江苏省扬州市2011届高三数学调研试卷2010.12

合集下载

江苏省苏州市2024-2025学年高三上学期11月期中调研数学试题含答案

江苏省苏州市2024-2025学年高三上学期11月期中调研数学试题含答案

2024~2025学年第一学期高三期中调研试卷数学(答案在最后)注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共6页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效,作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,若i 是虚数单位,复数z 与21i -关于虚轴对称,则z =()A.1i + B.1i-- C.1i-+ D.1i-【答案】C 【解析】【分析】利用复数的除法运算和几何意义求解即可.【详解】()221i 21i 1i 1i +==+--,复数z 与21i-关于虚轴对称,故1i z =-+.故选:C2.若对于任意的实数R x ∈都有cos()sin cos cos sin x x x θθθ-=+成立,则θ的值可能是()A.π4B.π2-C.π4-D.0【答案】A 【解析】【分析】利用两角和差公式和诱导公式求解即可.【详解】cos()sin cos cos sin sin()sin(2)x x x x x θθθθθθ-=+=+=-+,故π22π,Z 2k k θ=+∈,即ππ,Z 4k k θ=+∈,当0k =时,π.4θ=故选:A3.下列说法中不正确的是()A.“1a >”是“2a >”的必要不充分条件B.命题“R x ∀∈,2220x x ++>”的否定是“R x ∃∈,2220x x ++<”C.“若a ,R b ∈,8a b +<,则4a <且4b <”是假命题D.设m ,R n ∈,则“0m =或0n =”是“0mn =”的充要条件【答案】B 【解析】【分析】利用充分性和必要性的定义即可判断选项AD ;利用命题的否定即可判断选项B ;利用赋值法即可判断选项C.【详解】对于A,“1a >”是“2a >”的必要不充分条件,故A 正确;对于B ,命题“R x ∀∈,2220x x ++>”的否定是“R x ∃∈,2220x x ++≤”,故B 错误;对于C ,当5,1a b ==时,满足8a b +<,不满足4a <且4b <,故“若a ,R b ∈,8a b +<,则4a <且4b <”是假命题,故C 正确;对于D ,“0m =或0n =”是“0mn =”的充要条件,故D 正确.故选:B4.在数列{}n a 中,12n n a a n ++=,则数列{}n a 前24项和24S 的值为()A.144 B.312C.288D.156【答案】C 【解析】【分析】根据题意,结合12n n a a n ++=,将{}n a 前24项和24S 转化为等差数列求和问题.【详解】因为12n n a a n ++=,所以()2412324122462610462882S a a a a ⨯+=++++=++++== ,故选:C.5.已知实数0x y >>,则223x x y xy y +-的最小值为()A.12B.9C.6D.3【答案】B 【解析】【分析】将xy 看成一个整体,然后利用换元法结合基本不等式求解即可.【详解】22233,1x y x x x x y xy y y y⎛⎫ ⎪⎝⎭+=+--设1xt y=-,0x y >>,故0t >,()()222131314559t x x t t y xy ytt ++=++=++≥=-,当且仅当14t t =,即12t =时,等号成立.故选:B6.在轴截面顶角为直角的圆锥内,作一内接圆柱,若圆柱的表面积等于圆锥的侧面积,则圆柱的底面半径与圆锥的底面半径的比值为()A.14B.24C.12D.2【答案】D 【解析】【分析】设圆柱和圆锥底面半径分别为r ,R ,由圆柱表面积等于圆锥侧面积建立方程,求半径比.【详解】设圆柱和圆锥底面半径分别为r ,R,因为圆锥轴截面顶角为直角,所以圆锥母线长为,设圆柱高为h ,则h R r R R-=,=-h R r ,由题,()2π2π2πR r r R r ⨯=+⨯-,得22r R =.故选:D .7.已知()()()2R,4sin f x x x ωω∈=-⋅,若存在常数R a ∈,使得()y f x a =+为偶函数,则ω的值可以为()A.3π8 B.π3C.π4D.π2【答案】A 【解析】【分析】求出()y f x a =+的解析式,得()24y x a =+-和()sin y x a ω⎡⎤=+⎣⎦都是偶函数,然后根据偶函数的定义分析求解.【详解】由()()()2R,4sin f x x x ωω∈=-⋅,得()()()24sin x a x f a a x ω+-⋅=++⎡⎤⎣⎦是偶函数,因为()24y x a =+-不可能是奇函数,所以()24y x a =+-和()sin y x a ω⎡⎤=+⎣⎦都是偶函数,()()()2224244y x a x a x a =+-=+-+-为偶函数,则40a -=,即4a =,()()sin 4sin 4y x x ωωω⎡⎤=+=+⎣⎦为偶函数,则π4π2k ω=+,Z k ∈,ππ48k ω=+,Z k ∈,只有1k =时,3π8ω=,故选:A8.已知函数()e e (0)x x f x x ax b ab a =--+>,若()0f x ≥,则1b a-最大值为()A.2e -B.1e - C.eD.2e 【答案】A 【解析】【分析】将()0f x ≥转化为函数y x b =-和e x y a =-的零点相同,然后利用ln b a =,构造函数()ln 1a g a a-=求最值即可.【详解】()()()e e e xxxf x x ax b ab x b a =--+=--,因为0a >,且函数y x b =-和e xy a =-都是增函数,故若()0f x ≥恒成立,则函数y x b =-和e xy a =-的零点相同,即ln b a =.故1ln 1b a aa--=,设()ln 1,a g a a -=则()22ln ,ag a a-'=故在()20,e,()0g a '>,()g a 单调递增;在()2e ,∞+,()0g a '<,()g a 单调递减.故()()22max e e,g a g -==故1b a-最大值为2e -.故选:A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知向量(),2a x x =-,()1,b x =-- ,则下列说法中正确的是()A.若a b∥,则2x =-或1B.若a b ⊥,则0x =或-3C.若a b =,则1x =或3D.若1x =-,则向量a ,b夹角的余弦值为5【答案】AC 【解析】【分析】根据向量平行求参判断A 选项,根据向量垂直求参判断B 选项,应用模长相等计算判断C 选项,根据向量坐标的模长公式先求模长再根据夹角余弦公式计算判断D 选项.【详解】A 选项,若//a b,有()22x x --=-,解得1x =或2x =-,A 选项正确;B 选项,若a b ⊥,有()20x x x ---=,解得0x =或3,B 选项错误,;C 选项,若a b = =,解得1x =或3x =,C 选项正确;D 选项,当=1x -时,()1,3a =- ,()1,1b =- ,a =,b = ,4a b ⋅= ,向量a ,b 夹角的余5=,D 选项错误.故选:AC.10.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,下列四个命题中正确的是()A.若ABC V 为锐角三角形,则sin cos B A >B.若60B =︒,2b ac =,则ABC V 是直角三角形C.若cos cos b C c B b +=,则ABC V 是等腰三角形D.若ABC V 为钝角三角形,且3AB =,5AC =,13cos 14C =,则ABC V 的面积为4【答案】AC 【解析】【分析】利用正弦函数的单调性和诱导公式即可判断A 选项;利用余弦定理即可判断B 选项;利用正弦定理边化角即可判断C 选项;利用余弦定理求出7a =或167a =,再进行分类讨论即可判断D 选项.【详解】对于A,若ABC V 为锐角三角形,则π,2A B +>即ππ22B A >>-,故πsin sin cos 2B A A ⎛⎫>-=⎪⎝⎭,故A 正确;对于B ,若60B =︒,2b ac =,则222222cos b a c ac B a c ac ac =+-=+-=,即()22220,0a c ac a c +-=-=,故a c =,且60B =︒,故ABC V 是等边三角形,故B 错误;对于C ,若cos cos b C c B b +=,则sin cos sin cos sin ,B C C B B +=即()sin sin ,B C B +=即s s n n ,i i A B =故A B =,ABC V 是等腰三角形.故C 正确;对于D ,222225913cos 21014a b c a C ab a +-+-===,解得7a =或167a =,且sin 14C ==,当7a =时,cos 0A <,A 为钝角,故1sin 24ABC S ab C ==△,当167a =时,cos 0B <,B 为钝角,故1sin 249ABC S ab C ==V ,故D 错误.故选:AC11.已知α,()βαβ≠是函数32()1f x x ax bx =+++,(),a b ∈R 两个不同的零点,且1αβ⋅=,1x ,2x 是函数()f x 两个极值点,则()A.a b =B.3a >或2a <-C.22(2)a b +-值可能为11D.使得()()1243f x f x +=的a 的值有且只有1个【答案】ACD【解析】【分析】由,αβ是()f x 的零点且1αβ=得()()()(1)f x x x x αβ=--+,展开后与已知比较可得1a b αβ==--,可判断A ,由2()()(1)10x x x a x αβ--=+-+=有两个不等实解,得a 的范围,可判断B ,直接解方程22(2)11a a +-=可判断C ,由韦达定理得出1212,x x x x +,代入124()()3f x f x +=,化为关于a 的方程,引入函数32()299g a a a =-+,由导数确定它的单调性,结合零点存在定理得零点范围,结合B 中范围可判断D .【详解】由已知2()32f x x ax b '=++有两个零点,24120a b ∆=->,又α,()βαβ≠是函数32()1f x x ax bx =+++两个不同的零点且1αβ⋅=,所以()()()(1)f x x x x αβ=--+,即32()(1)()f x x x x αβαβαβαβ=+--+--+32(1)(1)1x x x αβαβ=+--+--+所以1a αβ=--,1b αβ=--,即a b =,A 正确;224124120a b a a ∆=-=->,解得3a >或0a <,(0)10=>f ,322()1(1)[(1)1]f x x ax ax x x a x =+++=++-+,由已知2(1)10x a x +-+=有两个不等实根,αβ,所以21(1)40a ∆=-->,解得3a >或1a <-,所以3a >或1a <-,B 错;222222(2)(2)2442(1)211a b a a a a a +-=+-=-+=-+=,解得12a =-或12a =+,满足3a >或1a <-,C 正确;由2()320f x x ax a '=++=,得1223a x x +=-,123ax x =,322212121212()()()()2f x f x x x a x x a x x +=++++++32121212121222()3()[()2]()2x x x x x x a x x x x a x x =+-+++-+++322282422()2273933a a a a a a =-++--+23422273a a =-+,由2342422733a a -+=整理得322990a a -+=,设32()299g a a a =-+,则2()6186(3)g a a a a a '=-=-,0a <或3a >时,()0g a '>,0<<3a 时,()0g a '<,()g a 在在(,0)-∞和(3,)+∞上递增,在(0,3)上递减,又(0)90,(3)180g g =>=-<,(1)20g -=-<,33(9)29990g =⨯-+>,所以()g a 在(1,0)-,(0,3),(3,)+∞上各有一个零点,又1a <-或3a >,因此()0g a =只在(3,)+∞上在一个解,D 正确.故选:ACD .【点睛】方法点睛:本题考查用导数研究函数的零点,极值,对计算要求较高,对多项式函数1110()n n n n f x a x a x a x a --=++++ ,如果α是它的一个零点,则121210()()()n n n n f x x b x b x b x b α----=-++++ ,因此本题中在已知()f x 有两个乘积为1的零点时,结合常数项可设()()()(1)f x x x x αβ=--+,展开后得出,a b 与,αβ的关系,从而使得问题可解.三、填空题:本题共3小题,每小题5分,共15分.12.已知函数π()2sin (0)4f x x ωω⎛⎫=+> ⎪⎝⎭在区间[]0,1上的值域为[],m n ,且3n m -=,则ω的值为______.【答案】11π12【解析】【分析】利用整体代入法,结合正弦函数的图像求解即可.【详解】[]0,1x ∈,故πππ,444x ωω⎡⎤+∈+⎢⎥⎣⎦,因为π()2sin 4f x x ω⎛⎫=+⎪⎝⎭在区间0,1上的值域为[],m n ,且3n m -=,故必有2,1,n m ==-,如图所示,则π7π,46ω+=故11π.12ω=故答案为:11π1213.如图,边长为1的正ABC V ,P 是以A 为圆心,以AC 为半径的圆弧 BC 上除点B 以外的任一点,记PAB 外接圆圆心为O ,则AO AB ⋅=______.【答案】12##0.5【解析】【分析】利用三角形外心的性质将AO AB ⋅转化为()AD DO AB +⋅ 即可.【详解】取AB 的中点D ,因为ABC V 为正三角形,故CD 为AB 的中垂线,则PAB 外接圆圆心O 一定在CD 上,如图所示,,故()21122AO AB AD DO AB AD AB AB ⋅=+⋅=⋅== .故答案为:1214.若存在实常数k 和b ,使得函数()f x 和()g x 对其公共定义域上的任意实数x 都满足()()f x kx b g x ≥+≥恒成立,则称直线y kx b =+为()f x 和()g x 的“媒介直线”.已知函数2()(R)f x x x =∈,1()(0)g x x x=<,若()f x 和()g x 之间存在“媒介直线”y kx b =+,则实数b 的范围是______.【答案】[]4,0-【解析】【分析】结合函数图像,利用临界情况,y kx b =+同时与()f x 和()g x 均相切求解即可.【详解】()()f x kx b g x ≥+≥恒成立,即y kx b =+的图像一直在()f x 和()g x 之间,,当y kx b =+同时与()f x 和()g x 均相切时,方程2()f x x kx b ==+和方程1()g x kx b x==+均只有一个解,即20x kx b --=和210kx bx +-=均只有一个解,故224040k b b k ⎧+=⎨+=⎩或2400k b k ⎧+=⎨=⎩,解得0b =或4-,结合图像可知,“媒介直线”y kx b =+的截距[]4,0b ∈-.故答案为:[]4,0-【点睛】思路点睛:本题考查函数新定义,注意理解新定义,然后数形结合,利用临界情况求解即可.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知数列{}n a 是公差大于1的等差数列,23a =,且11a +,31a -,63a -成等比数列,若数列{}n b 前n 项和为n S ,并满足2n n S b n =+,*n N ∈.(1)求数列{}n a ,{}n b 的通项公式.(2)若()()11n n n c a b =--,求数列{}n c 前n 项的和n T .【答案】(1)21n a n =-;12nn b =-(2)()2228.n n T n +=--【解析】【分析】(1)利用等差数列的基本量可求出n a ;利用n S 和n b 的关系,构造出()1121n n b b --=-即可求出n b ;(2)利用错位相减法求解即可.【小问1详解】设等差数列{}n a 的公差为d ,由23a =,且11a +,31a -,63a -成等比数列知:()()()12111315321a d a a d a d +=⎧⎪⎨++-=+-⎪⎩,整理得:251240d d -+=,即2=d 或者25d =,因为公差大于1,故2=d .且131a d =-=,故21n a n =-.数列{}n b 前n 项和为n S ,并满足2n n S b n =+①,且11121b S b ==+,解得11b =-,故当2n ≥时,1121n n S b n --=+-②,①式减②式得:11221n n n n n S S b b b ----==+,即()1121n n b b --=-,故{}1n b -是公比为2的等边数列,则()111122n n n b b --=-⨯=-,故12nn b =-【小问2详解】()()()()()11122212n n n n n c a b n n +=--=--=--,故()345102223212,n n T n +=--⨯-⨯---……则()4562202223212,n n T n +=--⨯-⨯---……故()()3234512222222221212,12n n n n n n T T n n ++++--=-----+-=-+--……故()2228,n n T n +-=-+则()2228.n n T n +=--16.已知向量(sin ,cos )a x x =,,cos )b x x = ,()21f x a b =⋅-.(1)求函数()f x 解析式,写出函数()f x 的最小正周期、对称轴方程和对称中心坐标.(2)试用五点作图法作出函数()f x 在一个周期上的简图(要求列表,描点,连线画图).(3)根据(2)中的图象写出函数()()y f x x =∈R 的单调增区间、最小值及取得最小值时相应x 值的集合.【答案】(1)见解析(2)见解析(3)见解析【解析】【分析】(1)利用向量数量积的坐标公式和三角恒等变换求出()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,然后利用整体代入法求解即可;(2)利用五点作图法求解即可;(3)根据函数图像求解即可.【小问1详解】向量(sin ,cos )a x x =,,cos )b x x = ,则2ππ2T ==,)2π()212cos cos 12cos 22sin 26f x a b x x x x x x ⎛⎫=⋅-=+-=+=+ ⎪⎝⎭,故()f x 的最小正周期2ππ2T ==,当ππ2=π,62x k k ++∈Z 时,ππ,62k x k =+∈Z ,当π2=π,6x k k +∈Z 时,ππ,122k x k =-+∈Z ,故()f x 的对称轴方程为ππ,62k x k =+∈Z ,对称中心为ππ,0,122k k ⎛⎫-+∈ ⎪⎝⎭Z .【小问2详解】列表:π26x +π2π3π22πxπ12-π65π122π311π12π2sin 26y x ⎛⎫=+ ⎪⎝⎭0202-0描点,连线,画图得:【小问3详解】由图可知,()f x 的单调增区间为πππ,π,36k k k ⎛⎫-+∈ ⎪⎝⎭Z ;最小值为2-;取最小值时相应x 值的集合为:2ππ,3x x k k ⎧⎫=+∈⎨⎬⎩⎭Z .17.如图①,在平面四边形ABCD 中,CB CD ==,tan CDB ∠=,O 为对角线BD 中点,F 为BC 中点,E 为线段AD 上一点,且BE AO ⊥,CO AB =,AB BD ⊥.(1)求AE 的长.(2)从下面(i )与(ii )中选一个作答,如果两个都作答,则只按第一个解答计分.(i )在平面四边形ABCD 中,以BD 为轴将BCD △向上折起,如图②,当面CBD ⊥面ABD 时,求异面直线OF 与BE 所成角的余弦值.(ii )在平面四边形ABCD 中,以BD 为轴将BCD △向上折起,如图③,当60COE ∠=︒时,求三棱锥C ABD -的体积.【答案】(1(2)见解析【解析】【分析】(1)利用勾股定理和正弦定理结合三角函数求解即可;(2)若选(i ),利用空间向量求解即可;若选(ii ),利用等体积法求解即可.【小问1详解】因为CB CD ==O 为对角线BD 中点,故CO BD ⊥,因为tan CDB ∠=故sin 33CDB CDB ∠=∠=,即sin 3363CO DO CDB CDB CD CD ∠==∠==,解得2CO DO ==,故24,BD DO AB CO ====,则AD ==,AO ==,因为AB BD ⊥,BE AO ⊥,则π2ABE EBO ∠+∠=,π2AOB EBO ∠+∠=,所以ABE AOB ∠=∠,所以6sin sin 3AB ABE AOB AO ∠=∠==,3cos 3ABE ∠=,且6sin sin 3BD BAD ABE AD ∠===∠,故ABE BAD ∠=∠,则在等腰ABE 中,由正弦定理得:sin sin AB AEAEB ABE=∠∠,即22sin 2sin AEABE ABE =∠∠,则2cos AE ABE ===∠.【小问2详解】若选(i ):当面CBD ⊥面ABD 时,因为CO BD ⊥,面CBD ⋂面ABD BD =,CO ⊂面CBD ,故CO ⊥面ABD ,又AB BD ⊥,故以点B 为坐标原点,BD 为x 轴,BA 为y 轴,过点B 做CO 的平行线为z 轴,可以建如图所示空间直角坐标系,由(1)知,12AE AD ==,故E 为AD 中点,则易得()(())0,2,0,,0,0,0,2,0,O F B E则()0,,2,0,OF BE =-=设异面直线OF 与BE 所成角为θ,则2cos cos ,3OF BEOF BE OF BEθ⋅===⋅.若选(ii ):由(1)知,12AE AD ==,故E 为AD 中点,故12OE BA ==,当60COE ∠=︒时,1sin 602COE S CO OE =⋅⋅= ,因为//OE BA ,BD BA ⊥,故BD OE ⊥,且BD CO ⊥,OE CO O ⋂=,故BD ⊥面COE ,因为E 为AD 中点,O 为BD 中点,故4ABD DOE S S = ,则三棱锥C ABD -的体积:144433C ABD C DOE D COE COE V V V S OD ---===⨯⨯=.18.已知函数()ln(1)f x a x =-,2()2g x x x =-.(1)如果函数()f x 在(2,(2))f 处的切线,也是()g x 的切线,求实数a 的值.(2)若()()()F x g x f x =-在11,e 1e⎡⎤++⎢⎥⎣⎦存在极小值()0F x ,试求()0F x 的范围.(3)是否存在实数a ,使得函数2(1)G()(1)2(1)g x x f x x +=+-+有3个零点,若存在,求出所有实数a 的取值集合,若不存在,请说明理由.【答案】(1)2(2)(2e 1,0⎤--⎦(3)()0,1【解析】【分析】(1)利用导数的几何意义求解即可;(2)利用极值点的定义,得出()2021a x =-,然后构造函数求出()0F x 的范围即可;(3)根据G()x 的单调性对a 进行分类讨论,注意1G(G()0x x+=,然后转化为G()x 在()1,+∞上有唯一零点求解即可.【小问1详解】(2)0f =,(),(2)1af x f a x ''==-,故()f x 在(2,(2))f 处的切线为()2y a x =-,()2y a x =-也是()g x 的切线,故方程()222x x a x -=-只有一个解,即()2220x a x a -++=只有一个解,()2280a a +-=,解得2a =.【小问2详解】()2()()()2ln 1F x g x f x x x a x =-=---,()221()2211x a a F x x x x --'=--=--,当0a ≤时,()0F x '>,()F x 无极值点,不符合题意;当0a >时,在1,1⎛+⎝上,()0F x '<,()F x 单调递减;在1⎛⎫++∞ ⎪ ⎪⎝⎭上,()0F x '>,()F x 单调递增;故()F x的极小值点01x =+,则()2021a x =-,故()()()02020002112ln F x x x x x =----,设01t x =-,011,e 1e x ⎡⎤∈++⎢⎥⎣⎦,则1,e e t ⎡⎤∈⎢⎥⎣⎦,此时()2201ln 2F x t t t =--,设()221l 2n h t t t t =--,则()4ln h t t t '=-,1,1e t ⎛⎫∈ ⎪⎝⎭时,()0h t '>,()h t 单调递增;()1,e t ∈时,()0h t '<,()h t 单调递减;()()22131,e e 1,10e e h h h ⎛⎫=-=--= ⎪⎝⎭,故()(2e 1,0h t ⎤∈--⎦,即()(20e 1,0F x ⎤∈--⎦【小问3详解】2(1)1G()(1)2ln 2(1)1g x x x f x a x x x +-=+-=-++,0x >,()()()222144()11a x x a G x x x x x +-'=-=++,当0a ≤时,()0G x '<,G()x 在()0,∞+单调递减,不存在3个零点;当1a ≥时,()()()()22221414()011a x x x xG x x x x x +-+-'=≥≥++,G()x 在()0,∞+单调递增,不存在3个零点;当01a <<时,()()221414()112a x x G x a x x x x x ⎛⎫⎪+-'==- ⎪+ ⎪++⎝⎭,因为12y x x=++在()1,+∞上单调递增,设()412q x a x x=-++,则()qx 在()1,+∞上也是单调递增,且()110q a =-<,当x →+∞,(),0q x a a →>,故存在唯一一个()01,x ∈+∞,使()00q x =,即在()01,x ,()4012q x a x x=-<++,14()012G x a x x x ⎛⎫ ⎪'=-< ⎪ ⎪++⎝⎭,G()x 单调递减;在()0,x +∞,()0qx >,()0G x '>,G()x 单调递增;且G(1)0=,故0G()G(1)0x <=,且224G(e )0e 1aa=>+,故G()x 在()1,+∞有唯一零点,1G()ln 21x x a x x -=-+,故1G()G()0x x+=,当1x >时,101x<<,因为G()x 在()1,+∞有唯一零点,故G()x 在()0,1也有唯一零点,故当01a <<,G()x 有3个零点;综上所述,所有实数a 的取值集合为()0,1.【点睛】关键点点睛:本题的解题过程中,需通过导数分析函数的性质,并将问题转化为函数零点的讨论,充分体现了数学思想方法的应用.在解题时,要特别注意导数符号的变化对函数单调性的影响,确保分类讨论的全面性和严谨性.19.对于任意*N n ∈,向量列{}n a 满足1n n a a d +-=.(1)若1(0,3)a =- ,(1,1)=d ,求n a 的最小值及此时的n a .(2)若(),n n n a x y = ,(,)d s t =,其中n x ,n y ,s ,t R ∈,若对任意*n ∈N ,120n x x x +++≠ ,设函数()||f x x x =,记()()()1212()n nf x f x f x F n x x x +++=+++ ,试判断()F n 的符号并证明你的结论.(3)记1(0,0)a = ,0d ≠,n n c a = ,对于任意*m ∈N ,记123()m S m c c c c =+++ ,若存在实数1c =和2,使得等式123123()m m S m c c c c c c c c c c c c =+++=-+-+-+- 成立,且有()507S m =成立,试求m 的最大值.【答案】(1)min ||n a = ()22,1a =- 或()321,a =-(2)()0F n >,证明见解析(3)30【解析】【分析】(1)利用累加法求出()()()()110,31,11,4n a a n d n n n n =+-=-+--=-- ,进而得到答案;(2)分别在各项均为0的常数列,非零常数列,公差不为0的数列,结合题意证明即可;(3)根据题意构造函数,根据函数的性质建立不等关系,进行求解.【小问1详解】因为1n n a a d +-=对任意*N n ∈成立,所以有21a a d -= 23a a d -= L L L L1n n a a d--= 将上述各式相加得()11n a a n d =+- ,又因为1(0,3)a =- ,(1,1)= d ,所以()()()()110,31,11,4n a a n d n n n n =+-=-+--=--,所以有n a === ,又*N n ∈,当2n =或3n =时,min ||n a = ()21,2a =- 或()32,1a =-.【小问2详解】可判定()0F n >,(1)因为*N n ∈,120n x x x +++≠ 所以数列{}n x 不可能是各项均为0的常数列;(2)当数列{}n x 为非零常数列时,任意*N n ∈,10n x x =≠若1>0x ,则()()()()212111210n n f x f x f x nx F n x x x x nx +++===>+++ ,若10x <,则()()()()212111210n nf x f x f x nx F n x x x x nx +++-===->+++ ,故当数列{}n x 为非零常数列时,()0F n >.(3)当数列{}n x 为公差不为0的数列时,因*N n ∈,120n x x x +++≠ ,若()11202n n n x x x x x ++++=> ①,由等差数列性质有1213210n m n n n m x x x x x x x x --+-+=+=+==+> ,其中2,1,,m n= 又()22,0,0x x f x x x ⎧≥=⎨-<⎩为奇函数,且在R 上单调递增,则由10m n m x x +-+>可得1n m m x x +->-,所以有()()()11m n m n m f x f x f x +-+->-=-,即()()10m n m f x f x +-+->,2,1,,m n = ,所以有()()()()()()()()()12121120n n n n f x f x f x f x f x f x f x f x f x -⎡⎤⎡⎤⎡⎤⎡⎤+++=++++++>⎣⎦⎣⎦⎣⎦⎣⎦ ,即()()()120n f x f x f x +++> ②,所以由①②知()0F n >.同理可证明若()11202n n n x x x x x ++++=< ,利用函数()22,0,0x x f x x x ⎧≥=⎨-<⎩为奇函数,且在R 上单调递增,可证()()()120n f x f x f x +++< ,所以有()0F n >.综上可知()0F n >恒成立.【小问3详解】()()111n a a n d n d =+-=-,所以()1n n c a n d ==- ,即{}n c 为等差数列,所以()()()12310212m m m S m c c c c d d m d d -=+++=++++-=,由题意知()1231231111m m S m c c c c c c c c =+++=-+-+-+- 123|2||2||2||2|507m c c c c =-+-+-+-= ,构造函数()23507f x x d x d x d x m d =-+-+-++-=,则()1215070m m m m f c d c c c c --+=++++-= ,()121111115070m m m m f c d c c c c --+-=-+-+-++--= ,()121222225070m m m m f c d c c c c --+-=-+-+-++--= ,所以函数()f x 至少有三个零点:||,||,1,||2m m m c d c d c d ++-+- 若使得()f x 有三个零点,则存在区间,122m m d d ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦ ,使得()f x 为常数,且三个零点均在,122m m d d ⎡⎤⎛⎫+ ⎪⎢⎥⎝⎭⎣⎦ 内,所以m 必为偶数,且||2d ≥ ,于是有21122(1)02m m m m m d c d c d c d d m d f ⎧⎛⎫≤+-≤+-≤+≤+ ⎪⎪⎝⎭⎪⎨⎛⎫+⎪ ⎪=⎪ ⎪⎝⎭⎩,故有225074d m d ⎧≥⎪⎪⎨⎪=⎪⎩ ,其中()()()2(1)132150722224m d m d m d m m d m f d ⎛⎫+---- ⎪=+++=- ⎪⎝⎭,实际上2(1)15072224m d m m m f f d f d d ⎛⎫+⎛⎫⎛⎫⎛⎫ ⎪==+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,化简得224507m ≤⨯,解得31m ≤,又m 为偶数,故m 的最大值为30.【点睛】关键点点睛:本题主要考查了空间向量与数列相结合的知识点,包括数列的通项公式以及求和公式,难度较大,解得本题的关键在于理解题意,然后结合数列的相关知识解答.。

