热工应用

合集下载

建筑热工性能与节能技术的研究与应用

建筑热工性能与节能技术的研究与应用

建筑热工性能与节能技术的研究与应用建筑热工性能和节能技术是现代建筑领域的重要研究内容,它们在提高建筑能源利用效率、减少能源消耗方面起到了关键作用。

本文将探讨建筑热工性能和节能技术的研究进展,并介绍其在实际应用中所取得的成果和前景。

一、建筑热工性能的研究建筑热工性能是指建筑在不同气候条件下对热量的传导、储存和辐射的特性。

研究建筑热工性能有助于了解建筑的热量动态变化规律,为建筑节能设计提供可靠依据。

1. 热传导性能研究热传导性能是衡量建筑材料热阻抗大小的指标,研究建筑材料的热传导性能有助于选用合适的材料,减少热能损失。

2. 热容性能研究热容性能是指建筑材料和系统在吸收和释放热量时的能力。

通过研究建筑的热容性能,可以合理调节建筑内部的温度和湿度,提高室内舒适度。

3. 热辐射性能研究热辐射性能是指建筑材料对热辐射的吸收和反射能力。

通过研究建筑材料的热辐射性能,可以有效控制建筑物的太阳辐射热输入,减少能耗。

二、节能技术的研究与应用节能技术在现代建筑领域起到了至关重要的作用,通过采用先进的节能技术,可以降低建筑能耗,提高能源利用效率。

1. 保温隔热技术保温隔热技术是指采取一系列措施,减少建筑热能损失和寒冷空气的渗透,增强建筑物本身的隔热能力。

例如,在建筑外墙采用保温材料、安装双层窗户等。

2. 太阳能利用技术太阳能是一种清洁、可再生的能源,通过利用太阳能技术,可以实现建筑能源的自给自足。

例如,利用太阳能热水器供给建筑热水和利用光伏材料发电。

3. 空调系统优化技术空调系统在建筑中的能耗占比很大,通过采用优化的空调系统,可以有效降低能耗。

例如,使用节能型的空调设备、实施智能调控等。

4. 高效照明技术照明在建筑中的电能消耗相当可观,采用高效照明技术可以降低能耗。

例如,使用LED照明、智能照明控制系统等。

三、建筑热工性能与节能技术的应用前景建筑热工性能与节能技术的应用前景广阔,将对建筑节能和环境保护产生积极的影响。

1. 资源节约与环境保护通过提高建筑热工性能和应用节能技术,可以实现能源的有效利用,减少对能源资源的消耗,从而实现资源的节约和环境的保护。

热工基础与应用试题及答案

热工基础与应用试题及答案

热工基础考试题一、填空量:1、按照热力系与外界有无物质的交换,可以把热力系分为开口系和闭口系。

2、热力系的划分是以分析问题的需要及分析方法上的方便而定。

3、物质的内能包括内动能及内位能,内动能与温度有关,内位能决定于它的体积。

4、焓是指流动工质所具有的能量。

5、平衡状态与稳定状态的区别是平衡状态不受外界条件的影响,稳定状态要依靠外界的作用维持。

6、三种典型的不可逆过程是指气体有摩擦的膨胀做功过程、自由膨胀过程、温差传热过程。

7、热量和功是过程量8、热能与机械能的相互转换是通过工质的膨胀和压缩而实现的。

9、理想气体是忽略分子本身体积和分子间的相互作用力的气态物质。

10、理想气体的比热分为质量比热、摩尔比热、体积比热。

11、卡诺循环由等温吸热过程、绝热膨胀过程、等温放热过程、绝热压缩过程四个可逆过程组成12、物质的汽化过程有蒸发和沸腾两种形式。

13、液汽两相处于动态平衡的状态称为饱和状态。

14、声速是一种微弱扰动在连续介质中所产生的压力波的传播速度。

15、在朗肯循环中进汽参数及排汽参数均会影响热效率。

16、某一可逆热力过程所做的功可用它在P-V 图上过程曲线下的面积来表示。

17、理想气体的内能是温度的单值函数。

18、绝热过程是工质在状态变化过程中与外界没有任何形式的热量交换的过程。

19、热量和功都是过程量。

20、水蒸汽的饱和温度是饱和压力的单值函数。

21、水蒸汽参数的参考点是以水的三相点时的饱和水状态。

22、热传递的三种形式是热传导、热对流、热辐射。

23、凡是高于0K 的物体总是可以不断地把热能变为辐射能。

24、辐射能力最强的辐射体称为黑体。

25、工程传热问题可分为两类一类是传热的强化一类是传热的削弱。

26、影响固体的热辐射的吸收和反射的主要因素是物体表面的粗糙程度。

27、由于气体的辐射率和吸收率与波长有关,所以一般不能把纯气体视为灰体。

28、按换热器的工作原理可分为混合式换热器、回热式换热器、表面式换热器。

火电厂热工自动控制技术及应用知识点总结

火电厂热工自动控制技术及应用知识点总结

自动控制系统基础概论热工对象动态特性常规控制规律PID控制的特点比例控制(P控制)积分控制(I控制)微分控制(D控制)控制规律的选择:单回路控制概述被控对象特性对控制质量的影响:测量元件和变送器特性对控制质量的影响调节机构特性对控制质量的影响单回路系统参数整定串级控制串级控制系统的组成(要求会画控制结构图)串级控制系统的特点串级控制系统的应用范围串级控制系统的设计原则:前馈-反馈控制概述静态前馈,动态前馈前馈-反馈控制前馈-串级控制比值控制分程控制大迟延控制系统补偿纯迟延的常规控制预估补偿控制多变量控制系统耦合程度描述解耦控制系统设计火电厂热工控制系统汽包锅炉蒸汽温度控制系统过热蒸汽温度控制再热蒸汽温度一般控制方案汽包锅炉给水控制系统概述给水流量调节方式给水控制基本方案:给水全程控制:600MW机组给水全程控制实例锅炉燃烧过程控制系统概述被控对象动态特性燃烧过程控制基本方案燃烧控制中的几个问题单元机组协调控制系统概述负荷指令处理回路正常情况下负荷指令处理异常工况下的负荷指令处理负荷指令处理回路原则性方框图机炉主控制器机炉分别控制方式机炉协调控制方式直流锅炉控制系统直流锅炉特点直流锅炉动态特性直流锅炉基本控制方案直流锅炉给水控制系统直流锅炉过热汽温控制系统自动控制系统基础概论1. 控制系统的组成与分类1. 控制系统的组成及术语控制系统的四个组成部分: 被控对象,检测变送单元,控制单元,调节机构.2. 控制系统的分类:按结构分: 单变量控制系统, 多变量控制系统按工艺参数分: 过热汽温控制系统, 主蒸汽压力控制系统按任务分: 比值控制系统, 前馈控制系统按装置分: 常规过程控制系统, 计算机控制系统按闭环分: 开环控制系统, 闭环控制系统按定值的不同分: 定值控制系统, 随动控制系统, 程序控制系统3. 