2014高二(理科)数学试题
2014年高考湖北理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试〔湖北卷〕数学〔理科〕一、选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项符合题目要求.〔1〕【2014年湖北,理1,5分】i 为虚数单位,则21i 1i -⎛⎫⎪+⎝⎭〔 〕〔A 〕1- 〔B 〕1 〔C 〕i - 〔D 〕i 【答案】A【解析】因为21i 2i11i 2i --⎛⎫==- ⎪+⎝⎭,故选A . 【点评】此题考查复数的运算,容易题.〔2〕【2014年湖北,理2,5分】假设二项式72a x x ⎛⎫+ ⎪⎝⎭的展开式中31x 的系数是84,则实数a =〔 〕〔A 〕2 〔B 〕54 〔C 〕1 〔D 〕24【答案】D【解析】因为()77727722xrrr r r r a C x C a x x ---+⎛⎫⋅⋅=⋅⋅⋅ ⎪⎝⎭,令723r -+=-,得2r =,22727284C a -⋅⋅=,解得24a =,故选D .【点评】此题考查二项式定理的通项公式,容易题. 〔3〕【2014年湖北,理3,5分】设U 为全集,A ,B 是集合,则“存在集合C 使得A C ⊆,U B C C ⊆是“A B =∅”的〔 〕〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充要条件 〔D 〕既不充分也不必要条件【答案】A【解析】依题意,假设A C ⊆,则U U C C C A ⊆,U B C C ⊆,可得A B =∅;假设A B =∅,不能推出U B C C ⊆,故选A .【点评】此题考查集合与集合的关系,充分条件与必要条件判断,容易题. 〔4〕【2014年湖北,理4,5分】根据如下样本数据x 3 4 5 6 7 8 y得到的回归方程为ˆybx a =+,则〔 〕 〔A 〕0a >,0b > 〔B 〕0a >,0b < 〔C 〕0a <,0b > 〔D 〕0a <,0b < 【答案】B【解析】依题意,画散点图知,两个变量负相关,所以0b <,0a >,故选B . 【点评】此题考查根据已知样本数判断线性回归方程中的b 与a 的符号,容易题. 〔5〕【2014年湖北,理5,5分】在如下图的空间直角坐标系O xyz -中,一个四面体的顶点坐标分别是()0,0,2,()2,2,0,()1,2,1,()2,2,2,给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为〔 〕〔A 〕①和②〔B 〕③和①〔C 〕④和③〔D 〕④和② 【答案】D【解析】在坐标系中标出已知的四个点,根据三视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选D .【点评】此题考查空间由已知条件,在空间坐标系中作出几何体的形状,再正视图与俯视图,容易题. 〔6〕【2014年湖北,理6,5分】假设函数()f x ,()g x 满足()()110f x g x dx -=⎰,则称()f x ,()g x为区间[]1,1- 上的一组正交函数,给出三组函数:①()1sin 2f x x =,()1cos 2g x x =;②()1f x x =+,()1g x x =-;③()f x x =,()2g x x =,其中为区间[]1,1-的正交函数的组数是〔 〕〔A 〕0 〔B 〕1 〔C 〕2 〔D 〕3 【答案】C【解析】对①1111111111sin cos sin cos 02222x x dx x dx x ---⎛⎫⎛⎫⋅=== ⎪ ⎪⎝⎭⎝⎭⎰⎰,则()f x ,()g x 为区间[]1,1-上的正交函数;对②()()()11231111111103x x dx x dx x x ---⎛⎫+-=-=-≠ ⎪⎝⎭⎰⎰,则()f x ,()g x 不为区间[]1,1-上的正交函数;对③134111104x dx x --⎛⎫== ⎪⎝⎭⎰,则()f x ,()g x 为区间[]1,1-上的正交函数,所以满足条件的正交函数有2组,故选C .【点评】新定义题型,此题考查微积分基本定理的运用,容易题.〔7〕【2014年湖北,理7,5分】由不等式0020x y y x ≤⎧⎪≥⎨⎪--≤⎩确定的平面区域记为1Ω,不等式12x y x y +≤⎧⎨+≥-⎩,确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为〔 〕〔A 〕18〔B 〕14 〔C 〕34 〔D 〕78【答案】D【解析】依题意,不等式组表示的平面区域如图,由几何公式知,该点落在2Ω内的概率为:11221172218222P ⨯⨯-⨯⨯==⨯⨯,故选D .【点评】此题考查不等式组表示的平面区域,面积型的几何概型,中等题. 〔8〕【2014年湖北,理8,5分】《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为〔 〕〔A 〕227 〔B 〕258 〔C 〕15750 〔D 〕355113【答案】B【解析】设圆锥底面圆的半径为r ,高为h ,依题意,()22L r π=,()22122375r h r h ππ=,所以218375ππ=,即π的近似值为258,故选B .【点评】此题考查《算数书》中π的近似计算,容易题.〔9〕【2014年湖北,理9,5分】已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为〔 〕〔A 〕433 〔B 〕233〔C 〕3 〔D 〕2【答案】B【解析】设椭圆的短半轴为a ,双曲线的实半轴为1a ()1a a >,半焦距为c ,由椭圆、双曲线的定义得122PF PF a +=,1212PF PF a -=,所以11PF a a =+,21PF a a =-,因为1260F PF ∠=︒,由余弦定理得:()()()()22211114c a a a a a a a a =++--+-,所以222143c a a =+,即22221112222142a a a a a c c c c c ⎛⎫-=+≥+ ⎪⎝⎭,22111148e e e ⎛⎫∴+≤- ⎪⎝⎭,利用基本不等式可得椭圆和双曲线的离心率的倒数之和的最大值为233,故选B . 【点评】此题椭圆、双曲线的定义和性质,余弦定理及用基本不等式求最值,难度中等. 〔10〕【2014年湖北,理10,5分】已知函数()f x 是定义在R 上的奇函数,当0x ≥时,2221()(|||2|3)2f x x a x a a =-+--,假设R x ∀∈,(1)()f x f x -≤,则实数a 的取值范围为〔 〕〔A 〕11,66⎡⎤-⎢⎥⎣⎦ 〔B 〕66,66⎡⎤-⎢⎥⎣⎦ 〔C 〕11,33⎡⎤-⎢⎥⎣⎦ 〔D 〕33,33⎡⎤-⎢⎥⎣⎦ 【答案】B【解析】依题意,当0x ≥时,()2222223220x a x a f x a a x a xx a ⎧->⎪=-<≤⎨⎪-≤≤⎩,作图可知,()f x 的最小值为2a -,因为函数()f x 为奇函数,所以当0x <时,()f x 的最大值为2a ,因为对任意实数x 都有,()()1f x f x -≤,所以,()22421a a --≤,解得6666a -≤≤,故实数a 的取值范围是66,66⎡⎤-⎢⎥⎣⎦,故选B . 【点评】此题考查函数的奇函数性质、分段函数、最值及恒成立,难度中等.二、填空题:共6小题,考生需作答5小题,每题5分,共25分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分. 〔一〕必考题〔11-14题〕〔11〕【2014年湖北,理11,5分】设向量()3,3a =,()1,1b =-,假设()()a b a b λλ+⊥-,则实数λ= . 【答案】3±【解析】因为()3,3a b λλλ+=+-,()3,3a b λλλ+=++,因为()()a b a b λλ+⊥-,所以()()()()33330λλλλ+-+++=,解得3λ±.【点评】此题考查平面向量的坐标运算、数量积,容易题. 〔12〕【2014年湖北,理12,5分】直线1:l y x a =+和2:l y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b += . 【答案】2【解析】依题意,圆心()0,0到两条直线的距离相等,且每段弧的长度都是圆周的14,即22a b =,2cos 4522a=︒=,所以221a b ==,故222a b +=. 【点评】此题考查直线与圆相交,点到直线的距离公式,容易题. 