江苏省扬州市高邮市2022-2023学年高三上学期10月学情调研测试数学试题(解析版)

江苏省扬州市高邮市2022-2023学年高三上学期10月学情调研测试数学试题(解析版)

2022/2023学年第一学期高三10月学情调研测试数学试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合][(){},14,,11A B x a x a ∞∞=-⋃+=-<<+,若A B =∅ ,则实数a 的取值范围为()A.()2,3 B.[)2,3 C.(]2,3 D.[]2,3【答案】D 【解析】【分析】利用数轴法解决集合的交集运算即可.【详解】因为][(){},14,,11A B x a x a ∞∞=-⋃+=-<<+,且A B =∅ ,所以1114a a -≥⎧⎨+≤⎩,解得23a a ≥⎧⎨≤⎩,故23a ≤≤,即[]2,3a ∈.故选:D.2.已知i 为虚数单位,则复数13i12iz -=+对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】【分析】利用复数的四则运算化简,结合复数的几何意义,即可得到答案.【详解】13i (13i)(12i)1i 12i (12i)(12i)z ---===--++- ,∴复数z 在复平面内对应的点为(1,1)--,位于第三象限.故选:C .3.已知单位向量,a b满足2a b -= ,则a 在b 方向上的投影向量为()A.bB.b -C.2aD.a-【答案】B 【解析】【分析】先由条件计算得a b ⋅ 的值,再利用a 在b 方向上的投影向量为cos b a b ba b b bθ⋅⋅=⋅求得答案.【详解】因为,a b是单位向量,所以1,1a b == ,故22221,1a a b b ==== ,由2a b -= 得24a b -= ,即()24a b-=,则2224a b a b =⋅+- ,即1214a b ⋅=+- ,得1a b ⋅=-,设a 与b 的夹角为θ,则a 在b 方向上的投影向量为1cos 11b a b b ba b b bbθ⋅-⋅=⋅=⋅=-.故选:B.4.与直线310x y -+=关于y 轴对称的直线的方程为()A.310x y -+= B.310x y +-= C.310x y ++= D.310x y ++=【答案】B 【解析】【分析】设(,)P x y 为所求直线上任一点,则(,)P x y 关于y 轴对称的点为(,)x y -,将其代入310x y -+=中化简可得答案.【详解】设(,)P x y 为所求直线上任一点,则(,)P x y 关于y 轴对称的点为(,)x y -,由题意可得点(,)x y -在直线310x y -+=上,所以310x y --+=,即310x y +-,所以与直线310x y -+=关于y 轴对称的直线的方程为310x y +-=,故选:B5.定义:若函数()f x 的图象经过Ω变换后所得图象的对应函数的值域与()f x 的值域相同,则称Ω变换是()f x 的”同值变换”.则下列正确的是()A.()cos()6f x x π=+:Ω将函数()f x 的图象关于点(e 0),对称B.2()=2f x x x -:Ω将函数()f x 的图象关于原点对称C.()=21xf x -:Ω将函数()f x 的图象关于x 轴对称D.2()=log f x x :Ω将函数()f x 的图象关于直线y x =对称【答案】A 【解析】【分析】讨论原函数和变化后的函数值域是否相同即可.【详解】因为函数()cos()6f x x π=+的图象关于x 轴上的点(e 0),对称后得到的仍然为三角函数,值域仍然为[]1,1-,所以A 选项正确;因为2()=2f x x x -的值域为[)1,-+∞,关于原点对称后的函数为2()=2f x x x -+,值域为(],1-∞,所以B 选项错误;()=21x f x -的值域为(1,)-+∞,关于x 对称后的值域为(,1)-∞,所以C 选项错误;2()=log f x x 的值域为R ,2()=log f x x 关于直线y x=对称的函数为2()=log f x x 的反函数,即2x y =值域为(0,)+∞,所以D 选项错误.故选:A.6.椭圆E :22x a +22y b=1(a >b >0)左右焦点分别为12F F ,上顶点为A ,射线AF 1交椭圆E 于B ,以AB 为直径的圆过2F ,则椭圆E 的离心率是()A.22B.33C.12D.5【答案】D 【解析】【分析】以AB 为直径的圆过2F ,即22AF BF ⊥,由勾股定理与椭圆定义用a 表示出1BF ,2BF ,然后在12AF F △和12BF F △中,由1212cos cos 0AF F BF F ∠+∠=得出,a c 的齐次等式,变形后可得离心率.【详解】由题意12AF AF a ==,设1BF t =,则22BF a t =-,又以AB 为直径的圆过2F ,即22AF BF ⊥,所以222(2)()a a t a t +-=+,解得23t a =,所以243BF a =,在12AF F △和12BF F △中,12cos c AF F a∠=,22222124164399cos 22223c a a c a BF F ac c a +--∠==⋅⋅,1212180AF F BF F ∠+∠=︒,所以1212cos cos 0AF F BF F ∠+∠=,即22302c c a a ac-+=,整理得225a c =,所以55c e a ==.故选:D .7.定义在[0,π]上的函数πsin(6y x ω=-(ω>0)存在极值点,且值域1[,)2M ⊆-+∞,则ω的范围是()A.[76,2] B.24[,]33C.74(,63] D.[223,]【答案】B 【解析】【分析】由π[,]666x ωωππ-∈-π-,根据极值点和值域范围即可求得ω的范围.【详解】定义在[0,π]上的函数πsin()6y x ω=-,π[,]666x ωωππ-∈-π-,因为函数存在极值点,所以π62ωππ-≥,即ω≥23.又因为值域1[,)2M ⊆-+∞,所以π66ω7ππ-≤,即有:43ω≤,综上:24[,33ω∈.故选:B8.当0x >时,不等式2e 2ln 1x x mx x ≤++有解,则实数m 的范围为()A.[)1,+∞ B.1,e ⎡-+∞⎫⎪⎢⎣⎭C.2,e ⎡⎫+∞⎪⎢⎣⎭D.[)2,+∞【解析】【分析】先令1m =,构造导数证得在()0,1上存在0x 使得02000e2ln 1x x x x =++,即1m =满足题意,故排除D ;再利用一次函数的单调性证得当1m <时,2e 2ln 1x x x m x >++在()0,∞+上恒成立,即可排除BC ,实则至此已经可以选择A 选项,然而我们可以进一步证得当1m >时,题设不等式也成立,由此选项A 正确.【详解】当1m =时,题设不等式可化为2e 2ln 10x x x x ---≤有解,令()()2e 2ln 10xf x x x x x =--->,则问题转化为()0f x ≤有解,()()()()22e 2e 1212xxx x f x x x xx '+-=-+=-,令()()210e xx x g x =->,则()()2e 20xg x x x +=>',所以()g x 在()0,∞+上单调递增,又()010g =-<,()1e 10g =->,故()g x 在()0,1上存在唯一零点0x ,且0201e x x =,两边取自然对数得002ln 0x x +=,所以当00x x <<时,()0g x <,即()0f x '<,故()f x 单调递减;当0x x >时,()0g x >,即()0f x '>,故()f x 单调递增;所以()()()00220000000min e 2ln 1e 12ln 0xxf x f x x x x x x x ==---=--+=,即在()0,1上存在0x 使得02000e2ln x x x x =++,即()0f x ≤有解0x ,即1m =满足题意,故排除D.由上述证明可得2e 2ln 10x x x x ---≥,即2e 2ln 1x x x x ≥++在()0,∞+上恒成立,令()2ln 1h m xm x =++,则()0h m x '=>,故()h m 在R 上单调递增;所以当1m <时,()()1h h m >,即2ln 12ln 1x x mx x ++>++,故2e 2ln 1x x x m x >++,即当1m <时,2e 2ln 1x x x m x >++在()0,∞+上恒成立,显然题设不等式无解,矛盾,故排除BC ;当1m >时,()()1h m h >,即2ln 12ln 1mx x x x ++>++,故00002ln 12ln 1mx x x x ++>++,又02000e2ln 1x x x x =++,故02000e 2ln 1x x mx x <++,即2e 2ln 1x x mx x ≤++至少有一解0x ;综上:m 1≥,即选项A 正确.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.已知0,0a b >>,且24a b +=,则下列结论正确的是()A.2ab ≤ B.12a +1b1≥ C.426a b +≥ D.2248a b +≤【答案】AB 【解析】【分析】对于A ,由42a b =+≥,可得2ab ≤,即可判断;对于B ,由12a +1b 111(2)(42a b a b=++,利用基本不等式求解即可;对于C ,由24222a b a b +=+≥=对于D ,由2224(2)4164a b a b ab ab +=+-=-,及2ab ≤即可求得2248a b +≥,从而即可判断.【详解】解:因为0,0a b >>,且24a b +=,对于A ,42a b =+≥2242ab ab ≤⇒≤⇒≤,当2a b =,即12a b =⎧⎨=⎩时,等号成立,故正确;对于B ,因为24a b +=,所以1(2)14a b +=,12a +1b 111(2)()42a b a b =++1211(2)(2(22)14244a b b a =++≥+=+=,当22a b b a =,即12a b =⎧⎨=⎩时,等号成立,故正确;对于C ,因为24222248a b a b +=+≥===⨯=,当2a b =,即12a b =⎧⎨=⎩时,等号成立,故错误;对于D ,因为2224(2)4164a b a b ab ab +=+-=-,又因为2ab ≤,所以48ab -≥-,所以1641688ab -≥-=,即2248a b +≥,当2a b =,即12a b =⎧⎨=⎩时,等号成立,故错误.故选:AB .10.已知向量()()1,1,cos ,sin (0)a b θθθπ==≤≤.则下列命题正确的是()A.若22,22b ⎛= ⎝⎭ ,则4πθ= B.存在θ,使得a b a b+=-C.与a共线的单位向量为22,22⎛⎫ ⎪ ⎪⎝⎭ D.向量a与b夹角的余弦值范围是2,12⎡⎤⎢⎥⎣⎦【答案】ABD 【解析】【分析】对于A ,由特殊角的三角函数值与θ的取值范围可得到4πθ=,故A 正确;对于B ,利用向量的数量积运算由a b a b +=- 易得0a b ⋅= ,从而得到tan 1θ=-,故34πθ=,即说法成立,故B 正确;对于C ,利用a a± 易求得与a 共线的单位向量有两个,故C 错误;对于D ,利用向量数量积运算求得,a b夹角的余弦值的表达式,结合三角函数的图像即可得到其取值范围是2,12⎡⎤⎢⎥⎣⎦,故D 正确.【详解】对于A ,由题意得2cos 2θ=,又0θπ≤≤,故4πθ=,故A 正确;对于B ,因为a b a b +=- ,即22a b a b +=- ,即()()22a b a b +=- ,整理得222222a a b b a a b b +⋅+=-⋅+,即0a b ⋅= ,故1cos 1sin 0θθ⨯+⨯=,即sin cos θθ=-,得sin tan 1cos θθθ==-,又0θπ≤≤,所以34πθ=,即存在θ,使得a b a b +=- ,故B 正确;对于C ,因为()1,1a =r,所以a ==a共线的单位向量为a a ⎛±=±=±± ⎝ ,故C 错误;对于D,22cos ,cos sin sin 224a b a b a bπθθθ⋅⎛⎫==+=+ ⎪⎝⎭,又0θπ≤≤,所以5444p p p q £+£,所以2sin 124πθ⎛⎫-≤+≤ ⎪⎝⎭,即向量a 与b 夹角的余弦值范围是22⎡⎤⎢⎥⎣⎦,故D 正确.故选:ABD.11.已知定义在R 上的函数()f x ,满足()cos f x x +是奇函数,且()sin f x x -是偶函数.则下列命题正确的是()A.34f π⎛⎫= ⎪⎝⎭B.12f π⎛⎫= ⎪⎝⎭C.()()f k x f x π+=D.22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭【答案】BD 【解析】【分析】由()cos f x x +是奇函数,可得()()2cos f x f x x -+=-,由()()2cos f x f x x -+=-,可得()()2sin x f x x --=-两方程联立求出()f x 的解析式,然后逐个分析判断.【详解】因为()cos f x x +是奇函数,所以()cos()()cos f x x f x x -+-=-⎡+⎤⎣⎦,()cos ()cos f x x f x x -+=--,所以()()2cos f x f x x -+=-,因为()sin f x x -是偶函数,所以()sin()()sin f x x f x x ---=-,所以()()2sin f x f x x --=-,所以()sin cos f x x x =-,对于A ,33322sin cos 044422f πππ⎛⎫=-=-=⎪⎝⎭,所以A 错误,对于B ,sin cos 1222f πππ⎛⎫=-=⎪⎝⎭,所以B 正确,对于C ,()()()sin cos f k x k x k x πππ+=+-+,当k 为偶数时,()()()sin cos sin cos ()f k x k x k x x x f x πππ+=+-+=-=,当k 为奇数时,()()()sin cos sin cos sin cos ()f k x k x k x x x x x f x πππ+=+-+=---=--≠,所以C 错误,对于D ,因为sin cos cos sin 222f x x x x x πππ⎛⎫⎛⎫⎛⎫-=---=-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,sin cos cos sin cos sin 222f x x x x x x x πππ⎛⎫⎛⎫⎛⎫+=+-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22f x f x ππ⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,所以D 正确,故选:BD12.过点()10P -,的直线l 与圆220:412C x y y +--=交于A ,B 两点,线段MN 是圆C的一条动弦,且MN =)A.AB 的最小值为B.△ABC 面积的最大值为8C.△ABCD.PM PN +uuu r uuu r的最小值为6-【答案】ACD 【解析】【分析】设圆心C 到直线AB 的距离为d ,求出AB ,即可判断A ;再由1||2ABC S AB d =⋅ ,求出ABC 面积的最大值即可判断B ,C ;取MN 的中点E ,求PM PN +uuu r uuu r的最小值转化为求PE的最小值即可判断D .【详解】∵224120x y y +--=即22(2)16x y +-=,∴圆心()0,2C ,半径4r =()1,0P -在圆C 内,PC =,设圆心C 到直线AB 的距离为d ,由题意得0d ≤≤∵AB =min AB ==A 正确;1122ABC S AB d d =⋅=⨯=△∵205d ≤≤,∴当25d =时,()max ABC S =△,故B 错误,C 正确.取MN 的中点E ,则CE MN ⊥,又MN =3CE ==,∴点E 的轨迹是以()0,2C 为圆心,半径为3的圆.因为2PM PN PE +=,且min33PEPC =-= ,所以||PM PN +的最小值为6-,故D 正确.故选:ACD .三、填空题:本题共4小题,每小题5分,共20分.13.若4cos 45πα⎛⎫-= ⎪⎝⎭,则sin 2α=_________.【答案】725【解析】【分析】利用二倍角公式可求解.【详解】2247sin 2cos 22cos 12124525ππααα⎛⎫⎛⎫⎛⎫=-=--=⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:725.14.若“[1,2]x ∀∈,都有2210x x λ-+<成立”是假命题,则实数λ的取值范围是________【答案】9,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】求出命题为真时,参数范围,再求其在R 上的补集,则得命题为假时的范围.【详解】若[1,2]x ∀∈,都有2210x x λ-+<成立是真命题,则2108210λλ-+<⎧⎨-+<⎩,解得92λ>,所以若[1,2]x ∀∈,都有2210x x λ-+<成立是假命题时,92λ≤.故答案为:9(,]2-∞.15.已知实数x ,y 满足20x y >>,若2z x =+22x y y-(),则z 的最小值是_____【答案】8【解析】【分析】先由基本不等式放缩(2)x y y -,然后再用基本不等式得最小值.【详解】因为20x y >>,所以20x y ->,2211(2)2(2)22228x y y x x y y -+⎡⎤-≤=⎢⎥⎣⎦,当且仅当22x y y -=,即4x y =时取等号,所以222216(2)z x x x y y x =+≥+-8≥=,当且仅当2216x x =,即2x =时等号成立,此时14y =.故答案为:8.16.椭圆E :22143x y +=内有一个圆C ,圆C 与椭圆内切,圆C 面积的最大值是________;若切点是椭圆的右顶点,则圆C 面积的最大值是_____【答案】①.3π②.9π4【解析】【分析】空1:当圆半径r b =是圆的面积最大.空2:切点是椭圆的右顶点,设半径为r ,圆心为()2,0r -,列出圆的方程,然后和椭圆方程联立得到含有r 的二次方程,因为和圆有一个切点,故0∆=,得到r ,求得圆的面积.【详解】空1:因为圆C 与椭圆内切,当r b =时,圆C 的面积最大,最大为22π=π=3πr b .空2:因为切点是椭圆的右顶点,设半径为r ,圆心为()2,0r -,所以圆C 的方程为:()2222x r y r --+=⎡⎤⎣⎦和椭圆方程22143x y +=联立得()()2222322234x r x r x r --+-+-=化解得()21227404x r x r --+-=因为有一个切点,所以()()22142474(23)04r r r ∆=--⨯-=-=故32r =.综上所述:圆C 面积的最大值为24ππ9r =.故答案为:3π,9π4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知(){}22log 242A x x x =-->,11|327x aB x -⎧⎫⎪⎪⎛⎫=<⎨⎬⎪⎝⎭⎪⎪⎩⎭(1)当2a =时,求R A B ⋂ð;(2)已知“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.【答案】(1)R {2A B x x ⋂=<-ð或45}x <≤;(2)[)1,+∞.【解析】【分析】(1)先解对数不等式得到集合A ,再解指数不等式得到集合B ,由此利用数轴法对集合进行交并补运算即可;(2)先求得集合B ,再由题设条件得到B A ⊆,由由此利用数轴法对集合进行运算即可.【小问1详解】因为()22log 242x x -->,所以由2log y x =的单调性可得2244x x -->,即()()240x x +->,解得2x <-或4x >,故{2A x x =<-或4}x >,当2a =时,由11327x a-⎛⎫< ⎪⎝⎭,得231133x -⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故23x ->,即5x >,故{}5B x x =>,所以{}R 5B x x =≤ð,所以R {2A B x x ⋂=<-ð或45}x <≤,【小问2详解】由11327x a-⎛⎫<⎪⎝⎭得31133x a-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,故3x a ->,即3x a >+,故{}3B x x a =>+,由“x A ∈”是“x B ∈”的必要条件得B A ⊆,所以34a +≥,解得1a ≥,即[)1,a ∈+∞.18.圆C :22(2)(1)9x y -+-=,过点(1,3)P -向圆C 引两切线,A ,B 为切点,(1)求切线的方程:(2)求PA PB ⋅的值【答案】(1)1x =-或512410x y -+=(2)2013-【解析】【分析】(1)按斜率存在和不存在分类讨论,斜率存在时,设出切线方程,由圆心到切线距离等于半径求得结论;(2)求出,,PC PA PB ,在直角三角形中得出sin APC ∠,用二倍角公式求得cos APB ∠,然后由数量积的定义计算.【小问1详解】若过P 点的直线斜率不存在,符合题意,切线方程为1x =-;若过P 点的直线斜率存在,设切线方程为3(1)y k x -=+,即30kx y k -++=,圆心C3=,解得512k =,则512410x y -+=,综上,切线方程为1x =-或512410x y -+=【小问2详解】|||||2PC PA PB ===sin CA CPA PC∠==,225cos 12sin 1213APB CPA ∠=-∠=-=-.520cos 221313PA PB PA PB APB ⎛⎫⋅=∠=⨯⨯-=- ⎪⎝⎭.19.新能源汽车是指除汽油、柴油发动机之外的所有其他能源汽车,被认为能减少空气污染和缓解能源短缺的压力、在当今提倡全球环保的前提下,新能源汽车越来越受到消费者的青睐.某车企随机调查了今年某月份购买本车企生产的20n (n ∈N +)台汽车车主,统计得到以下22⨯列联表,经过计算可得2 5.556x ≈.喜欢不喜欢总计男性10n12n女性3n总计15n(1)完成表格并求出n 值,并判断有多大的把握认为购车消费者对新能源车的喜欢情况与性别有关:(2)用样本估计总体,用本车企售出汽车样本的频率代替售出汽车的概率.从该车企今年某月份售出的汽车中,随机抽取4辆汽车,设被抽取的4辆汽车中属于不喜欢新能源购车者的辆数为X ,求X 的分布列及数学期望.