过渡过程: 从扰动发生,经过调节,直到系统重新建立平衡.即系统从一个平衡状态过渡到另一个平衡状态的过程,即为控制系统的过渡过程.2. 控制系统的性能指标1. 衰减比和衰减率: 衡量稳定性2. 最大偏差和超调量: 衡量准确性3. 调节时间: 衡量快速性4. 余差(静态偏差): 衡量静态特性热工对象动态特性1. 有自平衡能力对象1. 一阶惯性环节:2. 一阶惯性环节加纯迟延:3. 高阶惯性环节:4. 高阶惯性环节加纯迟延:2. 无自平衡能力对象1. 积分环节:2. 积分环节加纯迟延:3. 有积分的高阶惯性环节:4. 有纯迟延和积分的高阶惯性环节:常规控制规律PID控制的特点1. 原理简单,使用方便2. 适应性强3. 鲁棒性强比例控制(P控制)1. 控制规律: ; :比例增益:比例带,工程上用来描述控制作用的强弱.比例带越大,偏差越大.2. 控制特点:动作快有差控制积分控制(I控制)1. 控制规律:; :积分时间2. 控制特点:动作不及时无差控制3. PI控制: I控制响应慢,工程上很少有单独使用,一般都是PI控制控制规律:; P控制看作粗调,I控制看作细调.控制作用具有: 比例及时作用和积分作用消除偏差的优点.4. 积分饱和及其措施:积分饱和: 积分过量,在单方面偏差信号长时间作用下,其输出达到上下限时,其执行机构无法再增大.措施: 积分分离手段: 当偏差较大时,在控制过程的开始阶段,取消积分作用,控制器按比例动作,等到被调量快要接近给定值时,才能产生积分作用,依靠积分作用消除静态偏差.微分控制(D控制)1. 控制规律: ;2. 控制特点:超前控制3. 实际微分: 为什么采用实际微分控制:理想微分物理上不可能实现避免动作频繁,影响调节元件寿命4. PD控制: 控制规律: ;扰动进入系统的位置离输出(被调量)越远,对系统工作的影响就越小.控制通道的时间常数和迟延时间对控制质量的影响前馈-串级控制的应用场景:分程控制扩大调节阀的可调比大迟延控制系统补偿纯迟延的常规控制1. 微分先行控制方案2. 中间反馈控制方案前馈解耦导前温度: 刚通过减温器之后的蒸汽温度以导前蒸汽温度为副参数,过热蒸汽温度为主参数的串级控制系统3. 过热蒸汽温度分段控制系统:1. 过热蒸汽温度分段控制系统:缺点: 当机组负荷大范围变化时,由于过热器吸热方式不同.一级减温器出口蒸汽温度降低,为保持不变,必须减少一级减温器喷水量;二级减温器出口蒸汽温度升高,因此要增加二级减温器喷水量.造成负荷变化时两级减温器喷水量相差很大,使整个过热器喷水不均匀,恶化二级喷水减温调控能力,导致二级过热器出口温度超温.2. 按温差控制的分段控制系统:与第一种方案的差别在于: 这里以二级减温器前后的温差(-)作为第一段控制系统的被调量信号送入第一段串级的主调节器PI3.当负荷增大时,主调节器PI3的设定值随之减小,这样有(-)>T0,PI3入口偏差值增大,这意味着必须增大一级喷水量才能使下降,从而使温差(-)减小.这样平衡了负荷增加时一级喷水量和二级喷水量.该方案为串级+前馈控制策略. 后屏出口过热器出口蒸汽温度设定值由两部分组成,第一部分由蒸汽流量代表的锅炉负荷经函数发生器后给出基本设定值,第二部分是运行人员可根据机组的实际运行工况在上述基本设定值的基础上手动进行设置.虽然系统是控制后屏过热器出口温度蒸汽,用蒸汽温度信号经过比例器乘以常数K后代表后屏过热器出口蒸汽温度,其原因是蒸汽温度与蒸汽温度变化方向一致;且蒸汽温度信号比蒸汽温度信号动态响应快,能提前反映扰动对蒸汽温度的影响,有利于控制系统快速消除干扰.主调节器PID1的输出与总风量,燃烧器摆角前馈信号组合构成副调节器PID2的设定值,副调节器的测量值为一级减温器出口温度.PID2输出控制一级其控制原理如下:正常情况下即当再热蒸汽温度处于设定值附近变化时,由调节器PID1改变烟气挡板开度来消除再热蒸汽温度的偏差,蒸汽流量D作为负荷前馈信号通过函数模块去直接控制烟气挡板.当的参数整定合适时,能使负荷变化时的再热蒸汽温度保持基本不变或变化很小.反向器-K用以使过热挡板与再热挡板反向动作.喷水减温调节器PID2也是以再热蒸汽温度作为被调信号,但此信号通过比例偏置器±Δ被叠加了一个负偏置信号(它的大小相当于再热蒸汽温度允许的超温限值).这样,当再热蒸汽温度正常时,调节器PID2的入口端始终只有一个负偏差信号,它使喷水阀全关.只有当再热蒸汽温度超过规定的限值时,调节器的入口偏差才会变为正,从而发出喷水减温阀开的指令,这样可防止喷水门过分频繁的动作而降低机组热经济性.2. 采用烟气再循环调节手段的再热蒸汽温度控制系统其控制原理如下:再热蒸汽温度T 在比较器Δ内与设定值(由A 产生)比较,当蒸汽温度低时,偏差值为正信号,此信号进入调节器PID1,其输出经执行器去调节烟气挡板开度,增大烟气再循环量,以控制再热蒸汽温度.在加法器2中引入了送风量信号V 作为前馈控制信号和烟气热量(烟温×烟气流量)修正信号,送风量V 反映了锅炉负荷大小,同时能提前反映蒸汽温度的变化.当V 增加时,蒸汽温度升高,相应的烟气再循环量应减少,故V 按负向送入调节器.函数模块是用来修正风量和再循环烟气量的关系的.通过乘法器由烟温信号调整再循环烟气流量.当再热蒸汽超温时,比较器输出为负值,PID1输出负信号直至关闭烟气再循环挡板,烟气再循环失去调温作用.同时,比较器的输出通过反相器- K 1,比例偏置器±Δ去喷水调节器PID2,开动喷水调节阀去控制再热蒸汽温度,蒸汽温度负偏差信号经反相器-K2去偏差报警器,实现超温报警,同时继电器打开热风门,用热风将循环烟道堵住,防止因高温炉烟倒流入再循环烟道而烧坏设备.当再热蒸汽温度恢复到设定值时,比较器输出为零,PID2关闭喷水门,偏差报警信号通过继电器关闭热风门,烟气再循环系统重新投入工作.3. 采用摆动燃烧器调节手段的再热蒸汽温度控制系统燃烧器上倾可以提高炉膛出口烟气温度,燃烧器下倾可以降低炉膛出口烟气温度.燃烧器控制系统是一个加前馈的单回路控制系统,再热蒸汽温度设定值是主蒸汽流量经函数发生器,再加操作员可调整的偏置量A构成.PID1调节器根据再热器出口蒸汽温度T与再热蒸汽温度设定值偏差来调整燃烧器摆角.为了抑制负荷扰动引起的再热蒸汽温度变化,系统引入了送风量前馈信号,该信号能反映负荷和烟气侧的变化.