〔13〕【2014年湖北,理13,5分】设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为()I a ,按从大到小排成的三位数记为()D a 〔例如815a =,则()158I a =,()851D a =〕.阅读如下图的程序框图,运行相应的程序,任意输入一个a ,输出的结果b = . 【答案】495【解析】当123a =,则321123198123b =-=≠,当198a =,则981198783198b =-=≠;当783a =,则954459b a =-=,终止循环,故输出495b =.【点评】新定义题型,此题考查程序框图,当型循环结构,容易题. 〔14〕【2014年湖北,理14,5分】设()f x 是定义在()0,+∞上的函数,且()0f x >,对任意0a >,0b >,0a >,0b >,假设经过点()()af a ,()(),b f x ()()()()b f b a f a ,,,的直线与x 轴的交点为()0,c ,则称c 为a ,b 关于函数()f x 的平均数,记为[],f M a b ,例如,当()1f x =())0(1>=x x f 时,可得2f a bM c +==,即(),f M a b 为,a b 的算术平均数.〔1〕当()f x =________〔0x >〕时,(),f M a b 为,a b 的几何平均数; 〔2〕当()f x =________〔0x >〕时,(),f M a b 为,a b 的调和平均数2aba b+; 〔以上两空各只需写出一个符合要求的函数即可〕【答案】〔1〕x 〔2〕x 〔或填〔1〕1k x 〔2〕2k x ,其中12,k k 为正常数均可〕【解析】设()()0f x x x =>,则经过点(),a a ,(),b b -的直线方程为y a b a x a b a ---=--,令0y =,所以2abc x a b ==+,所以当()()0f x x x =>,(),f M a b 为,a b 的调和平均数2aba b+.【点评】此题考查两个数的几何平均数与调和平均数,难度中等.〔一〕选考题〔请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2B 铅笔涂黑,如果全选,则按第15题作答结果计分.〕 〔15〕【2014年湖北,理15,5分】〔选修4-1:几何证明选讲〕如图,P 为O 的两条切线,切点分别为,A B ,过PA 的中点Q 作割线交O 于,C D 两点,假设1QC =,3CD =,则PB = _______. 【答案】4【解析】由切割线定理得()21134QA QC QD =⋅=⨯+=,所以2QA =,4PB PA ==. 【点评】此题考查圆的切线长定理,切割线定理,容易题.〔16〕【2014年湖北,理16,5分】〔选修4-4:坐标系与参数方程〕已知曲线1C 的参数方程是33x tty ⎧=⎪⎨=⎪⎩〔t 为参数〕,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2ρ=,则1C 与2C 交点的直角坐标为 .【答案】()3,1【解析】由33x t t y ⎧=⎪⎨=⎪⎩,消去t 得()2230,0x y x y =≥≥,由2ρ=得224x y +=,解方程组222243x y x y ⎧+=⎪⎨=⎪⎩,得1C 与2C 的交点坐标为()3,1.【点评】此题考查参数方程,极坐标方程与平面直角坐标方程的转化,曲线的交点,容易题.三、解答题:共6题,共75分.解答应写出文字说明,演算步骤或证明过程. 〔17〕【2014年湖北,理17,11分】某实验室一天的温度〔单位:C ︒〕随时间t 〔单位:h 〕的变化近似满足函数关系;()103cossin,[0,24)1212f t t t t ππ=--∈.〔1〕求实验室这一天的最大温差;〔2〕假设要求实验室温度不高于11C ︒,则在哪段时间实验室需要降温?解:〔1〕因为31()102(cos sin )102sin()212212123f t t t t ππππ=-+=-+,又024t ≤<,所以7,1sin()131233123t t ππππππ≤+<-≤+≤,当2t =时,sin()1123t ππ+=;当14t =时,sin()1123t ππ+=-,于是()f t 在[0,24)上取得最大值12,取得最小值8,故实验室这一天最高温度为12℃,最低温度为8℃,最大温差为4℃.〔2〕依题意,当()11f t >时实验室需要降温,由〔1〕得()102sin()123f t t ππ=-+,故有102sin()11123t ππ-+>,即1sin()1232t ππ+<-,又024t ≤<,因此71161236t ππππ<+<,即1018t <<,在10时至18时实验室需要降温. 〔18〕【2014年湖北,理18,12分】已知等差数列{}n a 满足:12a =,且123,,a a a 成等比数列.〔1〕求数列{}n a 的通项公式;〔2〕记n S 为数列{}n a 的前n 项和,是否存在正整数n ,使得60800n S n >+?假设存在,求n 的最小值;假设不存在,说明理由.解:〔1〕设数列{}n a 的公差为d ,依题意,2,2,24d d ++成等比数列,故有2(2)2(24)d d +=+,化简得240d d -=,解得0d =或4d =,当0d =时,2n a =;当4d =时,2(1)442n a n n =+-⋅=-,从而得数列{}n a 的通项 公式为2n a =或42n a n =-.〔2〕当2n a =时,2n S n =,显然260800n n <+,此时不存在正整数n ,使得60800S n >+成立,当42n a n =-时,2[2(42)]22n n n S n +-==,令2260800n n >+,即2304000n n -->,解得40n >或10n <-〔舍去〕,此时存在正整数n ,使得60800n S n >+成立,n 的最小值为41综上,当2n a =时,不存在满足题意的n ;当42n a n =-时,存在满足题意的n ,其最小值为41.〔19〕【2014年湖北,理19,12分】如图,在棱长为2的正方体1111ABCD A B C D -中,,,,E F M N 分别是棱1111,,,AB AD A B A D 的中点,点,P Q 分别在棱1DD ,1BB 上移动,且 ()02DP BQ λλ==<<.〔1〕当1λ=时,证明:直线1BC 平面EFPQ ;〔2〕是否存在λ,使平面EFPQ 与面PQMN 所成的二面角?假设存在,求出λ的值;假设不存在,说明理由.解:解法一:〔1〕如图1,连接1AD ,由1111ABCD A B C D =是正方体,知11//BC AD ,当1λ=时,P 是1DD 的中点,又F 是AD 的中点,所以1//FP AD ,所以1//BC FP ,而FP ⊂平面 EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ .〔2〕如图2,连接BD ,因为E ,F 分别是AB ,AD 的中点,所以//EF BD ,且12EF BD =,又,//DP BQ DP BQ =,所以四边形PQBD 是平行四边形,故//PQ BD ,且PQ BD =,从而//EF PQ ,且12EF PQ =,在Rt EBQ ∆和Rt FDP ∆中,因为BQ DP λ==,1BE DF ==,于是21DQ FP λ==+,所以四边形EFPQ 是等腰梯形.同理可证四边形PQMN 是等腰梯形. 分别取,,EF PQ MN 的中点为,,H O G ,连接,OH OG ,则,GO PQ HO PQ ⊥⊥,而GO HO O =, 故GOH ∠是面EFPQ 与面PQMN 所成的二面角的平面角.假设存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则90GOH ∠=,连接EM ,FN ,则 由//EF MN ,且EF MN =,知四边形EFNM 是平行四边形,连接GH ,因为H ,G 是EF ,MN 的中点,所以2GH ME ==,在GOH ∆中,22222214,1()22GH OH λλ==+-=+,2222211(2)()(2)22OG λλ=+--=-+,由222OG OH GH +=,得2211(2)422λλ-+++=,解得1λ=±,故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角. 解法二:以D 为原点,射线1,,DA DC DD 分别为,,x y z 轴的正半轴建立如图3所示的空间直角坐标系D xyz -,由已知 得(2,2,0)B ,1(0,2,2)C ,(2,1,0)E ,(1,0,0)F ,(0,0,)P λ,(2,0,2)BC -,(1,0,)FP λ-,(1,1,0)FE . 