导数各类题型方法总结(绝对经典)57654

导数各类题型方法总结(绝对经典)57654
导数各类题型方法总结(绝对经典)57654

导数各类题型方法总结(绝

对经典)57654

-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 导数及其应用

一, 导数的概念 1..已知x

f x f x

x f x ?-?+=→?)

2()2(lim

,1)(0

则的值是( )

A. 41-

B. 2

C. 4

1

D. -2

变式1:()()()为则设h

f h f f h 233lim ,430

--='→( )

A .-1 B.-2

C .-3

D .1 变式2:()()()

0000

3,lim x f x x f x x f x x x

?→+?--??设在可导则等于

( )

A .()02x f '

B .()0x f '

C .()03x f '

D .()04x f '

导数各种题型方法总结

请同学们高度重视:

首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法

5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在

其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;

其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

(请同学们参看2010省统测2)

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,

432

3()1262

x mx x f x =--

(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;

(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.

解:由函数4323()1262x mx x f x =-- 得32

()332

x mx f x x '=-

- 2()3g x x mx ∴=--

(1)

()y f x =在区间[]0,3上为“凸函数”,

则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立

解法一:从二次函数的区间最值入手:等价于max ()0g x <

030

209330

m m <-?<--

解法二:分离变量法:

∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立

等价于233

x m x x x ->=-的最大值(03x <≤)恒成立, 而3

()h x x x

=-(03x <≤)是增函数,则max ()(3)h x h ==2m ∴>

(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2()30g x x mx =--< 恒成立

变更主元法

再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)

2

2

(2)0230

11(2)0230F x x x F x x ?->--+>?????-<-+>???

2b a ∴-=

例2:设函数),10(323

1

)(223R b a b x a ax x x f ∈<<+-+-=

(Ⅰ)求函数f (x )的单调区间和极值;

(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

(二次函数区间最值的例子)

解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---

01a <<

令,0)(>'

x f 得)(x f 令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)

∴当x=a 时,)(x f 极小值=;4

3

3b a +- 当x=3a 时,)(x f 极大值=b.

(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①

则等价于()g x 这个二次函数max min ()()g x a

g x a

≤??≥-? 22()43g x x ax a =-+的对称轴2x a = 01,a <<

12a a a a +>+=(放缩法)

即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.(9分)

max min ()(2)2 1.()(1)4 4.

g x g a a g x g a a =+=-+=+=-+

于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于

(2)44,4

1.(1)215g a a a a g a a a +=-+≤?≤≤?

+=-+≥-?

解得 又,10<

.15

4

<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系

第三种:构造函数求最值

题型特征:)()(x g x f >恒成立0)()()(>-=?x g x f x h 恒成立;从而转化为第一、二种题型

例3;已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,

32

6()(1)3(0)2

t g x x x t x t -=+-++>

(Ⅰ)求,a b 的值;

(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;

(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

2x a =

[]1,

2a a ++

解:(Ⅰ)/

2

()32f x x ax =+∴/(1)31f b a

?=-?=+?, 解得3

2a b =-??=-?

(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]-

(Ⅲ)令2()()()(1)3[1,4]2

t

h x f x g x x t x x =-=-++-∈

思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2(2)26t x x x -≥-分离变量 思路2:二次函数区间最值

二、题型一:已知函数在某个区间上的单调性求参数的范围

解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型

解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集 例4:已知R a ∈,函数x a x a x x f )14(2

1121)(2

3++++=

. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.

解:

)14()1(4

1)(2

++++=

'a x a x x f . (Ⅰ)∵

()f x '是偶函数,∴ 1-=a . 此时x x x f 312

1)(3-=,341

)(2-='x x f ,

0)(='x f ,解得:32±=x .

列表如下:

可知:

()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f .

(Ⅱ)∵函数

)(x f 是),(∞+-∞上的单调函数,

2

1()(1)(41)04

f x x a x a '=

++++≥,在给定区间R 上恒成立判别式法 则22

1(1)4(41)204

a a a a ?=+-??+=-≤, 解得:02a ≤≤.

综上,a 的取值范围是}20{≤≤a a .

例5、已知函数3211

()(2)(1)(0).32

f x x a x a x a =

+-+-≥ (I )求()f x 的单调区间;

(II )若()f x 在[0,1]上单调递增,求a 的取值范围。子集思想 (I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++- 1、20,()(1)0,a f x x '==+≥当时恒成立

当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。 2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且 单调增区间:(,1),(1,)a -∞--+∞ 单调增区间:(1,1)a -- (II )当

()[0,1],f x 在上单调递增 则[]0,1是上述增区间的子集:

1、0a =时,()(,)f x -∞+∞在单调递增 符合题意

2、[]()0,11,a ?-+∞,10a ∴-≤ 1a ∴≤ 综上,a 的取值范围是[0,1]。

三、题型二:根的个数问题

题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题 解题步骤

第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关

系;

第三步:解不等式(组)即可;

例6、已知函数232

)1(31)(x k x x f +-=,kx x g -=31

)(,且)(x f 在区间),2(+∞上为增函数.

(1) 求实数k 的取值范围;

(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围. 解:(1)由题意x k x x f )1()(2+-=' ∵)(x f 在区间),2(+∞上为增函数,

∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)

即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k

a-1

-1

()f x '

相关主题
相关文档
最新文档