送风量前馈信号和反馈控制信号经加法器4共同控制燃烧器摆角.A侧再热器出口蒸汽温度和B侧再热器出口蒸汽温度各有两个测量信号,正常情况下选择A,B两侧的平均值作为燃烧器摆角控制的被调量.燃烧器摆角控制为单回路的前馈-反馈控制系统,再热器出口蒸汽温度设定值由运行人员手动给出.再热器出口蒸汽温度设定值和实际值的偏差经PID调节器后加上前馈信号分别作为燃烧器摆角的控制指令.前馈信号由蒸汽流量经函数发生器后给出.当再热蒸汽温度偏低时,燃烧器摆角向上动作;当再热蒸汽温度偏高时,燃烧器摆角向下动作. 2. 再热蒸汽温度喷水减温控制系统汽包锅炉给水控制系统给水控制任务: 使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内,同时保持稳定的给水流量.对象特性: 给水流量扰动的三个体现方面:4. 虚假水位现象: 当锅炉蒸发量突然增加时,汽包水下面的气泡容积也迅速增大,即锅炉的蒸发强度增强,从而使水位升高.给水控制基本方案:1. 单冲量给水控制系统: 汽包水位和水位给定值调节的反馈控制系统某600MW发电机组给水热力系统示意图,机组配三台给水泵,其中一台容量为额定容量30%的电动给水泵,两台容量各为额定容量50%的汽动给水泵.电动给水泵一般是作为启动泵和备用泵,正常运行时用两台汽动给水泵,两台汽动给水泵由小汽轮机驱动,其转速控制由独立的小汽轮机电液控制系统(micro-electro hydraulic control system,MEH)完成,MEH系统的转速给定值是由给水控制系统设置,MEH 系统只相当于给水控制系统的执行机构.在高压加热器与省煤器之间有主给水电动截止阀、给水旁路截止阀和约15%容量的给水旁路调节阀.2. 给水控制系统1. 水位控制系统汽包水位控制系统如图所示,它是单冲量和串级三冲量两套控制系统构成,汽包水位设定值由运行人员在操作台面上手动设定.当锅炉启动或负荷小于15%额定负荷阶段,控制系统是通过调节器PID1调节给水旁路的调节阀开度来控制给水量以维持汽包水位,而此时切换器T2接Y端,通过调节器PID5调节电动给水泵的转速来维持给水泵出口母管压力与汽包压力之差.当旁路调节阀开到80%时,由SCS (Sequence control system, 顺序控制系统)完成开主给水电动阀,关旁路截止阀.当负荷在15%额定负荷以上,但小于30%额定负荷时,切换器T1接Y端,切换器T2接N端,这时汽包水位设定值的偏差经调节器PID2,并经调节器PID6控制给水泵转速来调节给水流量达到维持汽包水位目的.同时当机组负荷升至20%额定负荷时,第一台给水泵开始冲转升速.当负荷大于30%额定负荷,切换器T1接N端,给水控制切换为三冲量给水控制.汽包水位控制指令由两个串级调节器PID3和PID4根据汽包水位偏差、主给水流量和主蒸汽流量三个信号形成.水位设定值与汽包水位偏差经调节器PID3 后,加主蒸汽流量信号作为副回路PID4的设定值,副回路副参数为主给水流量,经PID运算后作为给水泵控制的设定值.当负荷大于30%额定负荷时,第一台汽动给水泵并入给水系统.当负荷达40%额定负荷时,第二台汽动给水泵开始冲转升速.当负荷达60%额定负荷时,第二台汽动给水泵并入给水系统,撤出电动给水泵,将其投入热备用.机组正常时,是通过改变两台汽动给水泵的转速来调节给水量.由于给水泵的工作特性不完全相同,为稳定各台给水泵的并列运行特性,避免发生负荷不平衡现象,设计了各给水泵出口流量调节回路,将各给水泵的出口流量和转速指令的偏差送入各给水泵调节器(PID6、 PID7 和PID8)的入口,以实现多台给水泵的输出同步功能.GAIN CHANGER & BALANCER作用是根据给水泵投入自动的数量,调整控制信号的大小.拇入自动数目越大,控制信号越小.2. 给水泵最小流量控制汽机跟随控制方式:控制特点: 锅炉侧调负荷,汽机侧调汽压. 在保证主蒸汽压力稳定的情况下,汽轮机跟随锅炉而动作.优点: 在运行中主蒸汽压力相对稳定,有利于发电机组的安全经济运行.机炉协调控制方式控制特点: 在负荷调节动态过程中,机炉协调控制可以使汽压在允许的范围内波动,这样可以充分利用锅炉蓄热,使单元机组较快适应负荷变化,同时主蒸汽压力p T的变动范围也不大,因而机组的运行工况比较稳定.调节燃料量M控制主蒸汽压力p T(或机组负荷) 调节送风量V控制过剩空气系数(烟气含氧量) 调节引风量V控制炉膛压力p汽轮机控制系统为工频电液控制系统时:另一种送风控制系统方案. 锅炉指令BD经过函数发生器f2(x)后形成一个风量指令,氧量调节器输出σ对锅炉指令BD进行修正.3. 引风控制系统: 引风控制系统的任务是保证一定的炉膛压力. 由引风量改变到炉膛压力变化其动态响应快,测量也容易,因此一般采用单回路即可.3. 燃烧控制系统基本方案锅炉指令BD作为给定值送到燃料控制系统和送风控制系统,使燃料量和送风量同时改变,使燃烧率与机组要求的燃烧率相适应,保证风量与燃料量比例变化; 同时送风量作为前馈信号通过引到引风调节器PI4,改变引风量以平衡送风量的变化,使炉膛压力p s不变或变化很小.由于所有调节器都采用PI控制规律,因此,调节过程结束时,主蒸汽压力P T,燃烧经济性指标O2和炉膛压力p s,都稳定在给定值上;而锅炉的燃料量M,送风量V和引风量V都改变到与要求的燃烧率相适应的新数值上.总燃料量(总发热量)的构成形式为其中: O为燃油量,k o为燃油发热系数,M c为总煤量,k MQ为煤发热系数.当M c不变,而煤种变化造成发热量增加时,刚开始M也不变,但随着炉膛发热量的增加,D Q增大,D Q>M,由积分器正向积分增大k MQ,使M增大,直至M=D Q3. 增益自动调整乘法器为燃料调节对象的一部分,选择合适的函数,则可以做到不管给煤机投入的台数如何,都可以保持燃料调节对象增益不变,这样就不必调整燃料调节器的控制参数了.增益调整与平衡器,就是完成该功能.4. 风煤交叉限制在机组增减负荷动态过程中,为了使燃料得到充分燃烧,需要保持一定的过量空气系数. 因此,在机组增负荷时,就要求先加风后加煤;在机组减负荷时,就要求先减煤后减风.这样就存在一个风煤交叉限制.锅炉指令BD经函数器f1(x)后转换为所需的风量,风量经函数器f2(x)转换为相应风量下的最大燃料量,燃料量经函数器后转换为该燃料量下的最小风量.