〔1〕当1λ=时,(1,0,1)FP =-,因为1(2,0,2)BC =-,所以12BC FP =,即1//BC FP ,而FP ⊂平面EFPQ ,且1BC ⊄平面EFPQ ,故直线1//BC 平面EFPQ . 〔2〕设平面EFPQ 的一个法向量为(,,)n x y z =,则由0FE n FP n ⎧⋅=⎪⎨⋅=⎪⎩,可得00x y x z λ+=⎧⎨-+=⎩,于是可取(,,1)n λλ=-,同理可得平面MNPQ 的一个法向量为(2,2,1)m λλ=--,假设存在λ,使面EFPQ 与面PQMN 所成的二面角为直二面角,则(2,2,1)(,,1)0m n λλλλ⋅=--⋅-=,即(2)(2)10λλλλ---+=,解得1λ=±.故存在1λ=±,使面EFPQ 与面PQMN 所成的二面角为直二面角. 〔20〕【2014年湖北,理20,12分】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和.单位:亿立方米〕都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立. 〔1〕求未来4年中,至多1年的年入流量超过120的概率;〔2〕水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系;假设某台发电机运行,则该台年利润为5000万元;假设某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值到达最大,应安装发电机多少台?解:〔1〕依题意,110(4080)0.250p P X =<<==,235(80120)0.750p P X =≤≤==,35(120)0.150p P X =>==由二项分布,在未来4年中至多有1年的年入流量超过120的概率为04134343433991(1)(1)()4()()0.9477101010p C p C p p =-+-=+⨯⨯=.〔2〕记水电站年总利润为Y 〔单位:万元〕〔1〕安装1台发电机的情形:由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润5000,()500015000Y E Y ==⨯=.〔2〕安装2台发电机的情形:依题意,当4080X <<时,一台发电机运行,此时50008004200Y =-=,因此1(4200)(4080)0.2P Y P X p ==<<==;当80X ≥时,两台发电机运行,此时5000210000Y =⨯=,因此(10000)(80)0.8P Y P X p p ==≥=+=;由此得Y 的分布列如下:所以,()E Y =〔3〕安装3台发电机的情形:当4080X <<时,一台发电机运行,此时500016003400Y =-=,因此1(3400)(4080)0.2P Y P X p ==<<==;当80120X ≤≤时,两台发电机运行,此时 500028009200Y =⨯-=,因此2(9200)(80120)0.7P Y P X p ==≤≤==;当120X >时,三台发电机运行,5000315000Y =⨯=,因此3(15000)(120)0.1P Y PX p ==>==, 由此得所以,()34000.292000.7150000.18620E Y =⨯+⨯+⨯=综上,欲使水电站年总利润的均值到达最大,应安装发电机2台.〔21〕【2014年湖北,理21,14分】在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .〔1〕求轨迹为C 的方程;〔2〕设斜率为k 的直线l 过定点()2,1p -,求直线l 与轨迹C 好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.解:〔1〕设点(,)M x y ,依题意得||||1MF x =+||1x =+,化简整理得22(||)y x x =+,故点M 的轨迹C 的方程为24,00,0x x y x ≥⎧=⎨<⎩.〔2〕在点M 的轨迹C 中,记212:4,:0(0)C y x C y x ==<,依题意,可设直线l 的方程为1(2)y k x -=+,由方程组21(2)4y k x y x-=+⎧⎨=⎩,可得244(21)0ky y k -++= ①〔1〕当0k =时,此时1y =,把1y =代入轨迹C 的方程,得14x =,故此时直线:1l y =与轨迹C 恰好有一个公共点1(,1)4〔2〕当0k ≠时,方程①的判别式为216(21)k k ∆=-+- ②设直线l 与x 轴的交点为0(,0)x ,则由1(2)y k x -=+,令0y =,得021k x k+=-③ 〔ⅰ〕假设000x ∆<⎧⎨<⎩由②③解得1k <-,或12k >,即当1(,1)(,)2k ∈-∞-⋃+∞时,直线l 与1C 没有公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有一个公共点.〔ⅱ〕假设000x ∆=⎧⎨<⎩或000x ∆>⎧⎨≥⎩,由②③解得1{1,}2k ∈-,或102k -≤<,即当1{1,}2k ∈-时,直线l 与1C只有一个公共点,与2C 有一个公共点,当1[,0)2k ∈-时,直线l 与1C 有两个公共点,与2C 没有公共点,故当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点.〔ⅲ〕假设000x ∆>⎧⎨<⎩由②③解得112k -<<-,或102k <<,即当11(1,)(0,)22k ∈--⋃时,直线l 与1C 有两个公共点,与2C 有一个公共点,故此时直线l 与轨迹C 恰好有三个公共点.综合〔1〕〔2〕可知,当1(,1)(,){0}2k ∈-∞-⋃+∞⋃时,直线l 与轨迹C 恰好有一个公共点;当11[,0){1,}22k ∈--时,直线l 与轨迹C 恰好有两个公共点;当11(1,)(0,)22k ∈--时,直线l 与轨迹C 恰好有三个公共点.〔22〕【2014年湖北,理22,14分】π为圆周率,e =2.71828……为自然对数的底数.〔1〕求函数xxx f ln )(=的单调区间; 〔2〕求33,3,,,3,e e e e ππππ这6个数中的最大数与最小数;〔3〕将33,3,,,3,eee e ππππ这6个数按从小到大的顺序排列,并证明你的结论.解:〔1〕函数()f x 的定义域为(0,)+∞,因为ln ()x f x x =,所以21ln ()xf x x-'=,当()0f x '>,即0x e <<时,函 数()f x 单调递增;当()0f x '<,即x e >时,函数()f x 单调递减.故函数()f x 的单调递增区间为(0,)e ,单调递减区间为(,)e +∞.〔2〕因为3e π<<,所以ln 33ln ,ln ln 3e e πππ<<,即ln3ln ,ln ln3e e e πππ<<,于是根据函数ln ,x y x y e ==, x y π=在定义域上单调递增,可得333,3e e e e ππππ<<<<,故这6个数的最大数在3π与3π之中,最小数在3e 与3e 之中.由3e π<<及〔1〕的结论,得()(3)()f f f e π<<,即ln ln3ln 3eeππ<<. 由ln ln33ππ<,得3ln ln 3ππ<,所以33ππ>;由ln 3ln 3e e<,得3ln 3ln e e <,所以33e e >. 综上,6个数中最大数是3π,最小数是3e.〔3〕由〔2〕知,3333,3e e e e πππ<<<<,又由〔2〕知,ln ln ee ππ<,得e e ππ<故只需比较3e 与e π和e π 与 3π的大小,由〔1〕知,当0x e <<时,1()()f x f e e <=,即ln 1x x e<,在上式中,令2e x π=,又2e e π<,则2ln e e ππ<,从而2ln e ππ-<,即得ln 2eππ>- ①由①得, 2.72ln (2) 2.7(2) 2.7(20.88) 3.02433.1e e e ππ>->⨯->⨯-=>,即ln 3e π>,亦即3ln ln e e π>,所以3e e π<,又由①得,33ln 66ee πππ>->->,即3ln ππ>,所以3e ππ<.综上可得,3333e e e e ππππ<<<<<,即6个数从小到大的顺序为333,,,,,3e e e e ππππ.。