附:()22()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.a =P (2x ≥k )0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828【答案】(1)表格见解析,5,有97.5%的把握认为购车消费者对新能源车的喜欢情况与性别有关;(2)列联表见解析,1【解析】【分析】(1)根据列联表算出2x ,利用独立性检验即可判断;(2)利用二项分布即可列出分布列,从而求期望.【小问1详解】补充表格数据如下:喜欢不喜欢总计男性10n 2n 12n 女性5n 3n 8n 总计15n5n20n根据数表可得2220(31052)10 5.5561551289n n n n n n x n n n n ⨯-⨯==≈⨯⨯⨯,又n *∈N ,得5n =;由题意,2 5.556(5.024,6.635)x ≈∈,故有97.5%的把握认为购车消费者对新能源车的喜欢情况与性别有关;【小问2详解】随机抽取1辆汽车属于不喜欢新能源购车者的概率为2511004=,被抽取的4辆汽车中属于不喜欢新能源购车者的辆数为X ,X 的可能值为:0,1,2,3,4依题意,14,4X B ⎛⎫ ⎪⎝⎭,4041381(0)C 44256P X ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,13141327(1)C 4464P X ⎛⎫⎛⎫==⋅=⎪ ⎪⎝⎭⎝⎭,22241354(2)C 44256P X ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,3134133(3)C 4464P X ⎛⎫⎛⎫==⋅=⎪ ⎪⎝⎭⎝⎭,444131(4)44256P X C ⎛⎫⎛⎫==⋅=⎪ ⎪⎝⎭⎝⎭所以X 的分布列为:X 01234P812562764542563641256X 的数学期望81275431()0123412566425664256E X =⨯+⨯+⨯+⨯+⨯=.所以X 的数学期望为120.在三角形ABC 中,A =60︒,D AC 边上,AD =1,DC(1)BD ,求△ABD 的面积.(2)若E 点在AB 边上,AD =AE ,∠DBC =30°,求sin ∠EDB .【答案】(1)4(2)sin 2EDB ∠=【解析】【分析】(1)在ABD △中利用余弦定理和面积公式即可;(2)在BDE 和BDC 中利用正弦定理分析求解.【小问1详解】在ABD △中,由余弦定理得2222cos 60BD AB AD AB AD =+-⋅⋅︒,即260AB AB --=,则3AB =(舍负)所以,11sin6031sin60224ABD S AB AD ︒︒=⋅⋅=⨯⨯⨯=△.【小问2详解】,60AD AE A ==︒,则ADE 为正三角形,1,60DE AD AED ADE ==∠=∠=︒,设EDB θ∠=,在BDE 中,120,60BED EBD θ∠=∠=︒-︒,由正弦定理得()1sin120sin 60BD θ=︒-︒.(*)在BDC 中,30,30,DBC BCD DC θ︒=+︒∠=∠=由正弦定理得()3sin 30sin 30BD θ=+︒︒(**)由(*)和(**)得()()1sin 30sin 604θθ︒+︒-=,即()1sin 6022θ︒+=,又060θ︒<<︒,则60602180θ︒<︒+<︒,故602150θ︒+=︒,所以45θ=︒,sin 2EDB ∠=.21.如图,半圆所在的平面与矩形所在平面ABCD 垂直,P 是半圆弧上一点(端点除外),AD 是半圆的直径,AB =1,AD =2.(1)求证:平面PAB ⊥平面PDC ;(2)是否存在P 点,使得二面角B PC D --的正弦值为32若存在,求四棱锥P -ABCD 的体积;若不存在,说明理由,【答案】(1)证明见解析(2)23【解析】【分析】(1)根据矩形性质和面面垂直性质定理可证CD ⊥平面ADP ,结合直径所对圆周角为直角可证AP ⊥平面PDC ,然后由面面垂直判定定理可证;(2)建立空间直角坐标系,利用向量法可得二面角B PC D --为正弦值为2时点P 坐标,然后计算可得体积.【小问1详解】在矩形ABCD 中,CD AD ⊥,又平面ABCD ⊥平面ADP ,平面ABCD 平面,ADP AD CD =⊂平面ABCD ,所以,CD ⊥平面ADP ,又AP ⊂平面ADP ,所以CD AP ⊥,P 是AD 为直径的半圆上一点,所以DP AP ⊥,又,,CD DP P CD DP =⊂ 平面PDC ,所以,AP ⊥平面PDC ,又AP ⊂平面PAB ,则平面PAB ⊥平面PDC 【小问2详解】取BC 中点E ,以AD 的中点O 为坐标原点,OA 为x 轴,OE 为y 轴建立如图所示空间直角坐标系,由平面ABCD ⊥平面可知,半圆在平面xOz 平面内,设(,0,)P a b,则221,0a b b +=>,又(1,0,0),(1,1,0),(1,1,0),(1,0,0)A B C D --,由(1)可知,平面PDC 的一个法向量为,(1,0,)AP AP a b =-,设平面PBC 的法向量为(,,)n x y z =,又(1,1,),(2,0,0)BP a b BC =--=- ,则(1)020BP n a x y bz BC n x ⎧⋅=--+=⎨⋅=-=⎩,取1z =,则(0,,1)n b = ,设二面角B PC D --的大小为α,|cos ||cos ,|AP n α==若3sin 2α=,则1|cos |2α=,又b =,12==,又(1,1)a ∈-,得0,1a b ==所以,四面体P ABCD -的体积1233ABCD V S b =⋅=22.已知函数()e a x f x -=,()ln g x a x =-,()f x 与()g x 在1x =处的切线相同.(1)求实数a 的值;(2)令(),1()(),1f x x m x g x x <⎧=⎨>⎩,若存在12x x <,使得12()()2m x m x +=,(i )求12()x m x +的取值范围;(ii )求证:122x x +>.【答案】(1)1;(2)①(,2)-∞;②证明见解析.【解析】【分析】(1)由题设(1)(1)(1)(1)f g f g =⎧⎨''=⎩即可求a 的值;(2)由(1)1e ,1()1ln ,1x x m x x x -⎧<=⎨->⎩,(i )根据()m x 区间单调性求对应值域,即可知只存在121x x <<使()()122m x m x +=,进而得()()111211e 21x x m x x x -+=-+<,构造1e 2(1)x y x x -=-+<研究其单调性求值域,即可得结果;(ii )由(i )得112e 1ln 2xx -+-=,(双变量变量统一):首先有()11e11211e 1x x x x x --+=+<,令11e 10x t -=->得11ln(1)x t =-+,进而构造()1ln(1)e (0)t h t t t =-++>并利用导数证明()2h t >即可证;(极值点偏移):构造()(2)[2()]x m x m x ϕ=---且1x <,利用导数研究其单调性可得min ()0x ϕ>,即(2)[2()]m x m x ->-,进而可得()()122m x m x ->,结合1221,1x x ->>及()1ln m x x =-单调性,即可证结论.【小问1详解】由题意(1)(1)(1)(1)f g f g =⎧⎨''=⎩,则11e ln1e 1a a a --⎧=-⎪⎨-=-⎪⎩,可得1a =.【小问2详解】由(1)得1e ,1()1ln ,1x x m x x x -⎧<=⎨->⎩,(i )当121x x <<时,由()(1)1m x m >=,则()()122m x m x +>,不合题意,舍去;当121x x <<时,()1ln 1ln11m x x =-<-=,则()()122m x m x +<,不合题意,舍去;故只存在121x x <<时,才能使()()122m x m x +=,即112e 1ln 2xx -+-=,所以()()()111112121111ln 1e1e 21x x x m x x x x x x --+=+-=+--=-+<,令1e 2(1)x y x x -=-+<,则11e 0x y -=+'>,故1e 2x y x -=-+在(,1)-∞上递增,即2y <,故()12x m x +的取值范围为(,2)-∞.(ii )证明:由(i )知:121x x <<,且112e 1ln 2xx -+-=(*),法一(双变量变量统一):由(*)得:111111e 1222e 1ln 2ln e 1e x x x x x x ----+-=⇔=-⇒=,故()11e11211e 1x x x x x --+=+<令11e 1x t -=-,而11<x ,则110t ->-=,且11ln(1)x t =-+,则()11e11211e 1()1ln(1)e (0)x t x x x x h t t t --+=+<⇔=-++>,要证122x x +>,即证()1ln(1)e (0)t h t t t =-++>的最小值大于2,又1()e 1th t t =-+',且21()e 0(1)th x t ''=+>+,故()h t '在(0,)+∞上递增,则min ()(0)0h t h >'=',∴()h t 在(0,)+∞上单调递增,即0min ()(0)1ln1e 2h t h >=-+=,则122x x +>得证.法二(极值点偏移):构造函数()(2)[2()]x m x m x ϕ=---且1x <,即()11()[1ln(2)]2e e ln(2)1x x x x x ϕ--=----=---且1x <,此时11()e2xx xϕ-'=-+-,且121()e 0(2)xx x ϕ-''=+>-,故()x ϕ'在(,1)-∞上递增,故max ()(1)0t ϕϕ<'=',∴()ϕx 在(,1)-∞上单调递减,且11min ()(1)e ln(21)10x ϕϕ->=---=,当(,1)x ∞∈-时,(2)[2()]m x m x ->-,∵11<x ,()()122m x m x +=,∴()()()1122[2]m x m x m x --=>,而121x x <<知:1221,1x x ->>,且()1ln m x x =-在(1,)x ∈+∞上单调递减,∴122x x -<,故122x x +>得证.【点睛】关键点点睛:第二问,利用等量关系构造12()x m x +关于1x 的表达式,构造函数研究其值域;应用双变量变量统一或极值点偏移,注意构造中间函数并利用导数研究不等式恒成立即可.。

江苏省南京、镇江、扬州六校2024-2025学年高一上学期10月学情调查数学试题(含答案)

江苏省南京、镇江、扬州六校2024-2025学年高一上学期10月学情调查数学试题(含答案)

2024级高一年级10月学情检测试题数学2024.10注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合,,则等于( )A. B. C. D.2.下列各图中,可作为函数图象的是( )A. B.C.D.3.命题,的否定是( )A.,B.,C.,D.,4.设,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件{}220A x x x =--<{}1B x x =∈≤Z A B {}1,0-{}0,1{}1,0,1-∅1x ∀>21x m ->1x ∀≤21x m -≤1x ∃≤21x m -≤1x ∀>21x m -≤1x ∃>21x m -≤x ∈R 0x ≤11x ≤5.已知集合,均为的子集,且,则等于( )A. B. C. D.6.命题“,”为真命题,则实数的取值范围是( )A. B.C. D.7.已知实数为常数,且,,函数.甲同学:的解集为;乙同学:的解集为;丙同学:函数图象的对称轴在轴右侧.在这三个同学中,只有一个同学的论述是错误的,则的取值范围为( )A. B. C.(0,1) D.8.若,,,则( )A. B. C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的有( )A.若函数的定义域是,则函数的定义域是B.与C.已知函数,则D.函数的值域为10.已知,,.下列命题正确的有( )A.若,则B.若,则C.若,则 D.若,则11.已知,关于的一元二次不等式的解集中有且仅有3个整数,则的值可以是( )A. B.-2 C. D.0第Ⅱ卷(非选择题)P Q R ()Q P =R R ð()P Q R ð∅PR ðQ R x ∃∈R ()()222240a x a x -+--≥a [)2,2-(]2,2-(](),22,-∞-+∞ (][),22,-∞-+∞ a 0a ≠1a ≠()()1y ax x a =--0y >()1,,a a ⎛⎫-∞+∞⎪⎝⎭ 0y <()1,,a a ⎛⎫-∞+∞ ⎪⎝⎭ y a (),1-∞-()1,0-()1,+∞1a -1b -1c -a b c>>a c b >>c a b >>c b a >>()23f x -[]3,3-()2f x +[]0,5()f t t =()g x =2211f x x x x ⎛⎫-=+ ⎪⎝⎭()13f =y =[)0,∞+a b c ∈R a b >22ac bc >a b >33a b >0a b >>11a a b b+>+0a b >>22a b >a ∈Z x 2380x x a -+≤a 3-1-三、填空题:本题共3小题,每小题5分,共15分.12.已知集合,且,则实数的值为______.13.已知函数,则______;若当时,,则的最大值是______14.已知集合,,若,实数的取值范围为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)已知集合,,.(1)若,求实数的取值范围;(2)若,,求实数的值.16.(本小题满分15分)请在①充分不必要条件;②必要不充分条件;③充要条件这三个条件中任选一个,补充在下面问题(3)横线中,并完成解答.已知集合,.(1)当时,求;(2)求集合;(3)当时,若是成立的_____,试判断实数是否存在?若存在,求出实数的取值范围;若不存在,请说明理由.17.(本小题满分15分)某商品2023年的价格为8元/件,年销量是件.现经销商计划在2024年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下降后,新增的年销量与实际价格和顾客期望价格的差成反比,且比例系数为.该商品的成本价为3元/件.(1)写出该商品价格下降后,经销商的年收益(单位:元)与实际价格(单位:元/件)的函数解析式;(2)设,当实际价格最低定为多少时,仍然可以保证经销商2024年的收益比2023年至少增长20%?18.(本小题满分17分)已知函数,,,.(1)若关于的不等式的解集为,求实数,的值;(2)当时,图像始终在图像上方,求实数的取值范围;{}20,,32A m m m =-+2A ∈m ()223f x x x =--()()22f f =[],x a b ∈()45f x -≤≤b a -{}1A x x =≥B x y ⎧⎪==⎨⎪⎩A B B = a (){}222110A x x a x a =+++-={}240B x x x =+={}2340C x x x =+-=A B A = a A B ≠∅ A C =∅ a {}24120A x x x =--≤{}22210B x x x m =-+-≤4m =(),A B A B R ðB 0m >x A ∈x B ∈m m m a k y x 2k a =()221f x ax x b =+++a b ∈R ()1g x x =-x ()0f x >{}42x x x <->或a b 0b =()f x ()g x a(3)当时,若对任意,总存在,使得成立,求实数的取值范围.19.(本小题满分17分)对于函数,若存在,使成立,则称为的不动点.(1)求函数的不动点;(2)若函数有两个不相等的不动点、,求的取值范围;(3)若函数在区间上有唯一的不动点,求实数的取值范围.1a =[]12,2x ∈-[]22,2x ∈-()()12g x f x =b ()f x 0x ∈R ()00f x x =0x ()f x 23y x x =--()221y x a x =-++1x 2x 1221x x x x +()()211g x mx m x m =-+++()0,2m数学答案一、单项选择题(每小题5分)1-8. BADDACCA二、选择题(每小题全部选对的得6分,部分选对的得部分分)有选错的得0分)9. BCD 10. BD 11. BCD三、填空题(每小题5分)12.3 13.12;6 14.四、解答题15.(本小题满分13分)解:(1)因为,所以.又因为,,所以,或,或,或当时,,解得;当时,,无解;当时,,解得;当时,,解得.综上,实数的取值范围为.(2)因为,,,且,,所以,所以,所以.当时,,此时,不合题意,舍去;当时,,此时,合题意.综上,实数的取值为.16.(本小题满分15分)⎫+∞⎪⎪⎭A B A = A B ⊆(){}222110A x x a x a =+++-={}{}2404,0B x x x =+==-A =∅{}4A =-{}0A ={}4,0A =-A =∅()()224141880a a a ∆=+--=+<1a <-{}4A =-()2218116a a ⎧-+=-⎨-=⎩a {}0A =()221010a a ⎧-+=⎨-=⎩1a =-{}4,0A =-()221410a a ⎧-+=-⎨-=⎩1a =a (]{},11-∞- (){}222110A x x a x a =+++-={}4,0B =-{}{}23404,1C x x x =+-==-A B ≠∅ A C =∅ 0A ∈210a -=1a =±1a ={}4,0A =-{}4A C =-≠∅ 1a =-{}0A =A C =∅ a 1-解:(1)当时,,因为,所以,所以,所以.(2)由,得,当时,;当时,;当时,.(3)当时,由(2)知;若选择条件①,即是成立的充分不必要条件,集合是集合的真子集,则有,且等号不能同时取到,解得,所以实数的取值范围是.若选择条件②,即是成立的必要不充分条件,集合是集合的真子集,则有,且等号不能同时取到,解得,所以实数的取值范围是.若选择条件③,即是成立的充要条件,则集合等于集合,则有,方程组无解,所以不存在满足条件的实数.17.(本小题满分15分)解:(1)设该商品价格下降后为元/件,则由题意可知年销量增加到件,4m ={}[]221503,5B x x x =--≤=-{}[]241202,6A x x x =--≤=-[]2,5A B =- ()(),35,B =-∞-+∞R ð()()[),32,A B =-∞--+∞R ð22210x x m -+-≤()()110x m x m ⎡⎤⎡⎤---+≤⎣⎦⎣⎦0m ={}1B =0m >[]1,1B m m =-+0m <[]1,1B m m =+-0m >[]1,1B m m =-+x A ∈x B ∈A B 1216m m -≤-⎧⎨+≥⎩5m ≥m [)5,+∞x A ∈x B ∈B A 1216m m -≥-⎧⎨+≤⎩03m <≤m (]0,3x A ∈x B ∈A B 1216m m -=-⎧⎨+=⎩m x 4k a x ⎛⎫+ ⎪-⎝⎭故经销商的年收益,.(3)当时,依题意有,化简得,即,解得或.又,故,即当实际价格最低定为6元/件时,仍然可以保证经销商2024年的收益比2023年至少增长20%.18.(本小题满分17分)解:(1)因为关于的不等式的解集为,所以且方程的两根为,,所以,解得,.(2)当时,,因为函数的图像始终在图像上方,所以在上恒成立,即在上恒成立,所以在上恒成立,当时,恒成立,所以合题意;当时,依题意得,解得.综上,实数的取值范围为.(3)当时,,记.当时,,所以当时,()34k y a x x ⎛⎫=+- ⎪-⎝⎭5.57.5x ≤≤2k a =()()()383120%4k a x a x ⎛⎫+-≥-⨯+⎪-⎝⎭2113004x x x -+≥-()()5604x x x --≥-6x ≥45x <≤5.57.5x ≤≤67.5x ≤≤x ()0f x >{}42x x x <->或0a >2210ax x b +++=14x =-22x =121202218a x x a b x x a ⎧⎪>⎪⎪+=-=-⎨⎪+⎪==-⎪⎩1a =9b =-0b =()221f x ax x =++()f x ()g x ()()f x g x >x ∈R 2211ax x x ++>-x ∈R 220ax x ++>x ∈R 0a =20>0a ≠0180a a >⎧⎨∆=-<⎩18a >a {}1,08⎛⎫+∞ ⎪⎝⎭ []2,2x ∈-()[]13,1g x x =-∈-[]3,1A =-1a =()221f x x x b =+++[]2,2x ∈-,记.因为对任意,总存在,使得成立,所以,所以,解得.实数的取值范围为.19.(本小题满分17分)解:(1)由题意知,即,则,解得,,所以不动点为和3.(2)依题意,有两个不相等的实数根、,即方程有两个不相等的实数根、,所以,解得,或,且,,,所以的取值范围为.(3)由,得,由于函数在上有且只有一个不动点,即在上有且只有一个解,令,①,则,解得;②,即时,方程可化为,另一个根为,不符合题意,舍去;③,即时,方程可化为,另一个根为1,满足;()()[]22211,9f x x x b x b b b =+++=++∈+[]9,9B b =+[]12,2x ∈-[]22,2x ∈-()()12g x f x =A B ⊆391b b ≤-⎧⎨+≥⎩83b -≤≤-b []8,3--23x x x --=2230x x --=()()310x x -+=11x =-23x =1-()221x a x x -++=1x 1x 2x ()2310x a x -++=1x 2x ()2234650a a a ∆=+-=++>5a <-1a >-123x x a +=+121x x =()()2322,a =+-∈+∞1221x x x x +()2,+∞()()211g x mx m x m x =-+++=()2210mx m x m -+++=()g x ()0,2()2210mx m x m -+++=()0,2()()221h x mx m x m =-+++()()020h h ⋅<()()110m m +-<11m -<<()00h =1m =-20x x --=1-()20h =1m =2320x x -+=④,即,解得,(ⅰ)当,满足;(ⅱ)当,不符合题意,舍去;综上,的取值范围是.0∆=()()22410m m m +-+=m =m =()2222m m x m m -++=-==m =()2222m m x m m -++=-==m (]1,1-。