当增加负荷时,锅炉指令BD增大,在原风量未变化前,低值选择器输出为原风量下的最大燃料量指令,即仍为原来锅炉指令BD.在风量侧,锅炉指令BD增大,则其对应的风量指令增大,大于原燃料量所需最小风量,经高值选择后作为给定值送至送风控制系统以增大风量.只有待风量增加后,锅炉燃料的给定值才随之增加,直到与锅炉指令BD一致.由此可见,由于高值选择器的作用,风量控制系统先于燃料控制系统动作.由于低值选择器的作用,使燃料给定值受到风量的限制,燃料控制系统要等风量增加后再增加燃料量.同理,减负荷时,由于低值选择器的作用,燃料给定值先减少.由于高值选择器的作用,使风量给定值受到燃料量限制,风量控制系统要等待燃料量降低后再减少风量.上图为煤粉锅炉燃料系统的一般控制方案.其中虚框1的功能是完成总燃料量(发热量)的测量与修正.虚框2的功能是燃料侧的风煤交叉限制.5. 风机调节本节下略单元机组协调控制系统概述1. 单元机组协调控制系统的基本组成2. 机组负荷控制系统被控对象动态特性3. 机组负荷控制系统被控对象动态特性1. 单元机组动态特性:当汽轮机调门开度动作时,被调量p E和p T的响应都很快,即热惯性小.当锅炉燃烧率改变时,被调量p E和p T的响应都很快,即热惯性小.2. 负荷控制系统被控对象动态特性1. 机组主机,主要辅机或设备的故障原因有两类跳闸或切除,这类故障的来源是明确的,可根据切投状况加以确定工作异常,其故障来源是不明确的,无法直接确定,只能通过测量有关运行参数的偏差间接确定.2. 对机组实际负荷指令的处理方法有四种: 负荷返回RB, 快速负荷切断FCB, 负荷闭锁增/减BI/BD, 负荷迫升/迫降RU/RD. 其中,负荷返回RB和快速负荷切断FCB是处理第一类故障的;负荷闭锁增/减BI/BD 和负荷迫升/迫降RU/RD是处理第二类故障的.1. 负荷返回RB负荷返回回路具有两个主要功能: 计算机组的最大可能出力值;规定机组的负荷返回速率.发电机组负荷返回回路的设计方案: 该机组主要选择送风机,引风机,一次风机,汽动给水泵,电动给水泵及空气预热器为负荷返回监测设备.当其中设备因故跳闸,则发出负荷返回请求,同时计算出负荷返回速率.RB目标值和RB返回速率送到如图13-9所示的负荷指令处理回路中去.2. 负荷快速切断FCB当机组突然与电网解列,或发电机,汽轮机跳闸时,快速切断负荷指令,实现机组快速甩负荷.主机跳闸的负荷快速切断通常考虑两种情况: 一种是送电负荷跳闸,机组仍维持厂用电运行,即不停机不停炉; 另一种是发电机跳闸,汽轮机跳闸,由旁路系统维持锅炉继续运行,即停机不停炉.负荷指令应快速切到0(锅炉仍维持最小负荷运行).负荷快速切断回路的功能与实现和负荷返回回路相似.只不过减负荷的速率要大得多.3. 负荷闭锁增/减BI/BD当机组在运行过程中,如果出现下述任一种情况:任一主要辅机已工作在极限状态,比如给风机等工作在最大极限状态燃料量,空气量,给水流量等任一运行参数与其给定值的偏差已超出规定限值.认为设备工作异常,出现故障.该回路就对实际负荷指令加以限制,即不让机组实际负荷指令朝着超越工作极限或扩大偏差的方向进一步变化,直至偏差回到规定限值内才解除闭锁.4. 负荷迫升/迫降RU/RD对于第二类故障,采取负荷闭锁增/减BI/BD措施是机组安全运行的第一道防线.当采用BI/BD措施后,监测的燃料量,空气量,给水流量等运行参数中的任一参数依然偏差增大,这样需采取进一步措施,使负荷实际负荷指令减小/增大,直到偏差回到允许范围内.从而达到缩小故障危害的目的.这就是实际负荷指令的迫升/迫降RU/RD,负荷迫升/迫降是机组安全运行的第二道防线.负荷指令处理回路原则性方框图该负荷指令处理回路功能的1原则性框图,是在正常工况下符合指令处理原则性方案上,添加了异常工况下相应负荷指令处理功能.锅炉跟随方式在大型单元机组负荷控制中只是作为一种辅助运行方式.一般当锅炉侧正常,机组输出电功率因汽轮机侧的原因而受到限制时,如汽轮机侧的主、辅机或控制系统故障,汽轮机控制系统处2. 汽轮机跟随方式机组负荷响应速度慢,不利于带变动负荷和参加电网调频.这种负荷控制方式适用于带基本负荷的单为了克服正反馈,应以汽轮机的能量需求信号而不是实际的消耗能量信号作为对锅炉的能量要求信号,即应以蒸汽流量的需求(称为目标蒸汽流量)而不是实际蒸汽流量作为锅炉的前馈控制信号.为此必须对p1进行修正,以形成目标蒸汽流量信号.直流锅炉控制系统上面两种控制方案均没有考虑过热汽温对燃料量和给水流量的动态响应时间差异,,会造成燃水比的动态不匹配,使得过热汽温波动大.为此提出一种燃料-给水控制原则性方案:可以选择锅炉受热面中间位置某点蒸汽温度(又称为中间点温度或微过热温度)作为燃水比是否适当的信号.这是一个前馈-串级调节系统,副调节器PID2输出为给水流量控制指令,通过控制给水泵的转速使得锅炉总给水流量等于给水给定值,以保持合适的燃水比.主调节器PID1以中间点温度为被调量,其输出按锅炉指令BD形成的给水流量基本指令进行校正,以控制锅炉中间点汽温在适当范围内.控制系统可分同负荷下的分离器出口焓值给定值.焓值给定值加上PID1输出的校正信号构成给定值SP2,由分离器出口压力和温度经焓值计算模块算出分离器出口焓值,该出口焓值与给定值SP2的偏差经调节器PID2 进行PID运算后,作为校正信号,对给水基本指令进行燃水比校正. 调节器PID3的给定值SP3是由,锅炉指令BD指令给出的给水流量基本指令加上调节器PID2输出的校正信号构成.调节器PID3根据锅炉总给水流最与流量给定值SP3的偏差进行PID运算,输出作为给水流量控制指令调节给水泵转速来满足机组负荷变化对锅炉总给水流量的需求.3. 采用焓增信号的给水控制方案在上图所示的给水控制系统中,由调节器PID3根据给定值SP3与省煤器入口给水流量(锅炉给水流量)的偏差向给水泵控制回路发出给水流量控制指令,在给水泵控制回路中,通过调节给水泵转速来实现调节给水流量的要求.在此重点分析给水流量给定值SP3的形成.当锅炉负荷在35%~ 100%MCR范围内,没有循环水流量和省煤器入口最小流量限制时,省煤器入口给水流量(锅炉给水流量)给定值SP3为水吸收的热量焓增焓增修正其中的水吸收的热量和焓增如图所示给出.。