2014年高考福建理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试〔福建卷〕数学〔理科〕第Ⅰ卷〔选择题 共50分〕一、选择题:本大题共10小题,每题5分,共50分,在每题给出的四个选项中,只有一项符合题目要求. 〔1〕【2014年福建,理1,5分】复数(32i)i z =-的共轭复数z 等于〔 〕〔A 〕23i -- 〔B 〕23i -+ 〔C 〕23i - 〔D 〕23i +【答案】C【解析】由复数()32i i 23i z =-=+,得复数z 的共轭复数23i z =-,故选C .【点评】此题考查了复数代数形式的乘法运算,考查了复数的基本概念,是基础题.〔2〕【2014年福建,理2,5分】某空间几何体的正视图是三角形,则该几何体不可能是〔 〕 〔A 〕圆柱 〔B 〕圆锥 〔C 〕四面体 〔D 〕三棱柱【答案】A【解析】由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形,故选A .【点评】此题考查简单几何体的三视图,考查逻辑推理能力和空间想象力,是基础题.〔3〕【2014年福建,理3,5分】等差数列{}n a 的前n 项和n S ,假设132,12a S ==,则6a =〔 〕 〔A 〕8〔B 〕10 〔C 〕12 〔D 〕14【答案】C 【解析】设等差数列{}n a 的公差为d ,由等差数列的前n 项和公式,得33232122S ⨯=⨯+=,解得2d =, 则()616125212a a d =+-=+⨯=,故选C .【点评】此题考查等差数列的通项公式和求和公式,属基础题.〔4〕【2014年福建,理4,5分】假设函数log (0,1)a y x a a =>≠且的图像如右图所示,则以下函数图象正确的选项是〔 〕〔A 〕 〔B 〕 〔C 〕 〔D 〕【答案】B【解析】由函数log a y x =的图像过点()3,1,得3a =.选项A 中的函数为13x y ⎛⎫= ⎪⎝⎭,则其函数图像不 正确;选项B 中的函数为3y x =,则其函数图像正确;选项C 中的函数为()3y x =-,则其函 数图像不正确;选项D 中的函数为()3log y x =-,则其函数图像不正确,故选B .【点评】此题考查对数函数的图象和性质,涉及幂函数的图象,属基础题.〔5〕【2014年福建,理5,5分】阅读右图所示的程序框图,运行相应的程序,输出的S 得值等于〔 〕 〔A 〕18 〔B 〕20 〔C 〕21 〔D 〕40【答案】B【解析】输入0S =,1n =,第一次循环,0213S =++=,2n =;第二次循环,23229S =++=,3n =;第三次循环,392320S =++=,4n =,满足15S ≥,结束循环,20S =,故选B .【点评】此题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键. 〔6〕【2014年福建,理6,5分】直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“ABC ∆的面积为12”的〔 〕〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充分必要条件 〔D 〕既不充分又不必要条件【答案】A【解析】由直线l 与圆O 相交,得圆心O 到直线l 的距离1d =<,解得0k ≠.当1k =时,d =,AB =OAB ∆的面积为1122=; 当1k =-时,同理可得OAB ∆的面积为12,则“1k =”是“OAB ∆的面积为12”的充分不必要条件,故选A . 【点评】此题主要考查充分条件和必要条件的判断,利用三角形的面积公式,以及半径半弦之间的关系是解决此题的关键.〔7〕【2014年福建,理7,5分】已知函数()21,0cos ,0x x f x x x ⎧+>=⎨≤⎩,则以下结论正确的选项是〔 〕 〔A 〕()f x 是偶函数 〔B 〕()f x 是增函数 〔C 〕()f x 是周期函数 〔D 〕()f x 的值域为[)1,-+∞【答案】D【解析】由函数()f x 的解析式知,()12f =,()()1cos 1cos1f -=-=,()()11f f ≠-,则()f x 不是偶函数;当0x >时,令()21f x x =+,则()f x 在区间()0,+∞上是增函数,且函数值()1f x >;当0x ≤时,()cos f x x =,则()f x 在区间(),0-∞上不是单调函数,且函数值()[]1,1f x ∈-;∴函数()f x 不是单调函数,也不是周期函数,其值域为[)1,-+∞,故选D .【点评】此题考查分段函数的性质,涉及三角函数的性质,属基础题.〔8〕【2014年福建,理8,5分】在以下向量组中,可以把向量()3,2a =表示出来的是〔 〕〔A 〕12(0,0),(1,2)e e ==〔B 〕12(1,2),(5,2)e e =-=-〔C 〕12(3,5),(6,10)e e ==〔D 〕12(2,3),(2,3)e e =-=-【答案】B【解析】由向量共线定理,选项A ,C ,D 中的向量组是共线向量,不能作为基底;而选项B 中的向量组不共线,可以作为基底,故选B .【点评】此题主要考查了向量的坐标运算,根据12a e e λμ=+列出方程解方程是关键,属于基础题.〔9〕【2014年福建,理9,5分】设,P Q 分别为()2262x y +-=和椭圆22110x y +=上的点,则,P Q 两点间的最大距离是〔 〕〔A 〕 〔B 〔C 〕7 〔D 〕【答案】D【解析】设圆心为点C ,则圆()2262x y +-=的圆心为()0,6C ,半径r 设点()00,Q x y 是椭圆上任意一点,则2200110x y +=,即22001010x y =-,∴CQ ,当023y =-时,CQ 有最大值,则P ,Q 两点间的最大距离为r =D . 【点评】此题考查椭圆、圆的方程,考查学生分析解决问题的能力,属于基础题.〔10〕【2014年福建,理10,5分】用a 代表红球,b 代表蓝球,c 代表黑球,由加法原理及乘法原理,从1个红球和1个篮球中取出假设干个球的所有取法可由()()11a b ++的展开式1a b ab +++表示出来,如:“1”表示一个球都不取.“a ”表示取出一个红球,而“ab ”则表示把红球和篮球都取出来.依此类推,以下各式中,其展开式可用来表示从5个无区别的红球.5个无区别的蓝球5个有区别的黑球中取出假设干个球,且所有的篮球都取出或都不取出的所有取法的是〔 〕 〔A 〕()()()523455111a a a a a b c +++++++ 〔B 〕()()()552345111a b b b b b c +++++++ 〔C 〕()()()523455111a b b b b b c +++++++ 〔D 〕()()()552345111a b c c c c c +++++++【答案】A【解析】从5个无区别的红球中取出假设干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为23451a a a a a +++++;从5个无区别的蓝球中取出假设干个球,由所有的蓝球都取出或都不取出,得其所有取法为51b +;从5个有区别的黑球中取出假设干个球,可以1个球都不取、或取1个、2个、3个、4个、5个球,共6种情况,则其所有取法为122334455555551C c C c C c C c C c +++++=()51c +,根据分步乘法计数原理得,适合要求的取法是()()()523455111a a a a a b c +++++++,故选A . 【点评】此题主要考查了分步计数原理和归纳推理,合理的利用题目中所给的实例,要遵循其规律,属于中档题.第Ⅱ卷〔非选择题 共100分〕二、填空题:本大题共5小题,每题4分,共20分.把答案填在答题卡的相应位置.〔11〕【2014年福建,理11,4分】假设变量,x y 满足约束条件102800x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩则3z x y =+的最小值为 . 【答案】1 【解析】作出不等式组表示的平面区域(如下图),把3z x y =+变形为3y x z =-+,则当直线3y x z =-+经过点()0,1时,z 最小,将点()0,1代入3z x y =+,得min 1z =,即3z x y =+的最小值为1.【点评】此题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.〔12〕【2014年福建,理12,4分】在ABC ∆中,60,4,23A AC BC =︒==,则ABC ∆的面积等于 . 【答案】23【解析】由sin sin BC AC A B =,得4sin 60sin 123B ︒==,∴90B =︒,()18030C A B =︒-+=︒, 则11sin 423sin302322ABC S AC BC C ∆=⋅⋅⋅=⨯⨯︒=,即ABC ∆的面积等于23. 【点评】此题着重考查了给出三角形的两边和其中一边的对角,求它的面积.正余弦定理、解直角三角形、三角形的面积公式等知识,属于基础题.