江苏省扬州市2023届高三考前调研测试数学试题及答案

江苏省扬州市2023届高三考前调研测试数学试题及答案

扬州市2023届高三考前调研测试数学一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集}{0,1,2,3,4,5,6U A B ==,{}1,3,5UAB =,则B =( ).A .{}1,0,2,4,6-B .{}0,2,4,6C .{}1,2,4,6-D .{}2,4,62.已知空间内不过同一点的三条直线,,m n l ,则“,,m n l 两两相交”是“,,m n l 在同一平面”的( ). A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.以点π(,0)2k ()k ∈Z 为对称中心的函数是( ).A .sin y x =B .cos y x =C .tan y x =D .|tan |y x =4.某教学楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,某同学从二楼到三楼准备用7步走完,则第二步走两级台阶的概率为( ). A .17B .27C .37D .476.复数i z x y =+(,x y ∈R ,i 为虚数单位)在复平面内对应点(,)Z x y ,则下列为真命题的是( ).A .若|1||1|z z +=-,则点Z 在圆上B .若|1||1|=2z z ++-,则点Z 在椭圆上C .若|1||1|=2z z +--,则点Z 在双曲线上D .若|1|=|1|x z +-,则点Z 在抛物线上7.已知函数()f x 的导函数为()g x ,()f x 和()g x 的定义域均为R ,()g x 为偶函数,()sin x f x e x --也为偶函数,则下列不等式一定成立的是( ).A .(0)0f =B .(0)0g =C .()(e )x f x f <D .()(e )x g x g <8.已知向量(1,)a x y =++,(1,)b x y =-,满足a b ⊥的动点(,)M x y 的轨迹为E ,经过点(2,0)N 的直线l 与E 有且只有一个公共点A ,点P 在圆22(1x y +-=上,则A P 的最小值为( ).A .3-B 1C .2D .1二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知两个离散型随机变量X ,Y ,满足21Y X =+,其中X 的分布列如下:A .16a =B .23b =C .()2E Y =D .4()3D Y =10.已知函数32()()f x x x x a a =--+∈R 的图象为曲线C ,下列说法正确的有( ). A .a ∀∈R ,()f x 都有两个极值点 B .a ∀∈R ,()f x 都有三个零点C .a ∀∈R ,曲线C 都有对称中心D .a ∃∈R ,使得曲线C 有对称轴11.定义:在数列的每相邻两项之间插入此两项的积,形成新的数列,这样的操作叫作该数列的一次“美好成长”.将数列1,2进行“美好成长”,第一次得到数列1,2,2;第二次得到数列1,2,2,4,2;;设第n 次“美好成长”后得到的数列为1221,,,,,k x x x ,并记()122log 12k n a x x x ⨯=⨯⨯⨯⨯,则( ).A .25a =B . 21n k =+C .131n n a a +=-D .数列13n n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为112231n +-+12.圆柱1OO 高为1,下底面圆O 的直径AB 长为2,1BB 是圆柱1OO 的一条母线,点,P Q 分别在上、下底面内(包含边界),下列说法正确的有(). A .若3PA PB +=,则P 点的轨迹为圆B .若直线OP 与直线1OB 成45︒,则P 的轨迹是抛物线的一部分C .存在唯一的一组点,P Q ,使得AP PQ ⊥D .1AP PQ QB ++的取值范围是+三、填空题:本题共4小题,每小题5分,共20分. 13.若()20232202301220235x a a x a x a x +=++++,3012202T a a a a =++++,则T 被5除所得的余数为 .14.圆O (O 为坐标原点)与直线:2l x y +=相切,与直线l 垂直的直线m 与圆O 交于不同的两点P 、Q ,若0OP OQ ⋅<,则直线m 的纵截距的取值范围是 .15.已知正四棱锥的侧面是边长为3的正三角形,它的侧棱的所有三等分点都在同一个球面上,则该球的表面积为________.16.若直线l 是曲线ln y x =的切线,也是曲线2x y e -=的切线,则直线l 的方程为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在①233n n S a =-;②13a =,313log log 1n n a a +=+这两个条件中任选一个,补充在下面问题中,并解答问题. 设数列{}n a 的前n 项和为n S ,满足________,139,n n n b n a *+-=∈N . (1)求数列{}n a 的通项公式;(2)若存在正整数0n ,使得0n n b b ≥对*n ∀∈N 恒成立,求0n 的值.注:如果选择多个条件分别解答,按第一个解答计分. 18.随着网络技术的迅速发展,各种购物群成为网络销售的新渠道.在凤梨销售旺季,某凤梨基地随机抽查了100个购物群的销售情况,各购物群销售凤梨的数量情况如下:(2)假设所有购物群销售凤梨的数量X 服从正态分布2)(,N μσ,其中μ为(1)中的平均数,212100σ=.若该凤梨基地参与销售的购物群约有1000个,销售凤梨的数量在[266,596)(单位:盒)内的群为“一级群”,销售数量小于266盒的购物群为“二级群”,销售数量大于等于596盒的购物群为“优质群”.该凤梨基地对每个“优质群”奖励1000元,每个“一级群”奖励200元,“二级群”不奖励,则该凤梨基地大约需要准备多少资金?(群的个数按四舍五入取整数)附:若X 服从正态分布2~(,)X N μσ,则()0.683P X μσμσ-<<+≈,(22)0.954P X μσμσ-<<+≈,(33)0.997P X μσμσ-<<+≈.19.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,222sin 2sin 2sin C B A =-. (1)求证:4cos c a B =;(2)延长BC 至点D ,使得AD BD =,求CAD ∠的最大值.20.如图,平行六面体1111ABCD A B C D -的体积为6,截面11ACC A 的面积为6. (1)求点B 到平面11ACC A 的距离;(2)若2AB AD ==,60BAD ∠=︒,1AA =,求直线1BD 与平面11CC D D 所成角的正弦值.21.已知椭圆C :22221(0)x y a b a b +=>>的左顶点为A ,过右焦点F 且平行于y 轴的弦3PQ AF ==.(1)求△APQ 的内心坐标;(2)是否存在定点D ,使过点D 的直线l 交C 于,M N ,交PQ 于点R ,且满足MR ND MD RN ⋅=⋅?若存在,求出该定点坐标,若不存在,请说明理由.22.已知函数()sin ln(1)()f x a x x a =-+∈R . (1)若1a =-,求证:0x ∀>,()20f x x +>;(2)当1a ≥时,对任意[0,]2kx ∈,都有()0f x ≥,求整数k 的最大值.扬州市2023届高三考前调研测试数学参考答案1.B 2.A 3.C 4.C 5.B 6.D 7.C 8.A9.ABD 10.AC 11.ACD 12.BC 13.1 14.( 15.10π 16.1y x =-或1y x e=17.【解析】(1)若选择条件①:233n n S a =- 11233n n S a ++∴=-,则112233n n n n S S a a ++-=-即13n n a a +=, ……………………3分 令1n =,则11233S a =-,解得130a =≠ 13n na a +∴= {}n a ∴是以3为首项,3为公比的等比数列 3n n a ∴= ……………………5分若选择条件②:13133,log log 1n n a a a +=-= {}3log n a ∴是以31log 1a =为首项,1为公差的等差数列()3log 111n a n n ∴=+-⨯= ……………………3分 3n n a ∴= ……………………5分 (2)∴13933n n n n n b a +--== ……………………6分 11113372333n n n n n n n nb b ++++----=-= ……………………7分 ∴当113,0n n n b b +≤≤->,即1234b b b b <<<;当14,0n n n b b +≥-<,即4567b b b b >>>>; ……………………9分∴当04n =时,0n n b b ≥对*n ∀∈N 恒成立. ……………………10分18.【解析】(1)由题意得:1222032100m +++=,解得18m =. ……………………2分 故平均数为1(1501225018350204503255018)376100⨯⨯+⨯+⨯+⨯+⨯=. ……………………4分 (2)由题意,376μ=,且266376110μσ=-=-,5963762202μσ=+=+,故1(596)(2)(10.954)0.0232P X P X μσ>=>+=⨯-=,所以“优质群”约有10000.02323⨯=个;11(266596)(2)0.6830.9540.818522P X P X μσμσ≤<=-<<+=⨯+⨯=,所以“一级群”约有10000.8185818.5819⨯=≈个; ……………………9分 所以需要资金为 231000819200186800⨯+⨯=,故至少需要准备186800元. ……………………12分 19.【解析】(1)222sin 2sin 2sin C B A =-∴在△ABC 中,由正弦定理得22222c b a =- ………………2分2222cos b a c ac B =+- 2222222224cos c a b a c ac B ∴+==+- 4cos c a B ∴=………………4分 (2)∴在△ABC 中,由正弦定理得:sin 4sin cos C A B = (显然角B 为锐角) 在△ABC 中,()sin sin C A B =+ sin cos cos sin 4sin cos A B A B A B ∴+= cos sin 3sin cos A B A B ∴=角B 为锐角 ∴角A 也为锐角 tan 3tan B A ∴= ……………………8分AD BD =B BAD A CAD ∴∠=∠=∠+∠CAD B A ∴∠=- ……………………9分()tan tan tan tan 1tan tan B ACAD B A B A-∴∠=-=+由(1)可知tan 3tan B A =,π0,2A ⎛⎫∈ ⎪⎝⎭22tan tan 13tan 2133tan tan A CAD A A A∴∠=+=≤=+ ……………………11分 当且仅当13tan tan A A=,即πtan 36A A ==时取等号. 此时DAC ∠的最大值为π6. ……………………12分 20.【解析】(1)在平行六面体1111ABCD A B C D -中,111ABC A B C -是三棱柱,11111111121233B ACC A ABC A B C ABCD A B C D V V V ---===, ………………………………2分设点B 到平面11ACC A 的距离为d ,则1111116233B ACC A ACC A V S d d -=⋅=⨯=,所以1d =,即点B 到平面11ACC A 的距离为1. ………………………………4分(2)在ABCD 中,2,60AB AD BAD ==∠=︒,所以ABCD 是菱形,连接BD 交AC 于O ,则1BO =, 由(1)知点B 到平面11ACC A 的距离为1,所以BO ⊥平面11ACC A . ………6分 设点1A 在直线AC 上射影为点H,11116ACC A SAC A H H =⋅==,则1A H =1BO A H ⊥,AH === 所以O 和H 重合,即1A O AO ⊥. ………………………8分以O 为坐标原点,1,,OA OB OA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则1(0,1,0),(3,0,0),(0,1,0),(0,0,3)B A D A -,根据11(AA DD ==-,(AB DC ==-,则1(D-1(3,2,BD =--,设平面11CC D D 的一法向量为(,,)n x y z =,则13030DD n DC n y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1x =,则(1,3,1)n =, ………………10分 设直线1BD 与平面11CC D D 所成角为α,则111sin |cos ,||||||||BD n BD n BD n α⋅-=<>===, 所以直线1BD 与平面11CC D D 所成角正弦值为5. ………………12分 21.【解析】(1)22222,32,1b a b c a c a b c a=+=+=∴=== ∴椭圆C 的标准方程为22143x y +=, ………………2分 不妨取33(1,),(1,),(2,0)22P Q A --,则32AP PF ==; 因为△APQ 中,AP AQ =,所以△APQ 的内心在x 轴,设直线PT 平分APQ ∠,交x 轴于T ,则T 为△APQDCB A的内心,且AT AP TF PQ ==AT =,则T ; …………4分 (2)椭圆和弦PQ 均关于x 轴上下对称∴若存在定点D ,则点D 必在x 轴上∴设(,0)D t ………………6分 设直线l 方程为()y k x t =-,1122(,),(,)M x y N x y ,直线方程与椭圆方程联立22()143y k x t x y =-⎧⎪⎨+=⎪⎩,消去y 得22222(43)84(3)0k x k tx k t +-+-=,则22248(3)0k k t ∆=+->,212284+3k tx x k +=,221224(3)43k t x x k -=+① ………………8分点R 的横坐标为1,M R N D 、、、均在直线l 上,MR ND MD RN ⋅=⋅∴221212(1)(1)()(1)()(1)k x t x k t x x +--=+-- ………………10分12122(1)()20t t x x x x ∴-+++= ∴2222284(3)2(1)+204343k t k t t t k k --+⨯=++,整理得4t =,因为点D 在椭圆外,则直线l 的斜率必存在 ∴存在定点(4,0)D 满足题意. ………………12分 22.【解析】(1)1a =-时,设()()2sin ln(1)2g x f x x x x x =+=--++,则1'()cos 21g x x x=--++, 011x x >∴+> 1(1,0)1x ∴-∈-+cos [1,1]x ∈- 1cos 201x x ∴--+>+,即'()0g x >在(0,)+∞上恒成立 ()g x ∴在(0,)+∞上单调增 又(0)0g = ()(0)0g x g ∴>=,即:0x ∀>,()20f x x +>;………………4分 (2)1a =时,当4k =时,(2)sin 2ln30f =-<,所以4k <. ………………5分 下证3k =符合.3k =时,当3[0,]2x ∈时,sin 0x >,所以当1a ≥时,()sin ln(1)sin ln(1)f x a x x x x =-+≥-+.记()sin ln(1)h x x x =-+,则只需证()sin ln(1)0h x x x =-+≥对3[0,]2x ∈恒成立.1'()cos 1h x x x =-+,令1()cos 1x x x φ=-+,则21'()sin (1)x x x φ=-++在π(0,)2递减, 又2π1'(0)10,'()102(1)2φφπ=>=-+<+,所以存在1(0,)2x π∈,使得'1()0x φ=, 则11(0,),'()0,()x x x x φφ∈>在1(0,)x 递增,11π(,),'()0,()2x x x x φφ∈<在1π(,)2x 递减;又1(0)0,()0212πφφπ==-<+,所以存在21π(,)2x x ∈使得2()0x φ=,且22π(0,),()0,(,),()02x x x x x x φφ∈>∈<, 所以()h x 在2(0,)x 递增,在2π(,)2x 递减,又ππ(0)0,()1ln(1)022h h ==-+>,所以()0h x ≥对π[0,]2x ∈恒成立因为3π[0,][0,]22⊆,所以3k =符合.综上,整数k 的最大值为3. ………………12分。