热工基础与应用 第3版 习题解答

热工基础与应用 第3版 习题解答

习题参考答案第一章1-1解:状态量:压力,温度,动能,位能,密度;过程量: 热能,热量,功量。

1-2解:强度量:比体积,高度,压力,温度。

1-3解:根据压力单位换算得:22b H O Hg b H O Hg 735133.32297.992 kPa 2009.80665 1.961 kPa 800133.322106.658 kPa97.992 1.961106.658206.61 kPa p p p p p p p =⨯==⨯==⨯==++=++=1-4解:由分析知:设所求烟气的绝对为p ,压力计中煤油段压力为p v ,所以有:b v p p p =+,其中sin v p gL ρα=,所以784.8Pa v p =,由此得(0.10.000784)0.099216 MPa v b p p p =-=-= 1-5解:设左气缸压力为p 1,右气缸压力为p 2,则有1b C 21B A2b 97kPa 110kPa 207 kPa 207kPa 45kPa 252 kPa 252kPa 97kPa 155 kPap p p p p p P p p =+=+=⎧⎪=+=+=⎨⎪=-=-=⎩ p A 即为所求,155kPa.1-6 解:(1)选择水为系统,则外界向系统传热,但是无功量的交换; (2)选择电阻丝,容器,水为系统,则外界向系统做电功;(3)选取图中的虚线框为系统,则该系统为孤立系统,与外界无能量交换。

1-7解:汽轮机进口处的绝对压力:113.4020.09813.5 MPa g b p p p =+=+= 冷凝器内蒸汽的绝对压力:2706133.322Pa 0.0941 MPa, 0.0980.09410.0039 MPa v b v p p p p =⨯==-=-=图1-9习题1-3图1-8解:容器内的绝对压力60.098550133.322100.0247MPa b v p p p -=-=-⨯⨯=,真空表读数:''0.1020.02470.0773MPa 579.799mmHg v bp p p =-=-==。

火电厂热工自动控制技术及应用 2015版

火电厂热工自动控制技术及应用 2015版

火电厂热工自动控制技术及应用2015版1.概述火电厂是发电行业中常见的一种发电方式,其主要通过燃烧煤炭、天然气等燃料产生的热能驱动汽轮机进行发电。

在发电过程中,热工自动控制技术被广泛应用,它能够有效地提高发电效率、保证设备安全运行和降低排放。

本文将对2015版火电厂热工自动控制技术及其应用进行全面介绍和分析。

2.火电厂热工自动控制技术介绍火电厂热工自动控制技术是指利用现代控制理论和技术手段,对火电厂生产过程中的热力流程和设备进行自动控制和监控的一种技术。

它包括了对锅炉、汽轮机、烟气脱硫、脱硝等多个环节的控制和监测。

热工自动控制技术主要包括了自动调节系统、数据采集系统、报警系统等多个方面。

3.火电厂热工自动控制技术的应用1)自动调节系统自动调节系统是火电厂热工自动控制技术中的核心部分,它能够根据生产过程中的实际情况,自动调节燃烧、汽轮机转速、给水温度等参数,以保证生产过程的稳定性和安全性。