〔13〕【2014年福建,理13,4分】要制作一个容器为43m ,高为1m 的无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 〔单位:元〕.【答案】160【解析】设底面矩形的一边长为x ,由容器的容积为4m 3,高为1m 得,另一边长为4xm .记容器的总造价为y 元,则4444202110802080202?160y x x x x x x ⎛⎫⎛⎫=⨯++⨯⨯=++≥+⨯= ⎪ ⎪⎝⎭⎝⎭(元),当且仅当4x x =,即2x =时,等号成立.因此,当2x =时,y 取得最小值160元,即容器的最低总造价为160元.【点评】此题以棱柱的体积为载体,考查了基本不等式,难度不大,属于基础题.〔14〕【2014年福建,理14,4分】如图,在边长为e 〔e 为自然对数的底数〕的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为 .【答案】22e【解析】因为函数ln y x =的图像与函数x y e =的图像关于正方形的对角线所在直线y x =对称,则图中的两块阴影部分的面积为112ln d 2(ln )2[(ln )(ln11)]2ee S x x x x x e e e ==-=---=⎰, 故根据几何概型的概率公式得,该粒黄豆落到阴影部分的概率22P e =. 【点评】此题考查几何概型,几何概型的概率的值是通过长度、面积、和体积的比值得到.〔15〕【2014年福建,理15,4分】假设集合{,,,}{1,2,3,4}a b c d =,且以下四个关系:①1a =;②1b ≠;③2c =;④4d ≠有且只有一个是正确的,则符合条件的有序数组(,,,)a b c d 的个数是 __.【答案】6【解析】假设①正确,则②③④不正确,可得b ≠1不正确,即b =1,与a =1矛盾,故①不正确;假设②正确,则①③④不正确,由④不正确,得4d =;由1a ≠,1b ≠,2c ≠,得满足条件的有序数组为3a =,2b =,1c =,4d =或2a =,3b =,1c =,4d =.假设③正确,则①②④不正确,由④不正确,得4d =;由②不正确,得1b =,则满足条件的有序数组为3a =,1b =,2c =,4d =;假设④正确,则①②③不正确,由②不正确,得1b =,由1a ≠,2c ≠,4d ≠,得满足条件的有序数组为2a =,1b =,4c =,3d =或3a =,1b =,4c =,2d =或4a =,1b =,3c =,2d =;综上所述,满足条件的有序数组的个数为6.【点评】此题考查集合的相等关系,考查分类讨论的数学思想,正确分类是关键.三、解答题:本大题共6题,共80分.解答应写出文字说明,演算步骤或证明过程.〔16〕【2014年福建,理16,13分】已知函数1()cos (sin cos )2f x x x x =+-. 〔1〕假设02πα<<,且2sin 2α=,求()f α的值; 〔2〕求函数()f x 的最小正周期及单调递增区间. 解:解法一: 〔1〕因为02πα<<, 2sin 2α=,所以2cos 2α=.所以22211()()22222f α=+-=. 〔2〕2111cos 21112()sin cos cos sin 2sin 2cos 2sin(2)22222224x f x x x x x x x x π+=+-=+-=+=+,22T ππ∴==. 由222,242k x k k Z πππππ-≤+≤+∈,得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈. 解法二:2111cos 21112()sin cos cos sin 2sin 2cos 2sin(2)22222224x f x x x x x x x x π+=+-=+-=+=+, 〔1〕因为02πα<<,2sin 2α=,所以4πα=,从而2231()sin(2)sin 24242f ππαα=+==. 〔2〕22T ππ==,由222,242k x k k Z πππππ-≤+≤+∈得3,88k x k k Z ππππ-≤≤+∈. 所以()f x 的单调递增区间为3[,],88k k k Z ππππ-+∈. 【点评】此题主要考查了三角函数恒等变换的应用.考查了学生对基础知识的综合运用.〔17〕【2014年福建,理17,13分】在平行四边形ABCD 中,1AB BD CD ===,,AB BD CD BD ⊥⊥.将ABD∆沿BD 折起,使得平面ABD ⊥平面BCD ,如图.〔1〕求证:AB CD ⊥;〔2〕假设M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.解:〔1〕因为ABD ⊥平面BCD ,平面ABD 平面,BCD BD AB =⊂平面,ABD AB BD ⊥,所以AB ⊥平面.BCD 又CD ⊂平面BCD ,所以AB CD ⊥.〔2〕过点B 在平面BCD 内作BE BD ⊥,如图.由〔1〕知AB ⊥平面,BCD BE ⊂平面,BCD BD ⊂平面BCD ,所以,AB BE AB BD ⊥⊥.以B 为坐标原点,分别以,,BE BD BA 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得11(0,0,0),(1,1,0),(0,1,0),(0,0,1),(0,,)22B C D A M .则11(1,1,0),(0,,),(0,1,1)22BC BM AD ===-. 设平面MBC 的法向量000(,,)n x y z =.则00n BC n BM ⎧⋅=⎪⎨⋅=⎪⎩,即00000102x y y z +=⎧⎪⎨+=⎪⎩. 取01z =,得平面MBC 的一个法向量(1,1,1)n =-.设直线AD 与平面MBC 所成角为θ,则6sin cos ,3n ADn AD n AD θ⋅=<>==,即直线AD 与平面MBC 所成角的正弦值为63.【点评】此题综合考查了面面垂直的性质定理、线面角的计算公式sin cos ,n AD n AD n AD θ⋅==⋅,考查了推理能力和空间想象能力,属于中档题. 〔18〕【2014年福建,理18,13分】为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.〔1〕假设袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率;②顾客所获的奖励额的分布列及数学期望;〔2〕商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾 客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.解:〔1〕设顾客所获的奖励为X .①依题意,得1113241(60)2C C P X C ===.即顾客所获得的奖励额为60元的概率为12. ②依题意,得X 的所有可能取值为20,60.232411(60),(20)22C P X P X C =====. 即X 的分布列为X20 60 P0.5 0.5 所以顾客所获得的奖励额的期望为()200.5600.540E X =⨯+⨯=〔元〕. 〔2〕根据商场的预算,每个顾客的平均奖励为60元.所以先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不 可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以数学期望也不可 能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同 理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励为1X ,则1X 的分布列为:1X 20 60 100P16 23 161X 的期望为1121()206010060636E X =⨯+⨯+⨯=, 1X 的方差为22211211600()(2060)(6060)(10060)6363D X =-⨯+-⨯+-⨯=. 对于方案2,即方案(20,20,40,40),设顾客所获的奖励为2X ,则2X 的分布列为: 2X 40 60 80P16 23 162X 的期望为2121()40608060636E X =⨯+⨯+⨯=, 2X 的方差为2222121400()(4060)(6060)(8060)6363D X =-⨯+-⨯+-⨯=. 由于两种方案的奖励额都符合要求,但方案2奖励的方差比方案1的小,所以应该选择方案2.【点评】此题主要考查了古典概型、离散型随机变量的分布列、数学期望、方差等基础知识,考查了数据处理能力,运算求解能力,应用意识,考查了必然与或然思想与整合思想.〔19〕【2014年福建,理19,13分】已知双曲线2222:1(0,0)x y E a b a b -=>>的两条渐近线分别为12:2,:2l y x l y x ==-.