,进而求出PQ ,即可用面积公式得出结论; 探究:分圆和直线AB 和直线OB 相切,利用三角函数即可得出结论;

拓展:先找出MN 和直角三角形的两边有两个交点时的分界点,即可得出结论. 【详解】 [发现]

(1)∵P (4,0),∴OP =4. ∵OA =3,∴AP =1,∴MN 的长度为

6011803

ππ

?=.

故答案为

3

π; (2)设⊙P 半径为r ,则有r =4﹣3=1,当t =2时,如图1,点N 与点A 重合,∴PA =r =1,设MP 与AB 相交于点Q .在Rt △ABO 中,∵∠OAB =30°,∠MPN =60°. ∵∠PQA =90°,∴PQ 12=PA 12=,∴AQ =AP ×cos30°32

=,∴S 重叠部分=S △APQ 12=

PQ ×AQ 3

8

=. 即重叠部分的面积为3

8

. [探究]

①如图2,当⊙P 与直线AB 相切于点C 时,连接PC ,则有PC ⊥AB ,PC =r =1. ∵∠OAB =30°,∴AP =2,∴OP =OA ﹣AP =3﹣2=1; ∴点P 的坐标为(1,0);

②如图3,当⊙P 与直线OB 相切于点D 时,连接PD ,则有PD ⊥OB ,PD =r =1,∴PD ∥AB ,∴∠OPD =∠OAB =30°,∴cos ∠OPD PD OP =,∴OP 123

30cos ==?,∴点P 的坐标为(

23

3

,0); ③如图4,当⊙P 与直线OB 相切于点E 时,连接PE ,则有PE ⊥OB ,同②可得:OP 23

=

; ∴点P 的坐标为(23

3

-

,0);

[拓展]

t 的取值范围是2<t ≤3,4≤t <5,理由:

相关主题
相关文档
最新文档