2)数据采集系统数据采集系统通过传感器等设备采集生产过程中的各项参数,如温度、压力、流量等,并将这些数据传输至控制系统,以便分析和决策。

3)报警系统报警系统通过监测各项设备工况,一旦发现异常情况会立即报警,并采取相应的措施,以避免设备损坏或安全事故的发生。

4.2015版火电厂热工自动控制技术的特点2015版火电厂热工自动控制技术相比之前有了很大的改进和提高,主要体现在以下几个方面:1)智能化2015版火电厂热工自动控制技术采用了更加先进的控制算法和技术手段,使得控制系统更加智能化、精确化,能够更好地适应复杂多变的生产环境。

2)集成化2015版火电厂热工自动控制技术整合了更多的功能和模块,实现了对多个环节的集中控制和管理,大大提高了设备的整体运行效率和生产效果。

3)信息化2015版火电厂热工自动控制技术更加注重数据的收集、分析和利用,能够及时地提供生产过程中的各项参数和指标,帮助管理人员做出科学的决策。

5.2015版火电厂热工自动控制技术的应用效果2015版火电厂热工自动控制技术已经在多个火电厂得到了广泛的应用,取得了较好的效果,主要体现在以下几个方面:1)提高了发电效率通过热工自动控制技术的应用,能够更加有效地调节和控制锅炉、汽轮机等设备,提高了发电的效率,减少了能源的浪费。

热工自动控制中的节能技术应用

热工自动控制中的节能技术应用

热工自动控制中的节能技术应用 摘要:科技的进步,促进人们对能源需求的增多。能源问题是制约我国经济高速发展所不可忽视的现实问题,为了实现可持续性发展,必须对能源危机进行妥善应对和治理,可以积极引进先进的科学技术,对传统高耗能的行业进行产业升级。热工自动控制可以有效减少供热系统过程中产生的能耗,合理提高供热效能,减少经济损失,因此加强热工自动控制的应用,能够提高供热系统的经济效益、社会效益和生态效益。

关键词:供热系统;热工自动控制;节能 引言 在实际工作中需要加强对火电厂热工自动化中自动化控制理论的深入性分析,充分发挥不同技术模式本身的优势,构建新型的节能体系。

1影响机组的耗能因素分析 1.1锅炉能耗指标分析 一般来说,设备的运行效率能在一定程度上反映设备的能耗,所以锅炉的能耗指标就是锅炉的效率,反映锅炉的实际运行情况。锅炉能耗的主要影响因素是热损失,如煤不完全燃烧的热损失、排烟和煤渣的热损失、锅炉热损失等。锅炉的密封性、烟气含碳量、含氧量和排烟温度是影响锅炉性能的主要参数。其中,排烟过程中产生的热损失最大,其与煤炭品质和煤炭的燃烧率有关,煤炭燃烧率越高,产生的热损失也会越小;锅炉散热损失的大小取决于锅炉的密闭性,锅炉的密闭性越好,散热损失也会越小。所以说,锅炉的节能降耗可以通过选择优质煤种,提升煤炭燃烧率以及增强锅炉密闭性来实现。

1.2汽轮机组能耗指标分析 如锅炉能耗主要指锅炉效率,汽轮机机组能耗指标指汽轮机效率。它主要包括热端效率、冷端效率和热回收效率。此外,汽轮机的效率还受到许多参数的影响,主要是主蒸汽压力参数、再热蒸汽参数、真空参数等。汽轮机组的能耗较高的原因,主要是汽轮机本身的喷嘴室和外缸比较容易变形,这样不仅不能保证完全燃烧,而且在燃烧过程中,极易导致污染物的散发。为了提高汽轮机组的工作效率,首先要控制好实际给水温度,保证凝结器处于最佳的真空状态。并定期清理机组的管道,保证蒸汽的正常输送,从而能够最大程度上将热能转化为机械能。此外,针对汽轮机组影响参数的调节,要全面考虑,考虑不同因子之间的相互关系,尽量减少顾此失彼的可能性,并在实践中尽可能的采用多循环参数出现的的分析,提高工作系统的可实践性。技术改造在现代化社会中具有很强的可行性,因此还可以考虑对汽轮机组进行技术改造,针对实践中出现的问题,尤其是原理上的,可以进行全方位的技术改造。在对汽轮机进行改造的过程中,一定要坚持从凝汽器的角度出发,这是考虑到冷端系统的经济性和安全性。

热工基础与应用 第3版 知识点

《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。

知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。

热力系可以按热力系与外界的物质和能量交换情况进行分类。

2.工质:用来实现能量相互转换的媒介物质称为工质。

3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。

对于热力学而言,有意义的是平衡状态。

其实现条件是:0,0,0p T μ∆=∆=∆=。

4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。

状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。

5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。

实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。

6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。

热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。

动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。

第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。

知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。

热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。

2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。

先进控制方法在电厂热工过程控制中的应用

先进控制方法在电厂热工过程控制中的应用摘要:火力发电厂的热工过程比较复杂,而且其受控对象的可变因素也比较多,要想解决这一问题,就必须运用控制技术。

随着控制理论的不断完善与发展,为了保证系统的安全、可靠运行,有必要对其进行深入的研究与应用。

火力发电厂的热工过程控制是目前火力发电厂面临的一个重要课题,本文主要从以下几个方面展开论述。

关键词:先进控制方法;电厂热工;过程控制;应用1先进控制系统和控制技术概述1.1先进控制系统定义当前,先进控制系统还处在探索和发展之中,没有一个清晰的概念,人们普遍认为它是一种能够高效地完成特定的控制任务的智能系统。