〔1〕求双曲线E 的离心率;〔2〕如图,O 为坐标原点,动直线l 分别交直线12,l l 于,A B 两点〔,A B 分别在第一,四象限〕,且OAB ∆的面积恒为8,试探究:是否存在总与直线l 有且只有一个公共点的双曲线E ?假设存在,求出双曲线E 的方程;假设不存在,说明理由.解:〔1〕因为双曲线E 的渐近线分别为和2,2y x y x ==-.所以222,2,5b c a c a a a -=∴=∴=, 从而双曲线E 的离心率5e =. 〔2〕由〔1〕知,双曲线E 的方程为222214x y a a-=.设直线l 与x 轴相交于点C .当l x ⊥轴时,假设直线l 与双曲线E 有且只有一个公共点,则,4OC a AB a ==,又因为OAB ∆的面积为8,所以118,48,222OC AB a a a =∴⋅=∴=.此时双曲线E 的方程为221416x y -=. 假设存在满足条件的双曲线E ,则E 的方程只能为221416x y -=. 以下证明:当直线l 不与x 轴垂直时,双曲线E :221416x y -=也满足条件. 设直线l 的方程为y kx m =+,依题意,得2k >或2k <-.则(,0)m C k-,记1122(,),(,)A x y B x y . 由2y x y kx m =⎧⎨=+⎩,得122m y k =-,同理得222m y k =+.由1212OAB S OC y y ∆=-得:1228222m m m k k k -⋅-=-+即222444(4)m k k =-=-.由221416y kx m x y =+⎧⎪⎨-=⎪⎩得,222(4)2160k x kmx m ----=.因为240k -<, 所以22222244(4)(16)16(416)k m k m k m ∆=+-+=---,又因为224(4)m k =-.所以0∆=,即l 与双曲线E 有且只有一个公共点.因此,存在总与l 有且只有一个公共点的双曲线E ,且E 的方程为221416x y -=. 【点评】此题考查双曲线的方程与性质、直线与圆锥曲线的位置关系等基础知识,考查抽象概括能力、推理论证能力、运算求解能力,考查特殊与一般思想、数形结合思想、分类讨论思想、函数与方程思想.〔20〕【2014年福建,理20,14分】已知函数()x f x e ax =-〔a 为常数〕的图像与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为1-.〔1〕求a 的值及函数()f x 的极值;〔2〕证明:当0x >时,2x x e <;〔3〕证明:对任意给定的正数c ,总存在0x ,使得当()0x x ∈+∞,,恒有2x x ce <. 解:解法一:〔1〕由()x f x e ax =-,得'()x f x e a =-.又'(0)11f a =-=-,得2a =.所以()2,'()2x x f x e x f x e =-=-.令'()0f x =,得ln 2x =.当ln 2x <时, '()0,()f x f x <单调递减;当ln 2x >时,'()0,()f x f x >单调递 增.所以当ln 2x =时,()f x 取得极小值,且极小值为ln 2(ln 2)2ln 22ln 4,()f e f x =-=-无极大值.〔2〕令2()x g x e x =-,则'()2x g x e x =-.由〔1〕得'()()(ln 2)0g x f x f =≥>,故()g x 在R 上单调递增,(0)10g =>,因此,当0x >时,()(0)0g x g >>,即2x x e <.〔3〕①假设1c ≥,则x x e ce ≤.又由〔2〕知,当0x >时,2x x e <.所以当0x >时,2x x ce <.取00x =,当0(,)x x ∈+∞时,恒有22x cx <.②假设01c <<,令11k c=>,要使不等式2x x ce <成立,只要2x e kx >成立.而要使2x e kx >成立,则只 要 2ln()x kx >,只要2ln ln x x k >+成立.令()2ln ln h x x x k =--,则22'()1x h x x x-=-=.所以当2x > 时, '()0,()h x h x >在(2,)+∞内单调递增.取01616x k =>,所以()h x 在0(,)x +∞内单调递增.又0()162ln(16)ln 8(ln 2)3(ln )5h x k k k k k k k =--=-+-+.易知ln ,ln 2,50k k k k >>>.所以0()0h x >.即存在016x c=,当0(,)x x ∈+∞时,恒有2x x ce <. 综上,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2x x ce <.解法二:〔1〕同解法一.〔2〕同解法一.〔3〕对任意给定的正数c,取o x =,由〔2〕知,当0x >时,2x e x >, 所以2222,()()22x x x x x e e e =>,当o x x >时,222241()()()222x x x x e x c c>>= 因此,对任意给定的正数c ,总存在0x ,当0(,)x x ∈+∞时,恒有2x x ce <.【点评】此题主要考查基本初等函数的导数、导数的运算及导数的应用、全称量词、存在量词等基础知识,考查运算求解能力、推理论证能力、抽象概括能力,考查函数与方程思想、有限与无限思想、划归与转化思想、分类与整合思想、特殊与一般思想.属难题.此题设有三个选考题,每题7分,请考生任选2题作答.总分值14分,如果多做,则按所做的前两题计分,作答时,先用2B 铅笔在答题卡上所选题目对应题号右边的方框涂黑,并将所选题号填入括号中.〔21〕【2014年福建,理21〔1〕,7分】〔选修4-2:矩阵与变换〕已知矩阵A 的逆矩阵12112-⎛⎫= ⎪⎝⎭A . 〔1〕求矩阵A ;〔2〕求矩阵1-A 的特征值以及属于每个特征值的一个特征向量.解:〔1〕因为矩阵A 是矩阵1-A 的逆矩阵,且1221130-=⨯-⨯=≠A ,所以232113 2121333⎛⎫- ⎪-⎛⎫ ==⎪ ⎪- ⎪⎝⎭-⎪ ⎭⎝A . 〔2〕矩阵1-A 的特征多项式为221() 43(1)(3)12f λλλλλλλ--==-+=----,令()0f λ=,得矩阵1-A 的特 征值为11λ=或23λ=,所以111ξ⎛⎫= ⎪-⎝⎭是矩阵1-A 的属于特征值11λ=的一个特征向量.211ξ⎛⎫= ⎪⎝⎭是矩阵 1-A 的属于特征值23λ=的一个特征向量.【点评】此题考查逆变换与逆矩阵,考查矩阵特征值与特征向量的计算等基础知识,属于基础题.〔21〕【2014年福建,理21〔2〕,7分】〔选修4-4:坐标系与参数方程〕已知直线l 的参数方程为24x a t y t=-⎧⎨=-⎩,〔t 为参数〕,圆C 的参数方程为4cos 4sin x y θθ=⎧⎨=⎩,〔θ为参数〕. 〔1〕求直线l 和圆C 的普通方程;〔2〕假设直线l 与圆C 有公共点,求实数a 的取值范围.解:〔1〕直线l 的普通方程为220x y a --=.圆C 的普通方程为2216x y +=.〔2〕因为直线l 与圆有公共点,故圆C 的圆心到直线l的距离4d =≤,解得a -≤≤【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.〔21〕【2014年福建,理21〔3〕,7分】〔选修4-5:不等式选讲〕已知定义在R 上的函数()12f x x x =++-的最小值为a .〔1〕求a 的值;〔2〕假设p q r ,,为正实数,且p q r a ++=,求证:2223p q r ++≥.解:〔1〕因为12(1)(2)3x x x x ++-≥+--=,当且仅当12x -≤≤时,等号成立,所以()f x 的最小值等于3,即3a =.〔2〕由〔1〕知3p q r ++=,又因为,,p q r 是正数,所以22222222()(111)(111)()9p q r p q r p q r ++++≥⨯+⨯+⨯=++=,即2223p q r ++≥.【点评】此题主要考查绝对值不等式、柯西不等式等基础知识,考查运算求解能力,考查化归与转化思想.。
2014年高考上海理科数学试题及答案(解析版)