(完整)2011年江苏数学高考试卷含答案和解析,推荐文档

(完整)2011年江苏数学高考试卷含答案和解析,推荐文档

2011年江苏数学高考试卷一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B=_________.2.(5分)函数f(x)=log5(2x+1)的单调增区间是_________.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是_________.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为_________.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=_________.7.(5分)已知,则的值为_________.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ 长的最小值是_________.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=_________.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为_________.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为_________.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是_________.13.(5分)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是_________.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是_________.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C (O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.2011年江苏数学高考试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5分)已知集合A={﹣1,1,2,4},B={﹣1,0,2},则A∩B={﹣1,2}.考点:交集及其运算.专题:计算题.分析:根据已知中集合A={﹣1,1,2,4},B={﹣1,0,2},根据集合交集运算法则我们易给出A∩B 解答:解:∵集合A={﹣1,1,2,4},B={﹣1,0,2},∴A∩B={﹣1,2}故答案为:{﹣1,2}点评:本题考查的知识点是集合交集及其运算,这是一道简单题,利用交集运算的定义即可得到答案.2.(5分)函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞).考点:对数函数的单调性与特殊点.专题:计算题.分析:要求函数的单调区间,我们要先求出函数的定义域,然后根据复合函数“同增异减”的原则,即可求出函数的单调区间.解答:解:要使函数的解析有有意义则2x+1>0故函数的定义域为(﹣,+∞)由于内函数u=2x+1为增函数,外函数y=log5u也为增函数故函数f(x)=log5(2x+1)在区间(﹣,+∞)单调递增故函数f(x)=log5(2x+1)的单调增区间是(﹣,+∞)故答案为:(﹣,+∞)点评:本题考查的知识点是对数函数的单调性与特殊点,其中本题易忽略定义域,造成答案为R 的错解.3.(5分)设复数z满足i(z+1)=﹣3+2i(i为虚数单位),则z的实部是1.考点:复数代数形式的混合运算.专题:计算题.分析:复数方程两边同乘i,化简后移项可得复数z,然后求出它的实部.解答:解:因为i(z+1)=﹣3+2i,所以i•i(z+1)=﹣3i+2i•i,所以z+1=3i+2,z=1+3i它的实部为:1;故答案为:1点评:本题是基础题,考查复数代数形式的混合运算,考查计算能力,常考题型.4.(5分)根据如图所示的伪代码,当输入a,b分别为2,3时,最后输出的m的值为3.考点:伪代码.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数m=的值,代入a=2,b=3,即可得到答案.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数m=的值,∵a=2<b=3,∴m=3故答案为:3点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.5.(5分)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.考点:古典概型及其概率计算公式.专题:计算题.分析:根据题意,首先用列举法列举从1,2,3,4这四个数中一次随机取两个数的全部情况,可得其情况数目,进而可得其中一个数是另一个的两倍的情况数目,由古典概型的公式,计算可得答案.解答:解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为=;故答案为:.点评:本题考查古典概型的计算,解本题时,用列举法,注意按一定的顺序,做到不重不漏.6.(5分)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2= 3.2.考点:极差、方差与标准差.专题:计算题.分析:首先根据所给的这组数据求出这组数据的平均数,再利用求方差的公式,代入数据求出这组数据的方差,得到结果.解答:解:∵收到信件数分别是10,6,8,5,6,∴收到信件数的平均数是=7,∴该组数据的方差是,故答案为:3.2点评:本题考查求一组数据的方差,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,方差分别表示一组数据的特征,这样的问题可以出现在选择题或填空题.7.(5分)已知,则的值为.考点:二倍角的正切;两角和与差的正切函数.专题:计算题;方程思想.分析:先利用两角和的正切公式求得tanx的值,从而求得tan2x,即可求得.解答:解:∵,∴=2,解得tanx=;∴tan2x===∴==故答案为点评:本题考查了二倍角的正切与两角和的正切公式,体现了方程思想,是个基础题.8.(5分)在平面直角坐标系xOy中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ 长的最小值是4.考点:两点间距离公式的应用.专题:计算题.分析:由题意和函数的图象关于原点对称知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,写出直线的方程,求出直线与函数的交点坐标,利用两点之间的距离公式得到结果.解答:解:由题意知当过原点的直线的斜率是1时,直线与函数图形的交点之间的距离最短,而y=x与y=的两个交点的坐标是(,)(﹣,﹣),∴根据两点之间的距离公式得到|PQ|===4,故答案为:4点评:本题考查反比例函数的图形的特点,考查直线与双曲线之间的交点坐标的求法,考查两点之间的距离公式,是一个综合题目.9.(5分)函数f(x)=Asin(ωx+ϕ),(A,ω,ϕ是常数,A>0,ω>0)的部分图象如图所示,则f(0)=.考点:函数y=Asin(ωx+φ)的图象变换.专题:计算题;数形结合.分析:根据已知的函数图象,我们根据函数图象过(,0),(,﹣)点,我们易结合A>0,w>0求出满足条件的A、ω、φ的值,进而求出满足条件的函数f(x)的解析式,将x=0代入即可得到f(0)的值.解答:解:由的图象可得函数的周期T满足=解得T=π=又∵ω>0,故ω=2又∵函数图象的最低点为(,﹣)点故A=且sin(2×+φ)=﹣即+φ=故φ=∴f(x)=sin(2x+)∴f(0)=sin=故答案为:点评:本题考查的知识点是函数y=Asin(ωx+φ)的图象变换,其中利用已知函数的图象求出满足条件的A、ω、φ的值,是解答本题的关键.10.(5分)已知,是夹角为的两个单位向量,=﹣2,=k+,若•=0,则实数k的值为.考点:平面向量数量积的运算.专题:计算题.分析:利用向量的数量积公式求出;利用向量的运算律求出,列出方程求出k.解答:解:∵是夹角为的两个单位向量∴∴==∵∴解得故答案为:点评:本题考查向量的数量积公式、考查向量的运算律、考查向量模的平方等于向量的平方.11.(5分)已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为.考点:函数的值;分段函数的应用.专题:计算题.分析:对a分类讨论判断出1﹣a,1+a在分段函数的哪一段,代入求出函数值;解方程求出a.解答:解:当a>0时,1﹣a<1,1+a>1∴2(1﹣a)+a=﹣1﹣a﹣2a解得a=舍去当a<0时,1﹣a>1,1+a<1∴﹣1+a﹣2a=2+2a+a解得a=故答案为点评:本题考查分段函数的函数值的求法:关键是判断出自变量所在的范围.12.(5分)在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.考点:利用导数研究曲线上某点切线方程.专题:计算题.分析:先设切点坐标为(m,e m),然后根据导数的几何意义求出函数f(x)在x=m处的导数,从而求出切线的斜率,求出切线方程,从而求出点M的纵坐标,同理可求出点N的纵坐标,将t用m表示出来,最后借助导数的方法求出函数的最大值即可.解答:解:设切点坐标为(m,e m)∴该图象在点P处的切线l的方程为y﹣e m=e m(x﹣m)令x=0,解得y=(1﹣m)e m过点P作l的垂线的切线方程为y﹣e m=﹣e﹣m(x﹣m)令x=0,解得y=e m+me﹣m∴线段MN的中点的纵坐标为t=[(2﹣m)e m+me﹣m]t'=[﹣e m+(2﹣m)e m+e﹣m﹣me﹣m],令t'=0解得:m=1当m∈(0,1)时,t'>0,当m∈(1,+∞)时,t'<0∴当m=1时t取最大值故答案为:点评:本题主要考查了利用导数研究曲线上某点切线方程,以及利用导数研究函数的最值问题,属于中档题.13.(5分)设1=a1≤a2≤…≤a7,其中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,则q的最小值是.考点:等差数列与等比数列的综合.专题:计算题;压轴题.分析:利用等差数列的通项公式将a6用a2表示,求出a6的最小值进一步求出a7的最小值,利用等比数列的通项求出公比的范围.解答:解:方法1:∵1=a1≤a2≤…≤a7;a2,a4,a6成公差为1的等差数列,∴a6=a2+2≥3,∴a6的最小值为3,∴a7的最小值也为3,此时a1=1且a1,a3,a5,a7成公比为q的等比数列,必有q>0,∴a7=a1q3≥3,∴q3≥3,q≥,方法2:由题意知1=a1≤a2≤…≤a7;中a1,a3,a5,a7成公比为q的等比数列,a2,a4,a6成公差为1的等差数列,得,所以,即q3﹣2≥1,所以q3≥3,解得q≥,故q的最小值是:.故答案为:.点评:解决等差数列、等比数列的综合问题一般利用通项公式、前n项和公式列出方程组,解方程组求解.即基本量法.14.(5分)设集合,B={(x,y)|2m≤x+y≤2m+1,x,y∈R},若A∩B≠∅,则实数m的取值范围是[,2+].考点:直线与圆的位置关系.专题:计算题;压轴题.分析:根据题意可把问题转换为圆与直线有交点,即圆心到直线的距离小于或等于半径,进而联立不等式组求得m的范围.解答:解:依题意可知集合A表示一系列圆内点的集合,集合B表示出一系列直线的集合,要使两集合不为空集,需直线与圆有交点,由可得m≤0或m≥当m≤0时,有||>﹣m且||>﹣m;则有﹣m>﹣m,﹣m>﹣m,又由m≤0,则2>2m+1,可得A∩B=∅,当m≥时,有||≤m或||≤m,解可得:2﹣≤m≤2+,1﹣≤m≤1+,又由m≥,则m的范围是[,2+];综合可得m的范围是[,2+];故答案为[,2+].点评:本题主要考查了直线与圆的位置关系.一般是利用数形结合的方法,通过圆心到直线的距离来判断.二、解答题(共9小题,满分120分)15.(14分)在△ABC中,角A、B、C的对边分别为a,b,c(1)若,求A的值;(2)若,求sinC的值.考点:正弦定理;两角和与差的正弦函数.专题:计算题.分析:(1)利用两角和的正弦函数化简,求出tanA,然后求出A的值即可.(2)利用余弦定理以及b=3c,求出a与c 的关系式,利用正弦定理求出sinC的值.解答:解:(1)因为,所以sinA=,所以tanA=,所以A=60°(2)由及a2=b2+c2﹣2bccosA得a2=b2﹣c2故△ABC是直角三角形且B=所以sinC=cosA=点评:本题是基础题,考查正弦定理的应用,两角和的正弦函数的应用,余弦定理的应用,考查计算能力,常考题型.16.(14分)如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:(1)要证直线EF∥平面PCD,只需证明EF∥PD,EF不在平面PCD中,PD⊂平面PCD 即可.(2)连接BD,证明BF⊥AD.说明平面PAD∩平面ABCD=AD,推出BF⊥平面PAD;然后证明平面BEF⊥平面PAD.解答:证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF不在平面PCD中,PD⊂平面PCD所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°.所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面EBF,所以平面BEF⊥平面PAD.点评:本题是中档题,考查直线与平面平行,平面与平面的垂直的证明方法,考查空间想象能力,逻辑推理能力,常考题型.17.(14分)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的等腰直角三角形斜边的两个端点,设AE=FB=x(cm).(1)若广告商要求包装盒侧面积S(cm2)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.考点:函数模型的选择与应用.专题:应用题.分析:(1)可设包装盒的高为h(cm),底面边长为a(cm),写出a,h与x的关系式,并注明x的取值范围.再利用侧面积公式表示出包装盒侧面积S关于x的函数解析式,最后求出何时它取得最大值即可;(2)利用体积公式表示出包装盒容积V关于x的函数解析式,最后利用导数知识求出何时它取得的最大值即可.解答:解:设包装盒的高为h(cm),底面边长为a(cm),则a=x,h=(30﹣x),0<x<30.(1)S=4ah=8x(30﹣x)=﹣8(x﹣15)2+1800,∴当x=15时,S取最大值.(2)V=a2h=2(﹣x3+30x2),V′=6x(20﹣x),由V′=0得x=20,当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0;∴当x=20时,包装盒容积V(cm3)最大,此时,.即此时包装盒的高与底面边长的比值是.点评:考查函数模型的选择与应用,考查函数、导数等基础知识,考查运算求解能力、空间想象能力、数学建模能力.属于基础题.18.(16分)如图,在平面直角坐标系xOy中,M、N分别是椭圆的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为k(1)若直线PA平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:PA⊥PB.考点:直线与圆锥曲线的综合问题.专题:计算题;证明题;压轴题;数形结合;分类讨论;转化思想.分析:(1)由题设写出点M,N的坐标,求出线段MN中点坐标,根据线PA过原点和斜率公式,即可求出k的值;(2)写出直线PA的方程,代入椭圆,求出点P,A的坐标,求出直线AB的方程,根据点到直线的距离公式,即可求得点P到直线AB的距离d;(3)要证PA⊥PB,只需证直线PB与直线PA的斜率之积为﹣1,根据题意求出它们的斜率,即证的结果.解答:解:(1)由题设知,a=2,b=,故M(﹣2,0),N(0,﹣),所以线段MN中点坐标为(﹣1,﹣).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过原点,所以k=.(2)直线PA的方程为y=2x,代入椭圆方程得,解得x=±,因此P(,),A(﹣,﹣)于是C(,0),直线AC的斜率为1,故直线AB的方程为x﹣y﹣=0.因此,d=.(3)设P(x1,y1),B(x2,y2),则x1>0,x2>0,x1≠x2,A(﹣x1,﹣y1),C(x1,0).设直线PB,AB的斜率分别为k1,k2.因为C在直线AB上,所以k2=,从而kk1+1=2k1k2+1=2•===.因此kk1=﹣1,所以PA⊥PB.点评:此题是个难题.考查椭圆的标准方程和简单的几何性质,以及直线斜率的求法,以及直线与椭圆的位置关系,体现了方程的思想和数形结合思想,同时也考查了学生观察、推理以及创造性地分析问题、解决问题的能力.19.(16分)已知a,b是实数,函数f(x)=x3+ax,g(x)=x2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,且a≠b,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a﹣b|的最大值.考点:利用导数研究函数的单调性.专题:计算题.分析:(1)先求出函数f(x)和g(x)的导函数,再利用函数f(x)和g(x)在区间[﹣1,+∞)上单调性一致即f'(x)g'(x)≥0在[﹣1,+∞)上恒成立,以及3x2+a>0,来求实数b的取值范围;(2)先求出f'(x)=0的根以及g'(x)=0的根,再分别求出两个函数的单调区间,综合在一起看何时函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,进而求得|a﹣b|的最大值.解答:解:f'(x)=3x2+a,g'(x)=2x+b.(1)由题得f'(x)g'(x)≥0在[﹣1,+∞)上恒成立.因为a>0,故3x2+a>0,进而2x+b≥0,即b≥﹣2x在[﹣1,+∞)上恒成立,所以b≥2.故实数b的取值范围是[2,+∞)(2)令f'(x)=0,得x=.若b>0,由a<0得0∈(a,b).又因为f'(0)g'(0)=ab<0,所以函数f(x)和g(x)在(a,b)上不是单调性一致的.因此b≤0.现设b≤0,当x∈(﹣∞,0)时,g'(x)<0;当x∈(﹣∝,﹣)时,f'(x)>0.因此,当x∈(﹣∝,﹣)时,f'(x)g'(x)<0.故由题设得a≥﹣且b≥﹣,从而﹣≤a<0,于是﹣<b<0,因此|a﹣b|≤,且当a=﹣,b=0时等号成立,又当a=﹣,b=0时,f'(x)g'(x)=6x(x2﹣),从而当x∈(﹣,0)时f'(x)g'(x)>0.故函数f(x)和g(x)在(﹣,0)上单调性一致,因此|a﹣b|的最大值为.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.20.(16分)设M为部分正整数组成的集合,数列{a n}的首项a1=1,前n项和为S n,已知对任意整数k∈M,当整数n>k时,S n+k+S n﹣k=2(S n+S k)都成立(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{a n}的通项公式.考点:数列递推式;数列与函数的综合.专题:综合题.分析:(1)由集合M的元素只有一个1,得到k=1,所以当n大于1即n大于等于2时,S n+1+S n=2(S n+S1)都成立,变形后,利用S n+1﹣S n=a n+1,及a1=1化简,得到当n大于等于﹣12时,此数列除去首项后为一个等差数列,根据第2项的值和确定出的等差写出等差数列的通项公式,因为5大于2,所以把n=5代入通项公式即可求出第5项的值;(2)当n大于k时,根据题意可得S n+k+S n﹣k=2(S n+S k),记作①,把n换为n+1,得到一个关系式记作②,②﹣①后,移项变形后,又k等于3或4得到当n大于等于8时此数列每隔3项或4项成等差数列,即a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,根据等差数列的性质得到一个关系式,记作(*),且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,又根据等差数列的性质得到另外一个关系式,等量代换得到a n+2﹣a n=a n﹣a n﹣2,得到当n大于等于9时,每隔两项成等差数列,设出等差数列的四项,根据等差数列的性质化简变形,设d=a n﹣a n﹣1,从而得到当n大于等于2小于等于8时,n+6大于等于8,把n+6代入(*)中,得到一个关系式,同时把n+7也代入(*)得到另外一个关系式,两者相减后根据设出的d=a n﹣a n﹣1,经过计算后,得到n大于等于2时,d=a n﹣a n﹣1都成立,从而把k=3和k=4代入到已知的等式中,化简后得到d与前3项的和及d与前4项和的关系式,两关系式相减即可表示出第4项的值,根据d=a n﹣a n﹣1,同理表示出第3项,第2项及第1项,得到此数列为等差数列,由首项等于1即可求出d的值,根据首项和等差写出数列的通项公式即可.解答:解:(1)由M={1},根据题意可知k=1,所以n≥2时,S n+1+S n﹣1=2(S n+S1),即(S n+1﹣S n)﹣(S n﹣S n﹣1)=2S1,又a1=1,则a n+1﹣a n=2a1=2,又a2=2,所以数列{a n}除去首项后,是以2为首项,2为公差的等差数列,故当n≥2时,a n=a2+2(n﹣2)=2n﹣2,所以a5=8;(2)根据题意可知当k∈M={3,4},且n>k时,S n+k+S n﹣k=2(S n+S k)①,且S n+1+k+S n+1﹣k=2(S n+1+S k)②,②﹣①得:(S n+1+k﹣S n+k)+(S n+1﹣k﹣S n﹣k)=2(S n+1﹣S n),即a n+1+k+a n+1﹣k=2a n+1,可化为:a n+1+k﹣a n+1=a n+1﹣a n+1﹣k所以n≥8时,a n﹣6,a n﹣3,a n,a n+3,a n+6成等差数列,且a n﹣6,a n﹣2,a n+2,a n+6也成等差数列,从而当n≥8时,2a n=a n﹣3+a n+3=a n﹣6+a n+6,(*)且a n﹣2+a n+2=a n﹣6+a n+6,所以当n≥8时,2a n=a n﹣2+a n+2,即a n+2﹣a n=a n﹣a n﹣2,于是得到当n≥9时,a n﹣3,a n﹣1,a n+1,a n+3成等差数列,从而a n﹣3+a n+3=a n﹣1+a n+1,由(*)式可知:2a n=a n﹣1+a n+1,即a n+1﹣a n=a n﹣a n﹣1,当n≥9时,设d=a n﹣a n﹣1,则当2≤n≤8时,得到n+6≥8,从而由(*)可知,2a n+6=a n+a n+12,得到2a n+7=a n+1+a n+13,两式相减得:2(a n+7﹣a n+6)=a n+1﹣a n+(a n+13﹣a n+12),则a n+1﹣a n=2d﹣d=d,因此,a n﹣a n﹣1=d对任意n≥2都成立,又由S n+k+S n﹣k﹣2S n=2S k,可化为:(S n+k﹣S n)﹣(S n﹣S n﹣k)=2S k,当k=3时,(S n+3﹣S n)﹣(S n﹣S n﹣3)=9d=2S3;同理当k=4时,得到16d=2S4,两式相减得:2(S4﹣S3)=2a4=16d﹣9d=7d,解得a4=d,因为a4﹣a3=d,解得a3=d,同理a2=d,a1=,则数列{a n}为等差数列,由a1=1可知d=2,所以数列{a n}的通项公式为a n=1+2(n﹣1)=2n﹣1.点评:此题考查学生灵活运用数列的递推式化简求值,掌握确定数列为等差数列的方法,会根据等差数列的首项和等差写出数列的通项公式,是一道中档题.21.(10分)A.选修4﹣1:几何证明选讲如图,圆O1与圆O2内切于点A,其半径分别为r1与r2(r1>r2).圆O1的弦AB交圆O2于点C (O1不在AB 上).求证:AB:AC为定值.B.选修4﹣2:矩阵与变换已知矩阵,向量.求向量,使得A2=.C.选修4﹣4:坐标系与参数方程在平面直角坐标系xOy中,求过椭圆(φ为参数)的右焦点,且与直线(t为参数)平行的直线的普通方程.D.选修4﹣5:不等式选讲(本小题满分10分)解不等式:x+|2x﹣1|<3.考点:椭圆的参数方程.专题:数形结合;转化思想.分析:A、如图,利用EC∥DB,AB:AC=AD:AE=2r1:2r2,证出结论.B、设向量=,由A2=,利用矩阵的运算法则,用待定系数法可得x 和y 的值,从而求得向量.C、把椭圆的参数方程化为普通方程,求出右焦点的坐标,把直线参数方程化为普通方程,求出斜率,用点斜式求得所求直线的方程.D、原不等式可化为,或,分别解出这两个不等式组的解集,再把解集取并集.解答:解:A、如图:连接AO1并延长,交两圆于D,E,则O2在AD上,根据直径对的圆周角等于90°可得,∠ACE=∠ABD=90°,∴EC∥DB,∴AB:AC=AD:AE=2r1:2r2=r1:r2为定值.B、A2==,设向量=,由A2=可得=,∴,解得x=﹣1,y=2,∴向量=.C、椭圆(φ为参数)的普通方程为+=1,右焦点为(4,0),直线(t为参数)即x﹣2 y+2=0,斜率等于,故所求的直线方程为y﹣0=(x﹣4),即x﹣2 y﹣4=0.D、原不等式可化为,或,解得≤x<,或﹣2<x<,故不等式的解集为{x|﹣2<x<}.点评:本题考查圆与圆的位置关系,参数方程与普通方程的互化,矩阵的运算法则,绝对值不等式的解法.22.(10分)如图,在正四棱柱ABCD﹣A1B1C1D1中,AA1=2,AB=1,点N是BC的中点,点M在CC1上.设二面角A1﹣DN﹣M的大小为θ(1)当θ=90°时,求AM 的长;(2)当时,求CM 的长.考点:向量在几何中的应用.专题:综合题;压轴题;转化思想.分析:(1)建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),通过,求出平面DMN的法向量为,,求出平面A1DN的法向量为,推出(1)利用θ=90°求出M的坐标,然后求出AM的长.(2)利用cos=以及,求出CM 的长.解答:解:建立如图所示的空间直角坐标系,D﹣xyz,设CM=t(0≤t≤2),则各点的坐标为A(1,0,0),A1(1,0,2),N(,1,0),M(0,1,t);所以=(,1,0).=(1,0,2),=(0,1,t)设平面DMN的法向量为=(x1,y1,z1),则,,即x1+2y1=0,y1+tz1=0,令z1=1,则y1=﹣t,x1=2t所以=(2t,﹣t,1),设平面A1DN的法向量为=(x2,y2,z2),则,,即x2+2z2=0,x2+2y2=0,令z2=1则y2=1,x2=﹣2所以=(﹣2,1,1),(1)因为θ=90°,所以解得t=从而M(0,1,),所以AM=(2)因为,所以,cos==因为=θ或π﹣θ,所以=解得t=0或t=根据图形和(1)的结论,可知t=,从而CM的长为.点评:本题是中档题,考查直线与平面,直线与直线的位置关系,考查转化思想的应用,向量法解答立体几何问题,方便简洁,但是注意向量的夹角,计算数据的准确性.23.(10分)设整数n≥4,P(a,b)是平面直角坐标系xOy 中的点,其中a,b∈{1,2,3,…,n},a>b.(1)记A n为满足a﹣b=3 的点P 的个数,求A n;(2)记B n为满足是整数的点P 的个数,求B n.考点:数列递推式.专题:综合题;压轴题;转化思想.分析:(1)A n为满足a﹣b=3 的点P 的个数,显然P(a,b)的坐标的差值,与A n中元素个数有关,直接写出A n的表达式即可.(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,讨论f n(k)≥1的情形,推出f n(k)=n﹣3k,根据k的范围,说明n﹣1是3的倍数和余数,然后求出B n.解答:解:(1)点P的坐标中,满足条件:1≤b=a﹣3≤n﹣3,所以A n=n﹣3;(2)设k为正整数,记f n(k)为满足题设条件以及a﹣b=3k的点P的个数,只要讨论f n(k)≥1的情形,由1≤b=a﹣3k≤n﹣3k,知f n(k)=n﹣3k且,设n﹣1=3m+r,其中m∈N+,r∈{0,1,2},则k≤m,所以B n===mn﹣=将m=代入上式,化简得B n=所以B n=点评:本题是难题,考查数列通项公式的求法,数列求和的方法,考查发现问题解决问题的能力,解题中注意整除知识的应用,转化思想的应用.。