它还可以被认为是一个有某种智能行为的系统。

简言之,在输入相应的激励问题时,该系统将表现出某种程度的智力,并对问题的解决做出了合理的反应;这种类型的系统被称为先进的控制系统。

1.2先进控制系统构成在先进控制系统中,除了执行器与传感器外,还包含了大量的传感器与传感信息处理与通讯接口。

目前先进控制系统的主要组成是模糊控制系统和自适应系统等。

1.3控制技术特点其特征表现为:一是对于复杂的生产过程,传统的控制方法难以奏效,需要采用先进的控制方法。

第二,在现代控制技术中,由于采用了智能化的控制方法,所以对被控对象的数学模型的需求比较小。

1.4控制技术类型(1)模糊控制。

建立准确的数学模型是现代控制理论的前提,然而,热力系统的时变特性与非线性特性相互耦合,使得建立准确的数学模型变得困难,这为模糊控制的实际应用奠定了坚实的基础。

将模糊控制应用于火力发电厂的热工过程控制,是一种很有意义的方法。

传统的模糊控制方法,由于其具有较高的稳定性和较高的稳定性,而传统的模糊控制方法,由于其具有较高的稳定性和较高的鲁棒性,使得其具有较好的动态特性。

在线性分析中,积分控制能很好地克服系统的稳态误差,但是系统的动态响应速率较慢;该方法具有较高的动态响应速度。

从总体上讲,比例积分法具有比较高的稳态精度和很高的动态响应速度。

热工仪表在发电厂中的自动化控制及其应用研究

热工仪表在发电厂中的自动化控制及其应用研究摘要:本文探讨了热工仪表在发电厂中的自动化控制及其应用研究。

首先,简要介绍了热工仪表的基本概念和发电厂中常见的热工仪表类型。

接着,重点分析了热工仪表在发电厂自动化控制中的重要性,包括实时监测、数据采集、自动诊断和预警等方面的应用。

通过引入热工仪表,发电厂能够实现对各设备的精确控制,提高设备的运行效率和安全性,降低故障发生的概率。

此外,还讨论了热工仪表在辅机控制、环保监测和维修效率等方面的应用。

最后,总结了热工仪表在发电厂自动化控制中的发展趋势和未来研究方向。

关键词:热工仪表;发电厂;自动化控制;应用研究引言:随着科技的不断发展,自动化控制技术在发电厂中的应用越来越广泛。

热工仪表作为发电厂中的重要设备,其自动化控制对于提高发电厂的效率和安全性具有重要意义。

本文将对热工仪表在发电厂中的自动化控制及其应用进行综述。

1、热工仪表的种类和作用热工仪表是发电厂中用于测量和监控各种热工参数的仪表,包括温度、压力、流量、液位等。

常见的热工仪表有热电阻、热电偶、压力表、流量计、液位计等。

这些仪表在发电厂的运行中起着至关重要的作用,能够实时监测设备的运行状态,及时发现和解决故障,保障发电厂的安全稳定运行[1]。

2、热工仪表的自动化控制随着自动化技术的发展,热工仪表的自动化控制已经成为发电厂的重要发展方向。

自动化控制能够实现发电厂的智能化、高效化运行,提高设备的运行效率和安全性[2]。

常见的热工仪表自动化控制技术包括以下内容[3]。

2.1智能控制通过引入智能传感器、控制器等设备,热工仪表的自动化控制得以实现对热工参数的智能感知、控制和调节。

这些设备利用先进的传感技术和数据处理算法,能够实时、准确地监测和测量热工参数,如温度、压力、流量等。

同时,智能传感器和控制器还具备强大的数据处理和传输能力,可以将采集到的数据传输到上位机或控制系统,实现远程监控和自动化控制。

智能感知技术使得热工仪表能够自动识别和适应各种不同的工况和环境,提高了设备的自适应性。

谈热工自动化控制在火电厂的应用及发展

开关量控制是开环控制, 是实现锅炉 、 汽轮机及其辅助设备启、 停或开 、 关操作的总称, 如顺序控制、 选线控制、 单独控制、 连锁控制等。 从数量上来讲,大型火电站的 自动控制系统大部分属于开关量控 制系 统, 同时, 很多控制系统是 由模拟量控 制和开关量控制密切 配合、 共 同完成 的。从规模上来讲, 大型火电站的开关量控制系统 , 可从只有几个控 制点的 局部辅机程控 、 保护, 到成 百上千个点的主机顺控与保护, 无所 不在。
二、 我国火力发 电厂热工 自动化的发展现状 近年来 , 随着 我国科学技术的飞速发展, 人们也将许 多先进的科学技术 和管理理念应用到我 国电力行业 当中,从而使得我国电力控制系统逐渐 朝 着 自动化方 向发展, 这样不仅提高了电气设备的工作效率, 还降低 了其运用 成本 而在我 国火电发 电厂当中, 人们主要是将DC S 技术作为其热 工自动化 的核心技术 , 它主要是通过设备分散控制的方法 , 来对火 电厂发 电设备的数 据信息进行 自动化的处理 ,这样就大幅度的增强 了发电操作系统的安全性 和经济性 。 而 随着人们对 电子信息技术研究的不断深入 , 人们将计算机软件 技术应用到其中, 这样也极大的提高 了DC S 技术的应用效果, 使得我国火力 发电厂热工 自动化技术得到了有效 的发展。 三、 火 电 厂 热工 自动 化 的 意 义
时制表、 随机打印、 事故追忆打 印; 在线性能计算和经济分析: 提 供运行操作
指导等。
动化 系统来保证电力系统的正常运行。这样不仅可 以 增 强火 电厂发电设备 管理 的安全性, 还有效 的提高了火 电发 电设备的工作效率 , 适当的减少可人 力资源 的浪费, 从而 为我 国电力行业的可持续发展打下了扎实的基础。 下面 我们就对热工 自 动化控制在火电厂的实际应用情况进行简要的介绍。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

③ 计算喷管主要截面处的气 流速度;
④ 由流量公式求解各主要截 面的截面积。
校核计算步骤
p1,T1(c1 0), pb , Aj
cj, qm
① 通过 pb p1 与 cr 的比较,确定喷 管出口压力 p2
对于渐缩喷管

pb pb
p1 cr时, p2 pb p1 cr时, p2 pcr cr p1
p2 p1



p2 p1




热工基础与应用 第五章
(四)设计计算与校核计算
设计计算步骤
已知: p1,T1(c1 0), pb , qm
求:
cj, Aj
步骤:① 喷管选型(选型原则前已 述及),有 p2 pb ;
② 计算喷管主要截面(临界 截面、出口截面)的热力 状态参数;
T1 300 K T1 300 K
T0 720 K T0 1220 K
热工基础与应用 第五章
例3、在1题的条件,若 c1 100 m/s,则喷管出口流速及截面面积 为多少?
解:选型:
T0