2014年普通高等学校招生全国统一考试(上海卷)数学(理科)第Ⅰ卷(选择题共50分)一、填空题(本大题共14小题,共56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.(1)【2014年上海,理1,4分】函数212cos (2)y x 的最小正周期是.【答案】2【解析】原式=cos4x ,242T.(2)【2014年上海,理2,4分】若复数12i z ,其中i 是虚数单位,则1zzz.【答案】6【解析】原式=211516z z z.(3)【2014年上海,理3,4分】若抛物线22ypx 的焦点与椭圆22195xy的右焦点重合,则该抛物线的准线方程为.【答案】2x 【解析】椭圆右焦点为(2,0),即抛物线焦点,所以准线方程2x.(4)【2014年上海,理4,4分】设2(,)()[,)x x a f x xx a ,若(2)4f ,则a 的取值范围为.【答案】2a 【解析】根据题意,2[,)a ,∴2a .(5)【2014年上海,理5,4分】若实数x ,y 满足1xy ,则222xy 的最小值为.【答案】22【解析】2222222xyx y.(6)【2014年上海,理6,4分】若圆锥的侧面积是底面积的3倍,则其母线与底面夹角的大小为.(结果用反三角函数值表示)【答案】1arccos3【解析】设圆锥母线长为R ,底面圆半径为r ,∵3S S 侧底,∴23r R r ,即3Rr ,∴1cos3,即母线与底面夹角大小为1arccos 3.(7)【2014年上海,理7,4分】已知曲线C 的极坐标方程为(3cos 4sin )1,则C 与极轴的交点到极点的距离是.【答案】13【解析】曲线C 的直角坐标方程为341xy,与x 轴的交点为1(,0)3,到原点距离为13.(8)【2014年上海,理8,4分】设无穷等比数列n a 的公比为q ,若134lim n n a a a a L ,则q .【答案】512【解析】223111510112a a qa qq qqq,∵01q,∴512q.P2P5P 6P7P 8P4P3P1B A(9)【2014年上海,理9,4分】若2132()f x x x,则满足()0f x 的x 的取值范围是.【答案】(0,1)【解析】2132()f x x x,结合幂函数图像,如下图,可得x 的取值范围是(0,1).(10)【2014年上海,理10,4分】为强化安全意识,某商场拟在未来的连续10天中随机选择3天进行紧急疏散演练,则选择的3天恰好为连续3天的概率是.(结果用最简分数表示)【答案】115【解析】3108115PC.(11)【2014年上海,理11,4分】已知互异的复数,a b 满足0ab,集合22,,a ba b,则a b .【答案】1【解析】第一种情况:22,a a b b ,∵0ab ,∴1a b ,与已知条件矛盾,不符;第二种情况:22,ab ba ,∴431a a a ,∴210a a ,即1ab .(12)【2014年上海,理12,4分】设常数a 使方程sin 3cos xxa 在闭区间[0,2]上恰有三个解123,,x x x ,则123x x x .【答案】73【解析】化简得2sin()3x a ,根据下图,当且仅当3a 时,恰有三个交点,即12370233x x x .(13)【2014年上海,理13,4分】某游戏的得分为1,2,3,4,5,随机变量表示小白玩该游戏的得分.若()4.2E ,则小白得5分的概率至少为.【答案】0.2【解析】设得i 分的概率为i p ,∴123452345 4.2p p p p p ,且123451p p p p p ,∴12345444444p p p p p ,与前式相减得:1235320.2p p p p ,∵0ip ,∴1235532p p p p p ,即50.2p .(14)【2014年上海,理14,4分】已知曲线2:4C xy ,直线:6l x .若对于点(,0)A m ,存在C 上的点P 和l 上的Q 使得0AP AQ u u u r u uu r r,则m 的取值范围为.【答案】1615【解析】根据题意,A 是PQ 中点,即622PQP x x x m,∵20P x ,∴[2,3]m .二、选择题(本大题共有4题,满分20分)考生应在答题纸相应编号位置填涂,每题只有一个正确选项,选对得5分,否则一律得零分.(15)【2014年上海,理15,5分】设,a b R ,则“4a b ”是“2a 且2b ”的()(A )充分条件(B )必要条件(C )充要条件(D )既非充分也非必要条件【答案】B【解析】充分性不成立,如5a ,1b ;必要性成立,故选B .(16)【2014年上海,理16,5分】如图,四个棱长为1的正方体排成一个正四棱柱,AB 是一条侧棱,(1,2,,8)i P i L 是上底面上其余的八个点,则(1, 2,, 8)i AB AP i uu u r u u u rK 的不同值的个数为()(A )1 (B )2 (C )4 (D )8【答案】AACBD【解析】根据向量数量积的几何意义,i ABAP u uu ru uu r 等于AB uu u r 乘以i AP u u u r 在AB u uu r 方向上的投影,而i AP uu u r 在AB uu u r方向上的投影是定值,AB u u u r 也是定值,∴i AB AP u uu ru u u r 为定值1,故选A .(17)【2014年上海,理17,5分】已知111(,)P a b 与222(,)P a b 是直线1ykx (k 为常数)上两个不同的点,则关于x 和y 的方程组112211a xb y a xb y的解的情况是()(A )无论12,,k P P 如何,总是无解(B )无论12,,k P P 如何,总有唯一解(C )存在12,,k P P ,使之恰有两解(D )存在12,,k P P ,使之有无穷多解【答案】B 【解析】由已知条件111b ka ,221b ka ,11122122a b D a b a b a b 122112(1)(1)0a ka a ka a a ,∴有唯一解,故选B .(18)【2014年上海,理18,5分】设2(),0,()1,0.xa xf x xa xx若(0)f 是()f x 的最小值,则a 的取值范围为()(A )[1,2](B )[1,0](C )[1,2](D )[0,2]【答案】D【解析】先分析0x 的情况,是一个对称轴为xa 的二次函数,当0a 时,min()()(0)f x f a f ,不符合题意,排除AB 选项;当0a 时,根据图像min ()(0)f x f ,即0a符合题意,排除C 选项,故选D .三、解答题(本题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.(19)【2014年上海,理19,12分】底面边长为2的正三棱锥P ABC ,其表面展开图是三角形123PP P ,如图.求123PP P 的各边长及此三棱锥的体积V .解:根据题意可得12,,P B P 共线,∵112ABP BAP CBP ,60ABC,∴11260ABP BAP CBP ,∴160P ,同理2360P P ,∴123PP P 是等边三角形,P ABC 是正四面体,所以123PP P 边长为4;∴3222123VAB.(20)【2014年上海,理20,14分】设常数0a,函数2()2x xa f x a .(1)若4a,求函数()yf x 的反函数1()yfx ;(2)根据a 的不同取值,讨论函数()yf x 的奇偶性,并说明理由.解:(1)∵4a,∴24()24x xf x y ,∴4421xyy ,∴244log 1y x y,∴1244()log 1xyfx x ,(,1)(1,)xU .……6分(2)若()f x 为偶函数,则()()f x f x ,∴2222x x xxa a aa ,整理得(22)0xxa ,∴0a ,此时为偶函,若()f x 为奇函数,则()()f x f x ,∴2222x x xxaaa a,整理得210a,∵0a,∴1a,此时为奇函数,当(0,1)(1,)a时,此时()f x 既非奇函数也非偶函数.……14分(21)【2014年上海,理21,14分】如图,某公司要在A B 、两地连线上的定点C处建造广告牌CD ,其中D 为顶端,AC 长35米,CB 长80米.设点A B 、在同一水平面上,从A 和B 看D 的仰角分别为和.(1)设计中CD 是铅垂方向.若要求2,问CD 的长至多为多少(结果精确到0.01米)?(2)施工完成后,CD 与铅垂方向有偏差.现在实测得38.12,18.45,求CD 的长(结果精确到0.01米).BA CP 3P 1P 2解:(1)设CD 的长为x 米,则tan,tan3580x x ,∵202,∴tantan 2,∴22tan tan1tan,∴2221608035640016400x x x xx,解得020228.28x ,∴CD 的长至多为28.28米.……6分(2)设,,DBa DAb DCm ,180123.43ADB,则sinsina AB ADB,解得115sin38.1285.06sin123.43a∴2280160cos18.4526.93maa ∴CD 的长为26.93米.