2022届江苏省扬州市高邮市高三上学期12月学情调研数学试题(解析版)

2022届江苏省扬州市高邮市高三上学期12月学情调研数学试题(解析版)

2022届江苏省扬州市高邮市高三上学期12月学情调研数学试题一、单选题1.已知集合3|0,2x A x x R x -⎧⎫=≤∈⎨⎬-⎩⎭,{}|24,B x x x Z =≤≤∈,则A B =( ) A .[]2,3 B .(]2,3 C .{}2,3 D .{}3【答案】D【分析】首先解分式不等式得到{}|23A x x =<≤,再求A B 即可. 【详解】{}3|0,|232x A x x R A x x x -⎧⎫=≤∈⇒=<≤⎨⎬-⎩⎭, {}{}|24,2,3,4B x x x Z =≤≤∈=,所以{}3A B ⋂=. 故选:D2.“m =-2”是“直线l 1: mx +4y +4=0与直线l 2: x +my +1=0平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】利用充分条件和必要条件的定义判断.【详解】因为m =-2,所以直线l 1: x -2y -2=0,直线l 2: x -2y +1=0平行,故充分; 当直线l 1: mx +4y +4=0与直线l 2: x +my +1=0平行时,24m =, 解得2m =或2m =-,当2m =时,直线l 1: x +2y +2=0与直线l 2: x +2y +1=0平行,当2m =-时,直线l 1: x -2y -2=0,直线l 2: x -2y +1=0平行,故不必要, 故选:A3.已知向量a =(3,2), b =(2m -1,3),若a 与b 共线,则实数m =( ) A .114B .5C .72D .1【答案】A【分析】利用向量共线的坐标运算计算即可. 【详解】由已知a 与b 共线得()33221m ⨯=⨯-, 解得114m =4.若椭圆22x a +22y b =1(0a b >>)的离心率为32,短轴长为6,则椭圆的焦距为( )A .43B .8C .63D .83【答案】C【分析】根据离心率结合短轴长度,即可求得c ,再求焦距即可. 【详解】因为短轴长度为6,即26b =,故可得3b =;又离心率为22239112b a a=-=-,解得6a =;故可得22227c a b =-=,则33c =,故焦距263c =. 故选:C.5.己知等比数列{}n a 满足538a a -=,6424a a -=, 则3a =( ) A .3 B .3- C .1 D .1-【答案】C【分析】设等比数列{}n a 的公比为q ,则0q ≠,根据已知条件可得出关于1a 、q 的方程组,解出这两个量的值,即可求得3a 的值.【详解】设等比数列{}n a 的公比为q ,则0q ≠,由已知可得()()225313264118124a a a q q a a a q q ⎧-=-=⎪⎨-=-=⎪⎩,解得1193a q ⎧=⎪⎨⎪=⎩, 因此2311a a q ==.故选:C. 6.我们从商标中抽象出一个图象如图所示,其对应的函数解析式可能是()f x =( )A .1|1|x - B .1|||1|x -C .211x - D .211x +【分析】根据函数的奇偶性及定义域和取特值可排除得选项.【详解】根据函数的图像可知,函数为偶函数,且定义域为{|1}x x ≠±, 判断四个选项,只有1|||1|x -和211x -符合,又因为()f x =211x -时,有的函数值是负数,例如1(2)3f =-不符合,所以只有()f x =1|||1|x -成立,故选:B.7.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为 A .5:6π B .6:2πC .:2πD .5:12π【答案】B【分析】作出过正方体的对角面的截面,设球的半径为R ,正方体的棱长为a ,在直角C CO '∆中,由勾股定理,得222CC OC OC ''+=,求得球的半径62R a =,利用体积公式,即可求解.【详解】作出过正方体的对角面的截面,如图所示, 设球的半径为R ,正方体的棱长为a ,那么2,2a CC a OC '==, 在直角C CO '∆中,由勾股定理,得222CC OC OC ''+=, 即2222()2a a R +=,解得62R a =, 所以半球的体积为333114266()23322V R a a πππ=⨯=⨯=,正方体的体积为32V a =,所以半球与正方体的体积比为336:6:22a a ππ=,故选B.【点睛】本题主要考查了球的内接组合体的性质,以及球的体积与正方体的体积的计算,其中解答中正确认识组合体的结构特征,作出过正方体的对角面的截面,利用勾股定理求得球的半径是解答的关键,着重考查了空间想象能力,以及运算与求解能力,属于基础题.8.已知向量a b c ,,,满足a =c =1,b =7a c ⋅,=12,若a b +=λc (R λ∈), 则λ=A .3B .2-C .3或2-D .3-或2【答案】C【分析】根据题意,利用数量积的运算法则,结合已知条件,即可求得参数λ. 【详解】因为a b +=λc ,故可得b c a λ=-, 两边平方可得:22222b c a a c λλ=+-⋅, 代值可得:271λλ=+-,整理得:260λλ--=, 解得3λ=或2-. 故选:C.9.已知实数(),,0,a b c e ∈,且22a a =,33b b =,55c c =,则( ) A .c a b << B .a c b << C .b c a << D .b a c <<【答案】A【分析】构造函数()ln xf x x=,判断函数单调性,比大小. 【详解】由22a a =,33b b =,55c c =,得ln ln 22a a =,3ln ln 3b b =,ln ln 55c c =, 又252ln5ln5ln 25ln 2=<=,即ln 5ln 252<, 同理323ln 2ln 2ln32ln3=<=,即ln 2ln 323<, 所以ln5ln 2ln3523<<,即ln ln ln c a b c a b<<, 设函数()ln x f x x=()0,x e ∈,()21ln 0xf x x -'=>在()0,e 上恒成立,故函数()f x 在()0,e 上单调递增, 所以c a b <<, 故选:A. 二、多选题10.已知i 为虚数单位,复数z 满足()10z 2i i +=,则下列说法正确的是( )A .复数z 的虚部为1i 5B .复数z 的共轭复数为21i 55-C .复数zD .复数z 在复平面内对应的点在第二象限.【答案】CD【分析】根据复数的运算得21z i 55=-+,再依次讨论各选项即可得答案.【详解】解:因为()5102i i 1==-,所以()102i i 121z i 2i 2i 555---====-+++,所以复数z 的虚部为15,复数z 的共轭复数为21i 55--,故A ,B 选项错误;复数z复数z 在复平面内对应的点21,55⎛⎫- ⎪⎝⎭在第二象限,故CD 选项正确. 故选:CD11.已知正实数a ,b 满足a +b =2,则下列不等式恒成立的是( ) A .ab ≤1 B .1a +2bCD .ln a ln b ≤0【答案】ACD【分析】根据正实数a ,b 满足a +b =2,利用基本不等式逐项判断. 【详解】因为正实数a ,b 满足a +b =2,所以212a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当1a b ==时,等号成立,故A 正确;所以1a+()(211212113332222b a a b b a b a b ⎛⎛⎫⎛⎫=++=++≥+=+ ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当2b aa b=时,等号成立,故B 错误;因为2a b =++,故C 正确;因为ln a ln b 2222ln ln ln ln 20222a b a b ab ⎛⎫+⎛⎫ ⎪ ⎪+⎛⎫⎛⎫⎝⎭ ⎪≤=≤= ⎪ ⎪⎪⎝⎭⎝⎭ ⎪⎝⎭,当且仅当1a b ==时等号成立,故D 正确; 故选:ACD12.已知互不相同的两条直线,m n 和两个平面,αβ,下列命题正确的是( ) A .若//m α,n αβ=,则//m nB .若m α⊥,n β⊥,且m n ⊥,则αβ⊥C .若m α⊥,βn//, 且m n ⊥,则//αβD .若m α⊥,βn//, 且//m n , 则αβ⊥【分析】根据直线与直线,直线与平面和平面与平面的位置关系和特殊图形依次判断选项即可得到答案.【详解】对选项A ,若//m α,n αβ=,则m 与n 的位置关系为平行或异面,故A 错误;对选项B ,若m n ⊥,m α⊥,则n ⊂α或//n α, 又因为n β⊥,所以αβ⊥,故B 正确. 对选项C ,在长方体中,如图所示:满足m α⊥,βn//, 且m n ⊥,此时α与β的位置关系为相交,故C 错误. 对选项D ,若m α⊥,//m n ,则n α⊥,又因为βn//,则存在l β⊂,l α⊥,所以αβ⊥,故D 正确. 故选:BD13.下列关于L 型椭圆C :42116y x +=的几何性质描述正确的是( )A .图形关于原点成中心对称B .44y -≤≤C .其中一个顶点坐标是()0,2-D .曲线上的点到原点的距离最大值为2【答案】ACD【分析】根据曲线方程,结合曲线的对称性、范围对每个选项进行逐一分析,即可判断和选择.【详解】A :对方程42116y x +=,用,x y --分别替换,x y ,可知还是同一个方程, 故该图形关于原点成中心对称,A 正确;B :因为421016y x =-≥,故可得416y ≤,解得24y ≤,即[]2,2y ∈-,故B 错误;C :令0x =,解得416y =,可得2y =±,故其一个顶点坐标为()0,2-,C 正确;D :因为()42222211851616y x y y y +=-+=--+,由B 知:[]2,2y ∈-,故可得当2y =±时,22x y +取得最大值422x y +2,即曲线上的点到原点的距离最大值为2,D 正确.【点睛】本题考查由曲线方程研究曲线的性质,重点在于充分利用曲线方程,结合对称性以及范围的求解方法进行细致分析,属中档题. 三、填空题14.已知圆C :224x y +=,直线l :()1,y kx k k R =-+∈,则直线l 被圆C 截得的最短弦长为______________【答案】【分析】根据直线方程求得直线l 恒过的定点,再结合几何关系以及弦长公式即可求得结果.【详解】因为1y kx k =-+,故可得()11y k x -=-, 则直线l 恒过定点()1,1A ,且点()1,1A 在圆C 内; 当且仅当AC 垂直于l 时,直线l 被圆截得的弦长最短,此时圆心C 到直线l 的距离d AC ==故最短的弦长为=故答案为:15.已知cos()4πα+=π(0,)2α∈,则sin α=__________【解析】【详解】试题分析:cos()(0,)sin()424πππααα+=∈∴+=sin sin sin cos cos sin 444444ππππππαααα⎛⎫⎛⎫⎛⎫∴=+-=+-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【解析】三角函数基本公式16.甲、乙两名运动员在羽毛球场进行羽毛球比赛,已知每局比赛甲胜的概率为P ,乙胜的概率为1-p ,且各局比赛结果相互独立.当比赛采取5局3胜制时,甲用4局赢得比赛的概率为827.现甲、乙进行7局比赛,采取7局4胜制,则甲获胜时比赛局数X 的数学期望为_____________ 【答案】97282187【分析】根据当比赛采取5局3胜制时,甲用4局赢得比赛的概率为827,求得每局比赛甲胜的概率P ,再由采取7局4胜制得到X 的可能取值为:4,5,6,7,分别求得其【详解】因为当比赛采取5局3胜制时,甲用4局赢得比赛的概率为827, 且每局比赛甲胜的概率为p ,乙胜的概率为1-p , 所以()2238127C p p p ⋅⋅-⋅=, 解得 21,133p p =-=,X 的可能取值为:4,5,6,7,则 ()()3333342216212644,53381333243p x C p x C ⎛⎫⎛⎫==⋅⋅===⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭,()()323333562121602123206,73337293332187p x C p x C ⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅===⋅⋅⋅= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, X 的分布列为:所以采取7局4胜制,则甲获胜时比赛局数x 的数学期望为:()1664160320972845678124372921872187E X =⨯+⨯+⨯+⨯= 故答案为:9728218717.在平面直角坐标系xOy 中,已知点P 是函数f (x )= ln x 的图象上的动点,该图象在P 处的切线l 交x 轴于点M ,过点P 作l 的垂线交x 轴于点N ,设线段MN 的中点的横坐标为t ,则t 的最大值是_____________ 【答案】11e 2e ⎛⎫+ ⎪⎝⎭【分析】首先根据导数的几何意义得到切线为:()0001ln y x x x x -=-,切线l 的垂线为:()000ln y x x x x -=--,从而得到()000ln ,0M x x x -,000ln ,0x N x x ⎛⎫+ ⎪⎝⎭,即可得到00000ln 12ln 2x t x x x x ⎛⎫=-+ ⎪⎝⎭,再构造()ln 2ln xg x x x x x=-+,利用导数求解最大值即可. 【详解】设()00,ln P x x ,()1f x x'=,则()001k f x x '==, 则切线l 为:()0001ln y x x x x -=-, 令0y =,解得000ln x x x x =-,即()000ln ,0M x x x -. 切线l 的垂线为:()000ln y x x x x -=--,令0y =,解得000ln x x x x =+,即000ln ,0x N x x ⎛⎫+ ⎪⎝⎭. 所以00000ln 12ln 2x t x x x x ⎛⎫=-+ ⎪⎝⎭. 设()ln 2ln xg x x x x x=-+, ()()()()22211ln 1ln 2ln 1x x x g x x x x +--'=-++=, 令()0g x '=,解得e x =,则()0,e x ∈,()0g x '>,()g x 为增函数,()e,x ∞∈+,()0g x '<,()g x 为减函数. 所以()()max 1e e eg x g ==+,即t 的最大值为11e 2e ⎛⎫+ ⎪⎝⎭.故答案为:11e 2e ⎛⎫+ ⎪⎝⎭四、解答题18.已知函数()()sin (0,0,)2f x A x A πωϕωϕ=+>><的部分图象如图.(1)求函数()f x 的解析式;(2)将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将所得图象向左平移6π个单位,得到函数()g x 的图象,当,6x ππ⎡⎤∈-⎢⎥⎣⎦时,求()g x 值域.【答案】(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)[3,2]-.【分析】(1)根据图象由函数最值求得A ,由函数周期求得ω,由特殊点求得ϕ,即可求得解析式;(2)根据三角函数图象的变换求得()g x 的解析式,再利用整体法求函数值域即可. (1)周期453123T πππ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,2||ππω∴=,0>ω,则2ω=, 从而()2sin(2)f x x ϕ=+,代入点5,212π⎛⎫⎪⎝⎭,得5sin 16⎛⎫+=⎪⎝⎭πϕ, 则5262k ππϕπ+=+,k Z ∈,即23k πϕπ=-+,k Z ∈, 又||2ϕπ<,则3πϕ=-.()2sin 23f x x π⎛⎫∴=- ⎪⎝⎭.(2)将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,故可得2sin 3y x π⎛⎫=- ⎪⎝⎭;再将所得图象向左平移6π个单位,得到函数()g x 的图象 故可得()2sin()6g x x π=-;[,]6x ππ∈-5[,]636x πππ∴-∈-,sin 6x π⎡⎤⎛⎫-∈⎢⎥ ⎪⎝⎭⎣⎦,2sin 26x π⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,()[2]g x ∴的值域为. 19.已知椭圆()2222:10x y C a b a b+=>>上的点到左、右焦点1F 、2F 的距离之和为4,且右顶点A 到右焦点2F 的距离为1. (1)求椭圆C 的方程;(2)直线y kx =与椭圆C 交于不同的两点M ,N ,记MNA △的面积为S ,当3S =时求k 的值.【答案】(1)221.43x y += (2)32k =±【分析】(1)根据题意得到24a =,1a c -=,再根据222a b c =+求解即可. (2)首先设()11,M x y ,()22,N x y ,再根据122121111222AMNSOA y OA y OA y y y y =⋅+⋅=⋅-=-求解即可. (1)由题意24a =,2a =,则b =所以椭圆C 的标准方程为22143x y +=. (2)设()11,M x y ,()22,N x y ,且2OA = 根据椭圆的对称性得122121111222AMNSOA y OA y OA y y y y =⋅+⋅=⋅-=-, 联立方程组22143y kx x y =⎧⎪⎨+=⎪⎩,整理得223(4)12y k +=,解得y = 因为AMN 的面积为3,可得12||3y y -=,解得32k =±. 20.设各项均为正数的数列{an }的前n 项和为Sn 满足4Sn =(an +1)2 (1)证明数列{an }为等差数列,并求其通项公式;(2)求数列{}3nn a ⋅的前n 项和Tn【答案】(1)证明见解析,21n a n =-(2)()1133n n T n +=-⋅+【分析】(1)直接采用作差法化简可得2211422n n n n n a a a a a --=-+-,变形可得12n n a a --=,可证{an }为等差数列,结合通项公式可求n a ;(2)由(1)得()3213n nn a n ⋅=-⋅,结合错位相减法化简可求n T .(1)()()()22-1-14=14=12n n n n S a S a n +∴+≥,, ()()22114411n n n n S S a a --∴-=+-+,2211422n n n n n a a a a a --∴=-+-,()()1120n n n n a a a a --∴+--=,()10,22n n n a a a n ->∴-=≥,所以数列{}n a 为等差数列,11,1,n a == 21n a n ∴=-;由(1)得()3213n nn a n ⋅=-⋅,所以()121333213=⨯+⨯++-⋅n n T n ,()()21313233213n n n T n n +=⨯++-⋅+-⋅()()2123233213n n n T n +∴-=+⨯++--⋅,()()21131323221313n n n T n -+⨯-∴-=+⨯--⋅-,()122236n n T n +∴-=-⋅-, ()1133n n T n +∴=-⋅+.21.击鼓传花,也称传彩球,是中国民间游戏,数人或几十人围成圆圈坐下,其中一人拿花(或一小物件);另有一人背着大家或蒙眼击鼓(桌子、黑板或其他能发出声音的物体),鼓响时众人开始传花(顺序不定),至鼓停止为止,此时花在谁手中(或其座位前),谁就上台表演节目,某单位组织团建活动,9人一组,共9组,玩击鼓传花,(前五组)组号x 与组内女性人数y 统计结果如表: .(1)女性人数与组号x (组号变量x 依次为1, 2, 3, 4, 5, ... )具有线性相关关系,请预测从第几组开始女性人数不低于男性人数;(参考公式:1221ˆˆˆ,ni ii nii x y nxybay bx xnx==-==--∑∑)(2)在(1) 的前提下,从9组中随机抽取3组,若3组中女性人数不低于5人的有X 组,求X 的分布列与期望.【答案】(1)预测从第7组开始女性人数不低于男性人数 (2)分布列见解析,1.【分析】(1)根据题意,结合已知公式得0.6 1.2y x ∧=+,再解0.6 1.25x +≥即可估计得答案;(2)根据题意得X 的所有可能取值为0,1,2,3,再根据超几何分布求解即可.解:由题可得()11234535x =⨯++++=,51223443,515i i i y x y =++++===∑,522222211234555i i x ==++++=∑.则51522150.6,30.63 1.25i ii i i x y x yb a y b x x x∧∧∧==-===-=-⨯=-∑∑所以0.6 1.2y x ∧=+ 当0.6 1.25x +≥时,193x ≥所以预测从第7组开始女性人数不低于男性人数. (2)解:由题可知X 的所有可能取值为0,1,2,3,36395(0)21C C P X === 21633915(1)28C C C P X === 1263393(2)14C C C P X === 33391(3)84C C P X ===则X 的分布列为()1E X ∴=22.已知在平面四边形ABCD 中,1,2AB BD ==,BC =DB 为ADC ∠的角平分线 (1)若1cos 4A =,求BDC 的面积; (2)若4CD AD -=,求CD 长. 【答案】 (2)6【分析】(1)根据题意,在三角形ABD 中由正弦定理得sin ADB ∠=,进而结合题意,在三角形BCD 中由余弦定理解得6CD =,在根据三角形面积公式计算即可;(2)设CD x =,由于cos cos ADB CDB ∠=∠,故在三角形ABD 和三角形CDB 中,结合余弦定理解方程得6x =.解:在三角形ABD 中,由1cos 4A =得15sin 4A = 由正弦定理可得sin sin BD ABA ADB =∠,即21sin sin A ADB=∠ 所以115sin sin 28ADB A ∠==因为DB 为ADC ∠的角平分线,所以15sin sin 8CDB ADB ∠=∠=, 因为AB BD <,故ADB ∠为锐角,故CDB ∠为锐角,故27cos 1sin 8CDB CDB ∠=-∠=在三角形BCD 中由余弦定理得2222cos BC CD DB CD DB CDB =+-⋅⋅∠ 所以227300CD CD --=,解得6CD =或52CD =-(舍) .所以1115315sin 622284BDCS DC DB CDB =⋅⋅∠=⨯⨯⨯=(2)解:设CD x =,则4AD x =-在三角形ABD 中由余弦定理可得22224)41cos 24(4)DA DB AB x ADB DA DB x +--+-∠==⋅-( 在三角形CDB 中由余弦定理可得2222419cos 24DC DB CB x CDB DC DB x+-+-∠==⋅ 因为cos cos ADB CDB ∠=∠所以22(4)414194(4)4x x x x -+-+-=-,解得6x =或52x =(舍)综上所述CD 的长为6.23.如图,在四棱台1111ABCD A B C D -中,底面为矩形,平面11AA D D ⊥平面11C CDD ,且1111122CC CD DD C D ====.(1)证明:11A D ⊥面11CC D D π【答案】(1)证明见解析; (2)34. 【解析】(1)如图在梯形11CC D D 中,因为1111122CC CD DD C D ====,作11DH D C ⊥于H ,则11D H =,所以11cos 2DD H ∠=, 所以113DD C π∠=,连结1DC ,由余弦定理可求得123DC =,因为2221111DC DD D C +=,所以11DC DD ⊥,因为平面11AA D D ⊥平面11CC D D 且交于1DD ,1DC ⊂面11CC D D 所以1DC ⊥平面11AA D D ,因为AD ⊂平面11AA D D ,所以1AD DC ⊥,因为AD DC ⊥,1DC DC D ⋂=,1,DC DC ⊂面11CC D D , 所以AD ⊥平面11CC D D . (2)连结11A C ,由(1)可知,11A D ⊥平面11CC D D , 以1D 为坐标原点,建立空间直角坐标系如图所示,因为11A D ⊥平面11CC D D ,所以1A C 在平面11CC D D 内的射影为1D C , 所以1A C 与平面11CC D D 所成的角为11ACD ∠,即113ACD π∠=,在△1D DC 中,由余弦定理可得:2221112cos120D C DD DC DD DC =+-⨯⨯︒,即21144222122D C ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得1DC =在11Rt A CD中,因为1DC =116A D =, 则()10,0,0D ,()16,0,0A,(D,(C ,()10,4,0C ,所以(1D D =,()116,0,0D A =,()116,4,0AC =-,(1AC =- 设平面11AA D D 的法向量为(),,m x y z =, 则有11100m D D m D A ⎧⋅=⎪⎨⋅=⎪⎩,即060y x ⎧=⎪⎨=⎪⎩ 令3y =,则0x =,z =(0,3,m =, … 设平面11AAC C 的法向量为(),,n a b c =, 则有11100n A C n A C ⎧⋅=⎪⎨⋅=⎪⎩,即640630a b a b -+=⎧⎪⎨-++=⎪⎩,令2a =,则3b =,c =(2,3,3n =,所以6cos ,23m n m n m n⋅===⨯故锐二面角1C AA D --24.己知函数()e mxf x x =(其中e 为自然对数的底数)(1)讨论函数()f x 的单调性;(2)当1m =时,若()ln 1f x x ax ≥++恒成立,求实数a 的取值范围. 【答案】(1)答案见解析 (2)(],1-∞【分析】(1)()()'1mxf x mx e =+,进而分0m =,0m >,0m <三种情况讨论求解即可;(2)由题意知ln 1xx a e x+≤-在()0+∞,上恒成立,故令ln 1()x x g x e x +=-,再根据导数研究函数的最小值,注意到01,1x e ⎛⎫∃∈ ⎪⎝⎭使()'00g x =,进而结合函数隐零点求解即可.(1)解:()()'1mxf x mx e =+①0m =,()f x 在R 上单调增; ②0m >,令()'10f x x m ==-,,()()'1,,0,x f x f x m ⎛⎫∈-∞-< ⎪⎝⎭单调减()()'1+,0,x f x f x m ⎛⎫∈-∞> ⎪⎝⎭,单调增; ③0m <,()()'1,,0,x f x f x m ⎛⎫∈-∞-> ⎪⎝⎭单调增()()'1+,0,x f x f x m ⎛⎫∈-∞< ⎪⎝⎭,单调减. 综上,当0m =时,()f x 在R 上单调增;当0m >时,()f x 在1,m ⎛⎫-∞- ⎪⎝⎭上单调递减,在1+m ⎛⎫-∞ ⎪⎝⎭,上单调递增;当0m <时,()f x 在1,m ⎛⎫-∞- ⎪⎝⎭上单调递增,在1+m ⎛⎫-∞ ⎪⎝⎭,上单调递减. (2)解:由题意知ln 1xx a e x+≤-在()0+∞,上恒成立 ()2'2ln 1ln (),x xx x e xg x e g x x x ++=-=,令()2ln x h x x e x =+,()()'212xh x x x e x=++, ()()()'0,,0,x h x h x ∈+∞>单调递增∵()121110,10e h e h e e e⎛⎫=⨯-<=> ⎪⎝⎭,∴01,1x e ⎛⎫∃∈ ⎪⎝⎭使得()00h x =,即()'00g x =()()()'00,,0,x x g x g x ∈<单调递减;()()()'0,,0,x x g x g x ∈+∞>单调递增()()000min 0ln 1x x g x g x e x +∴==-, 0020000011ln 0,ln x x x e x x e x x +=∴=令()xm x xe =,则111ln ln m x x x⎛⎫= ⎪⎝⎭()m x 在()0+∞,上单调增 000011ln,x x e x x ∴=∴=,0000000ln 111()=1x x x g x e x x x +-+∴=--= 1a ∴≤∴实数a 的取值范围是(],1-∞。