T1

c12 2cp

600

cdc

vdp

c
p
c p
热工基础与应用 第五章
(三)过程方程
p1v1 p2v2 pv
dp dv 0 pv
dp p


dv v


p p

v v


c c

v v

p p

(四)声速方程
ca

解(1)选型


pb p1

0.6 1.5
0.4 cr
0.528
故选缩放喷管
且 p2 pb 0.6MPa
(2)
pcr cr p1 0.528 1.5 0.792 MPa
1
1.41
Tcr T1 cr 600 0528 1.4 499.9 K
c2
c2 c2 2h0 h2 0.92 ~ 0.98
喷管效率 能量损失系数
N

1 2
c22
1 2
c22
2


c22 c22 c22
12
热工基础与应用 第五章
例2: 一渐缩喷管,出口截面面积 A2 25cm,2 进口水蒸气参数
为 p1 9.0 MPa ,t1 500 ℃ ,背压 pb 7.0 MPa 。试求;a)出口流速 ,
流量c2 ;b)qm若
pb ,4.0 MPa c2 ?cq)m在 a?)的条件下,若存在
摩阻
, 则 0.97
c2 ? qm ?
解:a) 确定出口压力:
pb p1 7 9 0.78 cr 0.546 p2 pb 7.0 MPa
确定出口截面参数:查图或查表得
h1 3386 .4 kJ/kg, s1 6.6592 kJ/(kg.K)
由 p2, s2 s1 查得 h2 3306 .1kJ/kg , v2 0.04473 m3/kg
求出口流速: c2 2h1 h2
2 3386.4 3306.1103 400.7 m/s
vcr

RgTcr pcr

0.287103 499.9 0.792 106
0.1812
m3/kg
1
1.41
T2
T1
p2 p1


600 0.6 1.4 1.5
461.8 K
v2

RgT2 p2

0.287103 461.8 0.6 106
dA dc dv 0 Ac v
dA dv - dc A vc
c v 当 dc dv dA 0 c vA
当 dc dv cv
dA 0 A
热工基础与应用 第五章
(二)特征参数方程
dp dv
p
v
dv v


dp
p


vdp
pv

c dc ca2
p
s

p p
v s
v
v2 p v s
ca pv RgT
Ma c ca
Ma 1 超音(声)速 Ma 1 音(声)速
Ma 1 亚音(声)速
热工基础与应用 第五章
二 、 气体的定熵流动
(一)截面积、流速和比体积间的关系
c2 2h1 h2 2 3386.4 3192.5103 622.7 m/s
qm

A2c2 v2

25104 622.7 0.05988
26 kg/s
热工基础与应用 第五章
c) 若有摩阻存在,则
h
c2 c2 400 .7 0.97 388 .7 m/s
临界截面处 p pcr, c ccr pcrvcr ,
1
1
pcrvcr

pcr p1
p1
v1
p1 pcr


p1v1

pcr p1


ccr

1
2p1v1 1
1

pcr p1




1
p2 pb pcr
满足要求 不能满足要求
若选缩放喷管:
p2 pb pcr
满足要求
选型原则

pb pb
p1 cr p1 cr
选渐缩喷管 选缩放喷管
2
pb
2
热工基础与应用 第五章
(三)流量计算与分析
1、计算
A2c2
Ac qm v


v2 Acrccr
vcr
渐缩 缩放
2、以渐缩喷管为例分析

1
qm
c
b
c2
2p1v1 1
1

p2 p1




1
v2

v1
p2 p1


qm

A2c v2
2
a
0
1
1
3
p2

2
1
4
2
4
p1
A2
2
1
p1 v1


1
p1v1

p cr p1



2
1
p1v1 1

pcr p1




pcr p1
cr



2
1


1
0.487 单原子气体
cr
00..554268
双原子气体 多原子气体
0.546 过热蒸气
0.577 干饱和蒸气
热工基础与应用 第五章
2、选型原则
1
已知参数: p1,T1, (c1 0) ,背压 pb (喷后部管道压力)。
目的:充分利用压差 p1 pb ,使得 p2 pb
1
当 pb p1 cr,若选渐缩喷管:
p2 pb pcr
当 pb p1 cr ,若选渐缩喷管:
h2 p2 , s2 s1
1
T2
T1
p2 p1


热工基础与应用 第五章
(二)绝热滞止与滞止参数
c1 0 ?
1、绝热滞止:气体在绝热流动过程中,因受某种物体的阻碍, 或经扩压管后,气体流速降低为零的过程称为绝热滞止过c1程 0。
2、滞止参数:气流速度在绝热滞止过程中滞止为0的状态称为 滞止状态,其状态参数称为滞止参数。
0.2209
m 3 /kg
热工基础与应用 第五章
(3) ccr 2cp (T1 Tcr ) 21.004 (600 499.9) 103 448.3 m/s
c2 2cp T1 T2 21.004 600 461.8103 526.8 m/s
对于缩放喷管 pb p1 cr时, p2 pb
②和③与设计计算的②和③相同;
④ 根据流量公式,由最小截面处的 流速、比体积和截面积求流过喷 管的气流流量。
热工基础与应用 第五章
例 1 试设计喷管,使空气从 p1 1.5MPa,t1 327℃,可逆地膨胀 到 pb 0.6MPa,流量 qm 3kg/。s 则喷管出口流速及截面面积为多少?
h0

h1

c12 2
T0
T1

c12 2c p


p0


p1

T0 T1

1
由h0,s0
s1查取
理想气体 蒸气
热工基础与应用 第五章
3、其他应用 ① 高速流动气体温度测量
② 航空航天
T0
T1

c12 2c p
c1 T0 T1
Ma 3 Ma 4
热工基础与应用 第五章
第五章 热工基础的应用
主要介绍:
1、主要设备的基本结构和工作原理;
2、对热力过程、热工设备和循环进行热力学 和传热学分析,进行有关的热设计;
3、根据分析提出改进过程、设备和循环的提 高能量利用经济性的具体措施与方法。
相关文档
最新文档