2012年江苏省高考数学一轮训练试题考点5:立体几何.


B
(第 23 题)
→→ DC1B1C → → 所以 cos<DC1,B1C >= → → |DC1||B1C | -2 10 = =- . 10 5× 8 即异面直线 DC1 与 B1C 所成角的余弦值为
10 .…………………………4 分 10
→ → → (2)因为 CB =(0,2,0), CA =(2,0,0),CC1=(0,0,2), →→ →→ 所以 CB · CA =0, CB · CC1 =0, → 所以 CB 为平面 ACC1A1 的一个法向量. → → 因为B1C =(0,-2,-2), CD =(2,0,1), 设平面 B1DC1 的一个法向量为 n,n=(x,y,z) . → n· B1C=0, -2y-2z=0, 由 得 → 2x+z=0. n· CD =0, 令 x=1,则 y=2,z=-2,n=(1,2,-2) .……………………………8 分 → n· CB 4 2 → 所以 cos< n, CB >= = = . → 3×2 3 |n| | CB | …………………………6 分
2 由于二面角 A-BE-C 的平面角是 n1 与 n2 的夹角的补角,其余弦值是- 3 .…… 10 分
江苏省 2010 高考数学模拟题(压题卷) 二、 2.如图,四边形 ABCD 为矩形,BC⊥平面 ABE,F 为 CE 上的点,且 BF⊥平面 ACE. (1)求证:AE⊥BE; (2)设点 M 为线段 AB 的中点,点 N 为线段 CE 的中点,求证: MN //平面 DAE. 解:(1)因为 BC 平面 ABE,AE 平面 ABE,所以 AE BC, 又 BF 平面 ACE,AE 平面 ACE,所以 AE BF, 又 BF BC=B,所以 AE 平面 BCE, 又 BE 平面 BCE,所以 AE BE.

江苏省扬州市2024-2025学年高三上学期11月期中检测数学试题

江苏省扬州市2024-2025学年高三上学期11月期中检测数学试题学校:___________姓名:___________班级:___________考号:___________四、解答题15.中国是茶的故乡,茶文化源远流长,博大精深.某兴趣小组,为了了解当地居民对喝茶的态度,随机调查了100人,并将结果整理如下:1.B【分析】1()2x f x -=是指数复合函数,先判断函数单调递增,通过求出2x =和x 趋于-¥时()f x 的值来确定值域.【详解】1()2x f x -=由(1,)2u x x u f ==-复合,两个都是增函数,则原函数为增函数.当2x =时,211(2)222f -===.当x 趋于-¥时,1x -也趋于-¥.因为指数函数2u y =(1u x =-),当u 趋于-¥时,2u 趋于0,所以()f x 趋于0,所以()0f x >.故原函数值域为(]0,2.故选:B.2.D【分析】解不等式化简集合B ,再利用并集的定义求解即得.【详解】解(2)(1)0x x +-<,得2<<1x -,则{1,0}B =-,而{}0,1,2A =,所以{}1,0,1,2A B È=-.故选:D 3.A【分析】根据函数零点存在定理:如果函数()y f x =在区间[],a b 上的图象是连续不断的一条曲线,并且有()()0f a f b <,那么函数()y f x =在区间(,)a b 内有零点.来判断两个条件之围;(2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。

江苏省南通市2011届高三第三次调研测试(2011南通三模)(word版附答案).doc

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载江苏省南通市2011届高三第三次调研测试(2011南通三模)(word版附答案).doc地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容南通市2011届高三第三次调研测试试卷及答案数学I一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.若集合A={x|x>2},B={x|x≤3},则A∩B= ▲ .答案:2.函数y=sin2x+cos2x的最小正周期是▲ .答案:π3.已知(a+i)2=2i,其中i是虚数单位,那么实数a= ▲ .答案:14.已知向量a与b的夹角为60º,且|a|=1,|b|=2,那么的值为▲ .答案:75.底面边长为2m,高为1m的正三棱锥的全面积为▲ m2.答案:6.若双曲线的焦点到渐近线的距离为,则实数k的值是▲ .答案:87.若实数x,y满足则z=x+2y的最大值是▲ .答案:28.对于定义在R上的函数f(x),给出三个命题:①若,则f(x)为偶函数;②若,则f(x)不是偶函数;③若,则f(x)一定不是奇函数.其中正确命题的序号为▲ .答案:②9.图中是一个算法流程图,则输出的n= ▲ .(第9题图)开始是输出n否n←1,S←0S<2011S←S+2nn←n+1结束答案:1110.已知三数x+log272,x+log92,x+log32成等比数列,则公比为▲ .答案:311.已知5×5数字方阵:中,则= ▲ .答案:-112.已知函数f(x)=,x∈,则满足f(x0)>f()的x0的取值范围为▲ .答案:∪13.甲地与乙地相距250公里.某天小袁从上午7∶50由甲地出发开车前往乙地办事.在上午9∶00,10∶00,11∶00三个时刻,车上的导航仪都提示“如果按出发到现在的平均速度继续行驶,那么还有1小时到达乙地”.假设导航仪提示语都是正确的,那么在上午11∶00时,小袁距乙地还有▲ 公里.答案:6014.定义在上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-|x-3|.若函数的所有极大值点均落在同一条直线上,则c= ▲ .答案:1或2二、解答题:本大题共6小题,共计90分.请把答案写在答题卡相应的位置上.解答时应写出文字说明,证明过程或演算步骤.15.(本题满分14分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:(1)写出表中①②位置的数据;(2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数;(3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.解:(1) ①②位置的数据分别为12、0.3;………………………………………………4分(2) 第三、四、五组参加考核人数分别为3、2、1;…………………………………8分(3) 设上述6人为abcdef(其中第四组的两人分别为d,e),则从6人中任取2人的所有情形为:{ab,ac,ad,ae,af,bc,bd,be,bf,cd,ce,cf,de,df,ef}共有15种.…………………………………………………………………………10分记“2人中至少有一名是第四组”为事件A,则事件A所含的基本事件的种数有9种. (12)分所以,故2人中至少有一名是第四组的概率为.……………14分16.(本题满分14分)ABCDEA1B1C1(第16题图)如图,在三棱柱ABC-A1B1C1中.(1)若BB1=BC,B1C⊥A1B,证明:平面AB1C平面A1BC1;(2)设D是BC的中点,E是A1C1上的一点,且A1B∥平面B1DE,求的值.解:(1)因为BB1=BC,所以侧面BCC1B1是菱形,所以B1C⊥BC1.…………………3分又因为B1C⊥A1B ,且A1B∩BC1=B,所以BC1⊥平面A1BC1,…………………5分又B1C平面AB1C ,所以平面AB1C⊥平面A1BC1 .……………………………7分(2)设B1D交BC1于点F,连结EF,则平面A1BC1∩平面B1DE=EF.因为A1B//平面B1DE, A1B平面A1BC1,所以A1B//EF.…………………11分所以=.又因为=,所以=.………………………………………14分17.(本题满分14分)在△ABC中,a2+c2=2b2,其中a,b,c分别为角A,B,C所对的边长.(1)求证:B≤;(2)若,且A为钝角,求A.解:(1)由余弦定理,得.……………………………………3分因,.………………………………………………………6分由0<B<π,得,命题得证. (7)分(2)由正弦定理,得.…………………………………………10分因,故=1,于是.……………………………………12分因为A为钝角,所以.所以(,不合,舍) .解得.…………………14分18.(本题满分16分)在平面直角坐标系xOy中,已知椭圆(a>b>0)的离心率为,其焦点在圆x2+y2=1上.(1)求椭圆的方程;(2)设A,B,M是椭圆上的三点(异于椭圆顶点),且存在锐角θ,使.(i)求证:直线OA与OB的斜率之积为定值;(ii)求OA2+OB2.解:(1)依题意,得 c=1.于是,a=,b=1.……………………………………2分所以所求椭圆的方程为.………………………………………………4分(2) (i)设A(x1,y1),B(x2,y2),则①,②.又设M(x,y),因,故…………7分因M在椭圆上,故.整理得.将①②代入上式,并注意,得.所以,为定值.………………………………………………10分(ii),故.又,故.所以,OA2+OB2==3.…………………………………………16分19.(本题满分16分)已知数列{an}满足:a1=a2=a3=2,an+1=a1a2…an-1(n≥3),记(n≥3).(1)求证数列{bn}为等差数列,并求其通项公式;(2)设,数列{}的前n项和为Sn,求证:n<Sn<n+1.解:(1)方法一当n≥3时,因①,故②.……………………………………2分②-①,得 bn-1-bn-2===1,为常数,所以,数列{bn}为等差数列.…………………………………………………………5分因 b1==4,故 bn=n+3.……………………………………8分方法二当n≥3时,a1a2…an=1+an+1,a1a2…anan+1=1+an+2,将上两式相除并变形,得.……………………………………2分于是,当n∈N*时,.又a4=a1a2a3-1=7,故bn=n+3(n∈N*).所以数列{bn}为等差数列,且bn=n+3.………………………………………………8分(2) 方法一因,…………………12分故.所以,………15分即 n<Sn<n+1.………………………………………………………………………16分方法二因,故>1,.……………………10分=<<,故<,于是.……………………………………16分20.(本题满分16分)设函数f(x)=ax3-(a+b)x2+bx+c,其中a>0,b,c∈R.(1)若=0,求函数f(x)的单调增区间;(2)求证:当0≤x≤1时,||≤.(注:max{a,b}表示a,b中的最大值)解:(1)由=0,得a=b.…………………………………………………………1分故f(x)= ax3-2ax2+ax+c.由=a(3x2-4x+1)=0,得x1=,x2=1.…………………………………………2分列表:由表可得,函数f(x)的单调增区间是(-∞,)及(1,+∞) .…………………………4分(2)=3ax2-2(a+b)x+b=3.①当时,则在上是单调函数,所以≤≤,或≤≤,且+=a>0.所以||≤.………………………………………………………8分②当,即-a<b<2a,则≤≤.(i) 当-a<b≤时,则0<a+b≤.所以==≥>0.所以||≤.……………………………………………………12分(ii) 当<b<2a时,则<0,即a2+b2-<0.所以=>>0,即>.所以||≤.综上所述:当0≤x≤1时,||≤.……………………………16分数学Ⅱ(附加题)(第21-A题图)ABPOEDC·21.【选做题】本题包括A,B,C,D共4小题,请从这4题中选做2小题,每小题10分,共20分.请在答题卡上准确填涂题目标记,解答时应写出文字说明、证明过程或演算步骤.A.选修4-1:几何证明选讲如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,求证:∠PDE=∠POC.证明:因AE=AC,AB为直径,故∠OAC=∠OAE. (3)分所以∠POC=∠OAC+∠OCA=∠OAC+∠OAC=∠EAC.又∠EAC=∠PDE,所以,∠PDE=∠POC. (10)分B.选修4-2:矩阵与变换已知圆C:在矩阵对应的变换作用下变为椭圆,求a,b的值.解:设为圆C上的任意一点,在矩阵A对应的变换下变为另一个点,则,即…………………………………………………4分又因为点在椭圆上,所以.由已知条件可知,,所以 a2=9,b2=4.因为 a>0 ,b>0,所以 a=3,b=2.…………………………………………………10分(第21-C题图)xBAOC.选修4-4:坐标系与参数方程在极坐标系中,求经过三点O(0,0),A(2,),B(,)的圆的极坐标方程.解:设是所求圆上的任意一点, (3)分则,(第21-C题答图)xBAOP故所求的圆的极坐标方程为.…………………………………10分注:亦正确.D.选修4-5:不等式选讲已知x,y,z均为正数.求证:.证明:因为x,y,z都是为正数,所以.…………………3分同理可得.将上述三个不等式两边分别相加,并除以2,得.………10分22.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.已知函数,其中a>0.(1)若在x=1处取得极值,求a的值;(2)若的最小值为1,求a的取值范围.w.w.w.k.s.5.u.c.o.m解:(1) .因在处取得极值,故,解得a=1 (经检验).……………………4分(2),因,故ax+1>0,1+x>0.当a≥2时,在区间上,递增,的最小值为f(0)=1.当0<a<2时,由,解得;由,解得.∴f(x)的单调减区间为,单调增区间为.于是,f(x)在处取得最小值,不合.综上可知,若f(x)得最小值为1,则a的取值范围是 (10)分注:不检验不扣分.23.【必做题】本题满分10分.解答时应写出文字说明、证明过程或演算步骤.ABDxyOEFCP(第23题图)过抛物线y2=4x上一点A(1,2)作抛物线的切线,分别交x轴于点B,交y 轴于点D,点C(异于点A)在抛物线上,点E在线段AC上,满足=λ1;点F在线段BC上,满足=λ2,且λ1+λ2=1,线段CD与EF交于点P.(1)设,求;(2)当点C在抛物线上移动时,求点P的轨迹方程.解:(1)过点A的切线方程为y=x+1.…………………………………………………1分切线交x轴于点B(-1,0),交y轴交于点D(0,1),则D是AB的中点.所以.(1) ………………………3分由=(1+λ) . (2)同理由=λ1,得=(1+λ1), (3)=λ2,得=(1+λ2). (4)将(2)、(3)、(4)式代入(1)得.因为E、P、F三点共线,所以 eq \f(1+λ1,2(1+λ)) + eq\f(1+λ2,2(1+λ)) =1,再由λ1+λ2=1,解之得λ= eq\f(1,2) .……………………………………………………………6分(2)由(1)得CP=2PD,D是AB的中点,所以点P为△ABC的重心.所以,x= eq \f(1-1+x0,3) ,y= eq \f(2+0+y0,3) .解得x0=3x,y0=3y-2,代入y02=4x0得,(3y-2)2=12x.由于x0≠1,故x≠3.所求轨迹方程为(3y-2)2=12x(x≠3).………………………………………………10分南通市2011届高三第三次调研测试讲评建议5.摘自课本《必修2》P49练习2的原题,主要考查基本运算,应强调考生回归课本、注重运算、留心单位、认真审题.6.可以将问题变为“若椭圆的离心率为,则实数k= ”,这时需要增加分类讨论的意思.8.来自课本《必修1》P40练习4,对命题③的理解,考生容易产生失误.10.应强调对整体的把握,例如,.11.这是一道新定义的问题,但问题较为简单,三个目的:一是让学生能主动排除干扰,如题中的方阵(是可以没有的),求和符号等;二是通过题目位置提高问题的难度;三是靠后的问题难度未必是大的,这需要引导考生提高主动得分意识.12.讲评时可以求“f(x0)>f()”成立的一个充分条件.13.主要考查应用意识、阅读能力、思维触角.14.本题中的极大值点是局部最高点,其导数是不存在的.可以通过先3点求出c的值,当然最后需要进行严格的证明.另外本题还可以追问这些最值点能否落在顶点在原点、对称轴为坐标轴的抛物线上.说明:苏教版没有极大值点的定义,按照人教版高中数学教材的陈述,极大值点是一个数(类同于函数的零点),因此本题有缺陷,讲评时要向学生说清楚。

高三数学12月迎新一练

2011届高三数学12月迎新一练2010.12.31一、填空题(本大题共14小题,每小题5分,计70分)1.已知集合{}20,3,A a =,{}1,B a =,若{}4,3,2,1,0=⋃B A ,则实数a 的值为 .2.已知{}n a 为等差数列,3822a a +=,67a =,则=5a .3.方程 x 2m + y 24-m= 1 表示的曲线是焦点在y 轴上的双曲线,则m 的取值范围是 .4.已知⎪⎩⎪⎨⎧≥≤+≥0,2,x y x x y ,则y x z +=2的最大值是 .5.圆心为()1,0且与直线03=+-y x 相切的圆的方程是 .6.设0x 是方程082=-+x x的解,且()1,0+∈k k x ,Z k ∈,则=k .7. 设b a ,为不重合的两条直线,βα,为不重合的两个平面,给出下列命题:①若αα////b a 且,则b a //; ②若αα⊥⊥b a 且,则b a //; ③若βα////a a 且,则βα//; ④若βα⊥⊥a a 且,则βα//. 上面命题中,所有真命题的序号为 . 8.已知集合[]1,0=A ,设函数()()A x a x f x∈+=-2的值域为B ,若A B ⊆,则实数a 的取值范围是 .9.已知正项等比数列{}n a 满足5762a a a -=,若存在两项n m a a ,使得22a a a n m =,则nm 41+的最小值为 . 10.在等式()()sin ____1tan 701︒=的括号中,填写一个锐角,使得等式成立,这个锐角是 .11.函数()53log 22+-=ax x y 在),1[+∞-内单调递增,则a 的取值范围是 . 12.在ABC ∆中,C B A ∠∠∠,,的对边分别为c b a ,,,重心为G ,若33=++c b a ,GM D 1C 1B 1A 1NDCBA则A ∠= .13.设F 是椭圆22:143x y G +=的右焦点,过点F 作两条互相垂直的直线,分别与椭圆G 相交得到弦AB 、CD ,则AB CD ⋅的最小值为 .14.已知定义在R 上的不恒为零的函数()x f ,且对于任意实数R b a ∈,,满足()()()a bf b af ab f +=,()()()()()**∈=∈==N n f b N n n f a f nn n n n 22,2,22,考察下列结论: ①()()10f f =;②()x f 为偶函数;③{}n a 为等比数列;④{}n b 为等差数列. 其中正确命题的序号为 .二、解答题(本大题共6小题,计90分.)15.(本题满分14分)在ABC ∆中,,,A B C 所对边分别为c b a ,,,已知(sin ,sin cos )m C B A =,(,2)n b c =,且0=⋅n m .(Ⅰ)求A 大小; (Ⅱ)若,2,32==c a 求ABC ∆的面积S 的大小.16.(本题满分14分)如图,在正方体ABCD —A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C ,AD 的中点.求证:(Ⅰ)MN //平面ABCD ;(Ⅱ)MN ⊥平面B 1BG .17.(本题满分14分)如图:某污水处理厂要在一个矩形污水处理池()ABCD 的池底水平铺设污水净化管道FHE Rt ∆(,H 是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H 是AB 的中点,,E F 分别落在线段,BC AD 上.已知20AB =米,AD =BHE θ∠=.(Ⅰ)试将污水净化管道的长度L 表示为θ的函数,并写出定义域;(Ⅱ)问:当θ取何值时,污水净化效果最好?并求出此时管道的长度.18.(本题满分16分)已知圆M :2342222=-+y y x ,直线l 0:x +y =8 , l 0上一点A 的横坐标为a , 过点A 作圆M 的两条切线l 1 , l 2 , 切点分别为B ,C . (Ⅰ)当a =0时,求直线 l 1 , l 2 的方程; (Ⅱ)当直线 l 1 , l 2 互相垂直时,求a 的值;(Ⅲ)是否存在点A ,使得BC 长为10?若存在,求出点A 的坐标,若不存在,请说明理由.19.(本题满分16分)已知数列{}n a 的前n 项和为n S ,数列是公比为2的等比数列.(Ⅰ)若12a =,求n S ;(Ⅱ)探究数列{}n a 成等比数列的充要条件,并证明你的结论;(Ⅲ)设115(1)(), n n n n n n b a n N b b n N a **+=--∈<∈若对恒成立,求 的取值范围.20.(本题满分16分)已知函数()()ln 3f x a x ax a R =--∈. (Ⅰ)当0a <时,求函数()f x 的最小值;(Ⅱ)若函数()y f x =的图像在点(2,(2))f 处的切线的倾斜角为45 ,对于任意[1,2]t ∈,函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数,求m 的取值范围; (Ⅲ)求证: ()2,1ln 44ln 33ln 22ln ≥∈<⋅⋅n N n n n n .附加题部分1、选修4-2:矩阵与变换已知1 0 4 31 2 4 1-⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦B , 求矩阵B .2、选修4-4:坐标系与参数方程.已知在直角坐标系xOy 内,直线l 的参数方程为22,14,x t y t =+⎧⎨=+⎩(t 为参数).以Ox 为极轴建立极坐标系,圆C的极坐标方程为)4πρθ=+.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)判断直线l 和圆C 的位置关系.3、 如图,在底面边长为1,侧棱长为2的正四棱柱1111ABCD A B C D -中, P 是侧棱1CC 上的一点,CP m =. (1)当36=m 时,求直线AP 与平面BDD 1B 1所成角的度数; (2)在线段11A C 上是否存在一个定点Q ,使得对任意的m , 1D Q ⊥AP ,并证明你的结论.4、已知等式25029910001299100(22)(1)(1)(1)(1)x x a a x a x a x a x ++=+++++++++ ,其中i a (i =0,1,2,…,100)为实常数.求: (1)1001n n a =∑的值; (2)1001n n na =∑的值.ABCD PA 1B 1D 1C 1GMD 1C 1B 1A 1NDCBA简答:1. 2 2. 15 3. 0m < 4..3 5. ()2122=-+y x6. 2 7.②④ 8. ⎥⎦⎤⎢⎣⎡-0,21 9. 23 10. 10o11.]6,8(-- 12.6π13.57649 14.①③④15. 解:(I )∵0=⋅,∴(sin ,sin cos )(,2)C B A b c=0. ∴sin 2sin cos 0.b C c B A += ………2分∵,sin sin b cB C=∴2cos 0.bc cb A +=……………4分 ∵0,0,b c ≠≠∴12cos 0.A += ∴1cos .2A =- ………6分∵0,A π<<∴2.3A π= ……………8分 (II )△ABC 中,∵2222cos ,a c b cb A =+-∴21244cos120b b =+-.∴2280.b b +-= ………………10分∴4() 2.b b =-=舍, ………12分∴△ABC 的面积11sin 22222S bc A ==⨯⨯⨯= ……………14分 16.证明:(1)取CD 的中点记为E ,连NE ,AE . 由N ,E 分别为CD 1与CD 的中点可得NE ∥D 1D 且NE =12D 1D , ………………………………2分又AM ∥D 1D 且AM =12D 1D ………………………………4分所以AM ∥EN 且AM =EN ,即四边形AMNE 为平行四边形 所以MN ∥AE , ………………………………6分 又AE ⊂面ABCD ,所以MN ∥面ABCD ……8分 (2)由AG =DE ,90BAG ADE ∠=∠=︒,DA =AB 可得EDA ∆与G AB ∆全等……………………………10分所以ABG DAE ∠=∠, ……………………………………………11分又90DAE AED AED BAF ∠+∠=︒∠=∠,,所以90BAF ABG ∠+∠=︒,所以AE BG ⊥, ………………………………………………12分 又1BB AE ⊥,所以1AE B BG ⊥面, ……………………………………………………13分 又MN ∥AE ,所以MN ⊥平面B 1BG ……………………………………………14分 17. 解:(1)10cos EH θ=,10sin FH θ= …………2分θθcos sin 10=EF ………………………………4分由于10tan BE θ=⋅≤10tan AF θ=≤tan θ≤≤ [,]63ππθ∈…………………………5分 101010cos sin sin cos L θθθθ=++⋅ , [,]63ππθ∈.………………7分 (3)101010cos sin sin cos L θθθθ=++⋅=sin cos 110()sin cos θθθθ++⋅ 设sin cos tθθ+= 则21sin cos 2t θθ-⋅=由于[,]63ππθ∈,所以sin cos )4t πθθθ=+=+∈ ,201L t =-在内单调递减,于是当t =,63ππθθ==时,L 的最大值1)米.答:当6πθ=或3πθ=时所铺设的管道最长,为1)米.……………14分 18解:(Ⅰ)圆M :225)1(22=-+y x 圆心M(0 , 1) , 半径25A(0, 8) , 设切线的方程为y =k x +8 , 圆心距d ==, 解得573±=k , 所求直线l 1 , l 2的方程为8573+±=x y (Ⅱ)当l 1 ⊥l 2时,四边形MCAB 为正方形,∴ 5252||2||=⨯==MB AM设A(a , 8-a ), M(0 , 1) 则5)7(22=-+a a即01272=+-a a ∴ a =3或a =4(Ⅲ)若10=BC , 则210=BD , 25=MB ∴MD MB 2=MD·MA ∴1045=MA ∵圆心M 到直线l 0的距离为104527> ∴ 点A 19. 解:(Ⅰ)1341n n S -=⨯-…………3分 (Ⅱ)充要条件为13a = …………5分由条件可得12113(1)4 2n n a n a a n -=⎧=⎨+≥⎩ 证明:(1)充分性:当2n ≥时,14n n a a +=, 而214aa =,故数列{}n a 成等比数列 (2)必要性:由数列{}n a 成等比数列,故214a a =,解得13a =…………9分 (Ⅲ)当1n =时,115b a =+;当2n ≥时,2115(1)3(1)4(1)n n n n b a a -=--⨯+⨯>- (1) 当n 为偶数时,2115(1)445n n a -+⨯>-⨯恒成立,故1(1,)a ∈-+∞(2) 当n 为奇数时,12b b <且1(3)n n b b n +<≥恒成立 由12b b <得1174a <,由1(3)n n b b n +<≥恒成立 2111153(1)453(1)4n n n n a a -+-++⨯<-+⨯恒成立故2115(1)445n n a -+⨯<⨯恒成立,所以21205(1)()34n a -+<因3n ≥,故1223a <,因为172243< 所以11714a -<<综合得:11714a -<<…………16分20. 解:(Ⅰ)当1x =时,函数()f x 的最小值3a --…………3分 (Ⅱ)/(2)1,22af a =-==-由 32/2()2ln 23()(2)2, ()3(4)22f x x x mg x x x x g x x m x ∴=-+-∴=++-=++- 令/()0g x =得,2(4)240m ∆=++>故/()0g x =两个根一正一负,即有且只有一个正根函数()32/[()]2mg x x x f x =++在区间(,3)t 上总不是单调函数 ∴/()0g x =在(,3)t 上有且只有实数根 ///(0)20,()0,(3)0g g t g =-<∴<> ∴237, (4)233m m t t >-+<-故243m t t +<-,而23y t t=-∈在t [1,2]单调减 ∴9m <-,综合得3793m -<<-…………10分(Ⅲ)令1,a =-此时()ln 3f x x x =-+-∴(1)2f =-由(Ⅰ)得,()ln 3f x x x =-+-在(1,)+∞时单调增,∴()(1)f x f ≥ 即ln 10x x -+-≥ l n 1x x ∴≤-对一切(1,)x ∈+∞成立2 0ln 1n n n ≥∴<<- l n 10n n n n-∴<< nn n n n n n 1112433221ln 44ln 33ln 22ln =-⋅--⋅⋅⋅⋅<⋅⋅⋅⋅ …………16分附加题部分21.B. 【解】设 , a b c d ⎡⎤=⎢⎥⎣⎦B 则1 01 22 2a b a c b d ⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦B , ……………5分 故4,4,3,3,4 3.24,4, 4 221, 2.a ab b ac c bd d =-=-⎧⎧⎪⎪==-⎡⎤⎪⎪=⎨⎨⎢⎥+==-⎣⎦⎪⎪⎪⎪+=-=-⎩⎩解得故B …………………10分C. 【解】(1)消去参数t ,得直线l 的直角坐标方程为23y x =-; ………………4分4(sin 22πθρ+=,即)cos (sin 2θθρ+=,两边同乘以ρ得)cos sin (22θρθρρ+=,消去参数θ,得⊙C 的直角坐标方程为:22(1)(1)2x y -+-= ………………………8分(2)圆心C 到直线l 的距离d ==<l 和⊙C 相交.10分 22.【解】(1)建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0), P (0,1,m ),C (0,1,0),D (0,0,0), B 1(1,1,1), D 1(0,0,2).所以1(1,1,0),(0,0,2),BD BB =--=(1,1,),(1,1,0).AP m AC =-=-又由110,0AC BD AC BB AC D D ⋅=⋅=1知为平面BB的一个法向量设AP 与11BDD B 面 所成的角为θ,则()||πsin cos 2||||AP AC AP ACθθ⋅=-==⋅, 解得m =故当m =时,直线AP 与平面11BDD B 所成角为60º. ………5分(2)若在11A C 上存在这样的点Q ,设此点的横坐标为x ,则1(,1,2),(,1,0)Q x x D Q x x -=-.依题意,对任意的m 要使D 1Q 在平面APD 1上的射影垂直于AP . 等价于 1110(1)02D Q AP AP D Q x x x ⊥⇔⋅=⇔+-=⇔=即Q 为11A C 的中点时,满足题设的要求.……………10分23.解:(1)在25029910001299100(22)(1)(1)(1)(1)x x a a x a x a x a x ++=+++++++++ 中, 令1x =-,得01a =.…………………………………………………………2分 令0x =,得50012991002a a a a a +++++= . ……………………………………4分所以10501210121n n a a a a ==+++=-∑ . …………………5分(2)等式25029910001299100(22)(1)(1)(1)(1)x x a a x a x a x a x ++=+++++++++ 两边对x 求导,得2499899129910050(22)(22)2(1)99(1)100(1)x x x a a x a x a x ++⋅+=+++++++ .……7分在2499899129910050(22)(22)2(1)99(1)100(1)x x x a a x a x a x ++⋅+=+++++++ 中, 令x =0,整理,得1005012991001299100502n n na a a a a ==++++=⨯∑ .……………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省扬州市2011届高三数学调研试卷2010.12编校:王斌 审核:王思亮全卷分两部分:第一部分为所有考生必做部分(满分160分,考试时间120分钟),第二部分为选修物理考生的加试部分(满分40分,考试时间30分钟). 注意事项:1. 答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷规定的地方. 2.第一部分试题答案均写在答题卷相应位置,答在其它地方无效.3.选修物理的考生在第一部分考试结束后,将答卷交回,再参加加试部分的考试.第 一 部 分一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.已知全集{}4,3,2,1=U ,集合{}{}1,2,2,3P Q ==,则()U P Q = ð .2.双曲线221416x y -=的渐近线方程为 . 3.“6πα=”是“1sin 2α=”的 条件. (填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)4.若以连续掷两次骰子分别得到的点数n m ,作为点P 的横、 纵坐标,则点P 在直线5=+y x 上的概率为 .5.如图是某学校学生体重的频率分布直方图,已知图中 从左到右的前3个小组的频率之比为1:2:3,第2小组 的频数为10,则抽取的学生人数是 .6.若圆锥的母线长为2cm ,底面圆的周长为2πcm ,则圆锥的体积为3cm .7.执行右边的程序框图,若15p =,则输出的n = .QOF 2F 1P yx8.已知函数2log (0)(),3(0)xx x f x x >⎧=⎨≤⎩则1[()]4f f 的值是 . 9.等差数列{}n a 中,若124a a +=, 91036a a +=, 则10S = .10.已知实数x 、y 满足2035000x y x y x y -≤⎧⎪-+≥⎪⎨>⎪⎪>⎩,则yx z )21()41(⋅=的最小值为 .11.设向量(c o s ,s i n a αα=,(cos ,sin )b ββ=,其中πβα<<<0,若|2||2|a b a b +=-,则βα-= .12.如图,已知12,F F 是椭圆2222:1x y C a b += (0)a b >>的 左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b += 相切于点Q ,且点Q 为线段2PF 的中点,则椭圆C 的离 心率为 .13.若函数22()243f x x a x a =++-的零点有且只有一个,则实数a = .14.已知数列{}n a 满足:11a =,2a x =(x N *∈),21n n n a a a ++=-,若前2010项中恰好含有666项为0,则x 的值为 .二、解答题:(本大题共6道题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分14分)已知函数2()2sin 23sin cos 1f x x x x =-++ ⑴求()f x 的最小正周期及对称中心; ⑵若[,]63x ππ∈-,求()f x 的最大值和最小值. 16.(本题满分14分)如图,平行四边形ABCD 中,CD BD ⊥,正方形ADEF 所在的平面和平面ABCD 垂直,H 是BE 的中点,G 是,AE DF 的交点.⑴求证: //GH 平面CDE ; ⑵求证: BD ⊥平面CDE .17.(本题满分15分)扬州某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为60(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为93平方米,且高度不低于3米.记防洪堤横断面的腰长为x (米),外周长(梯形的上底.....线段..BC 与两腰长的和......)为y (米).⑴求y 关于x 的函数关系式,并指出其定义域;⑵要使防洪堤横断面的外周长不超过10.5米,则其腰长x 应在什么范围内?⑶当防洪堤的腰长x 为多少米时,堤的上面与两侧面的水泥用料最省(即断面的外周长最小)?求此时外周长的值.18. (本题满分15分) 已知圆22:9C x y +=,点(5,0)A -,直线:20l x y -=.C x ADB 60 xyO A PB⑴求与圆C 相切,且与直线l 垂直的直线方程; ⑵在直线OA 上(O 为坐标原点),存在定点B (不同于点A ),满足:对于圆C 上任一点P ,都有PBPA为一常数,试求所有满足条件的点B 的坐标.19.(本小题满分16分)已知数列{}n a ,(0,0,,,0,*)n n n a p q p q p q R n N λλλ=+>>≠∈≠∈. ⑴求证:数列1{}n n a pa +-为等比数列;⑵数列{}n a 中,是否存在连续的三项,这三项构成等比数列?试说明理由; ⑶设{(,)|3,*}n n n n A n b b k n N ==+∈,其中k 为常数,且k N *∈,{(,)|5,*}n n n B n c c n N ==∈,求A B .20.(本题满分16分)已知函数2()f x x x λλ=+,()ln g x x x λ=+,()()()h x f x g x =+,其中R λ∈,且0λ≠.⑴当1λ=-时,求函数()g x 的最大值; ⑵求函数()h x 的单调区间;⑶设函数(),0,()(),0.f x x xg x x ϕ≤⎧=⎨>⎩若对任意给定的非零实数x ,存在非零实数t (t x ≠),使得'()'()x t ϕϕ=成立,求实数λ的取值范围.第二部分(加试部分)(总分40分,加试时间30分钟)注意事项:答卷前,请考生务必将自己的学校、姓名、考试号等信息填写在答卷密封线内.解答过程应写在答题卷的相应位置上,在其它地方答题无效. 1.(本题满分10分)已知在一个二阶矩阵M 对应变换的作用下,点(1,2)A 变成了点(7,10)A ',点(2,0)B 变成了点(2,4)B ',求矩阵M . 2.(本题满分10分) 已知曲线:C 3cos 2sin x y θθ=⎧⎨=⎩,直线:l (cos 2sin )12ρθθ-=.⑴将直线l 的极坐标方程化为直角坐标方程;⑵设点P 在曲线C 上,求P 点到直线l 距离的最小值. 3.(本题满分10分)如图,三棱锥P ABC -中,PB ⊥底面ABC 于B ,90,42BCA PB BC CA ∠==== ,点,E F 分别是,PC PA 的中点,求二面角A BE F --的余弦值. 4.(本题满分10分)已知230123(1)(1)(1)(1)(1)n n n x a a x a x a x a x +=+-+-+-++- ,(其中n N *∈)⑴求0a 及123n n S a a a a =++++ ;⑵试比较n S 与2(2)22nn n -+的大小,并说明理由.江苏省扬州市2011届高三数学调研试卷2010.12数学参考答案及评分标准1、{1}2、2y x =±3、充分不必要4、19 5、40 6、33π 7、58、19 9、100 10、161 11、2π 12、53 13、3214、8或9 15.解:⑴()3sin 2cos 22sin(2)6f x x x x π=+=+∴()f x 的最小正周期为22T ππ==, --------------6分 令sin(2)06x π+=,则()212k x k Z ππ=-∈, ∴()f x 的对称中心为(,0),()212k k Z ππ-∈; ------------8分 ⑵∵[,]63x ππ∈- ∴52666x πππ-≤+≤ ∴1sin(2)126x π-≤+≤ ∴1()2f x -≤≤∴当6x π=-时,()f x 的最小值为1-;当6x π=时,()f x 的最大值为2。

----------14分16.证明:⑴G 是,AE DF 的交点,∴G 是AE 中点,又H 是BE 的中点, ∴EAB ∆中,AB GH //, ------------------------3分CD AB //,∴//GH CD ,又∵,CD CDE GH CDE ⊂⊄平面平面∴//GH 平面CDE -----------------------7分 ⑵平面ADEF ⊥平面ABCD ,交线为AD , ∵AD ED ⊥,ED ADEF ⊂平面∴ED ⊥平面ABCD , --------------------10分 ∴BD ED ⊥,又∵CD BD ⊥,CD ED D ⋂=∴CDE BD 平面⊥ ----------------------14分17.解:⑴193()2AD BC h =+,其中22x AD BC BC x =+⋅=+,32h x =, ∴ 1393(2)22BC x x =+,得182x BC x =-, 由3321802h x x BC x ⎧=≥⎪⎪⎨⎪=->⎪⎩,得26x ≤< ∴1832,(26)2xy BC x x x =+=+≤<; --------------------6分 ⑵18310.52x y x =+≤得34x ≤≤∵[3,4][2,6)⊂ ∴腰长x 的范围是 [3,4] --------------10分 ⑶183********x xy x x =+≥⋅=,当并且仅当1832x x =,即23[2,6)x =∈时等号成立.∴外周长的最小值为63米,此时腰长为23米。

--------------------------------15分 18.解:⑴设所求直线方程为2y x b =-+,即20x y b +-=,直线与圆相切,∴22||321b -=+,得35b =±,∴所求直线方程为235y x =-± ---------------------5分 ⑵方法1:假设存在这样的点(,0)B t ,当P 为圆C 与x 轴左交点(3,0)-时,|3|2PB t PA +=; 当P 为圆C 与x 轴右交点(3,0)时,|3|8PB t PA -=, 依题意,|3||3|28t t +-=,解得,5t =-(舍去),或95t =-。

------------------------------8分 下面证明 点9(,0)5B -对于圆C 上任一点P ,都有PBPA为一常数。

设(,)P x y ,则229y x =-, ∴22222222229188118()9(517)9552525(5)102592(517)25x y x x x x PB PA x y x x x x +++++-+====+++++-+, 从而35PB PA =为常数。

相关文档
最新文档