……14分(22)【2014年上海,理22,16分】在平面直角坐标系xOy 中,对于直线:0l ax by c 和点111222(,),(,)P x y P x y ,记1122()()ax by c ax by c .若0,则称点12,P P 被直线l 分割.若曲线C 与直线l 没有公共点,且曲线C 上存在点12,P P 被直线l 分割,则称直线l 为曲线C 的一条分割线.(1)求证:点(1,2),(1,0)A B 被直线10x y 分割;(2)若直线ykx 是曲线2241x y 的分割线,求实数k 的取值范围;(3)动点M 到点(0,2)Q 的距离与到y 轴的距离之积为1,设点M 的轨迹为曲线E .求证:通过原点的直线中,有且仅有一条直线是E 的分割线.解:(1)将(1,2),(1,0)A B 分别代入1x y ,得(121)(11)40,∴点(1,2),(1,0)A B 被直线10x y 分割.……3分(2)联立2241xy ykx,得22(14)1k x,依题意,方程无解∴2140k,∴12k或12k.……8分(3)设(,)M x y ,则22(2)1x y x,∴曲线E 的方程为222[(2)]1xy x①当斜率不存在时,直线0x ,显然与方程①联立无解,又12(1,2),(1,2)P P 为E 上两点,且代入0x ,有10,∴0x 是一条分割线;当斜率存在时,设直线为y kx ,代入方程得:2432(1)4410kxkxx,令2432()(1)441f x kxkx x,则(0)1f ,22(1)143(2)f kkk,22(1)143(2)f kkk,当2k 时,(1)0f ,∴(0)(1)0f f ,即()0f x 在(0,1)之间存在实根,∴ykx 与曲线E 有公共点当2k时,(0)(1)0f f ,即()0f x 在(1,0)之间存在实根,∴ykx 与曲线E 有公共点,∴直线ykx 与曲线E 始终有公共点,∴不是分割线,综上,所有通过原点的直线中,有且仅有一条直线0x 是E 的分割线.……16分(23)【2014年上海,理23,18分】已知数列n a 满足1133nnn a a a ,*n N ,11a .(1)若2342,,9a a x a ,求x 的取值范围;(2)设n a 是公比为q 的等比数列,12n n S a a a L .若1133nnn S S S ,*n N ,求q 的取值范围;(3)若12,,,k a a a L 成等差数列,且121000ka a a L ,求正整数k 的最大值,以及k 取最大值时相应数列12,,,k a a a L 的公差.解:(1)依题意,232133a a a ,∴263x ,又343133a a a ,∴327x ,综上可得36x .……3分(2)由已知得1n na q ,又121133a a a ,∴133q ,当1q 时,n S n ,1133n nn S S S ,即133n nn ,成立;当13q时,11nnq S q ,1133nnn S S S ,即1111133111nn nq qqq q q ,∴111331n nqq ,此不等式即1132032n n n nq q qq,∵1q ,∴132(31)2220n nnnqqq q q ,对于不等式1320n nq q,令1n ,得2320qq ,解得12q ,又当12q 时,30q ,∴132(3)2(3)2(1)(2)0n nnq qq q q qq q 成立,∴12q ,当113q 时,11nnqS q,1133nnn S S S ,即1111133111nn nq qq q q q,即11320320n n n nq q qq ,310,30q q,∵132(31)2220n nnnq qq q q,132(3)2(3)2(1)(2)n nnqqq q q q q q∴113q 时,不等式恒成立,综上,q 的取值范围为123q.……10分(3)设公差为d ,显然,当1000,0kd 时,是一组符合题意的解,∴max 1000k ,则由已知得1(2)1(1)3[1(2)]3kdk dkd ,∴(21)2(25)2k d kd,当1000k 时,不等式即22,2125d dk k,∴221dk,12(1) (10002)kk kd a a a k,∴1000k时,200022(1)21k dk kk ,解得10009990001000999000k ,∴1999k ,∴k 的最大值为1999,此时公差2000219981(1)199919981999kdk k .……18分。
2014年山东省高考理科数学试题+答案(全)

绝密★启用前2014年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共4页,满分150分。
考试用时120分钟考试结束后,将本卷和答题卡一并交回。
注意事项:1 答题前,考试务必用05毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区 和科类在答题卡和试卷规定的位置上。
2 第Ⅰ卷每小题选出答案后,用2(B)铅笔把答题卡上对应题目答案标号涂黑,如需改 动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效。
3 第Ⅱ卷必须用05毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域 内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的 答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤 参考公式:如果事件(A),(B)互斥,那么P(A)+(B)=P((A))+P((B));如果事件(A),(B)独立,那么P(A)(B)=P((A))*P((B))第Ⅰ卷 (共50分)一、选择题:本大题共10小题,每小题5分,满分50分在每小题给出的四个选项中,只有一项是符合题目要求的(1)已知,R a b ∈,i 是虚数单位,若a i -与2bi +互为共轭复数,则2()a bi += (A) 54i -(B)54i +(C) 34i -(D)34i +答案:D解析:由已知得,2,1a b ==,即2a bi i +=+,所以22()(2)34a bi i i +=+=+,选D考点:复数的四则运算,复数的概念。
(2)设集合{|1|2}A x x =-<,{|2,[0,2]}xB y y x ==∈,则A B =(A) [0,2](B) (0,3)(C) [1,3)(D)(1,4)答案:C解析:由已知{|13},{|14}A x x B y y =-<<=≤≤,所以,[1,3)A B =,选C考点:绝对值不等式的解法,指数函数的性质,集合的运算。
2014年高考理科数学试题(四川卷)及参考答案

2014年四川高考理科数学试题及参考答案一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B ⋂=A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 2.在6(1)x x +的展开式中,含3x 项的系数为A .30B .20C .15D .103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点A .向左平行移动12个单位长度 B .向右平行移动12个单位长度 C .向左平行移动1个单位长度 D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有A .a b c d > B .a bc d < C .a b d c > D .a b d c<5.执行如图1所示的程序框图,如果输入的,x y R ∈,则输出的S 的最大值为A .0B .1C .2D .3 6.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有A .192种B .216种C .240种D .288种7.平面向量(1,2)a =,(4,2)b =,c ma b =+(m R ∈),且c 与a 的夹角等于c 与b 的夹角,则m =A .2-B .1-C .1D .28.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点。
设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是A .B .C .D . 9.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-。
现有下列命题:①()()f x f x -=-;②22()2()1xf f x x =+;③|()|2||f x x ≥。
2014年高考浙江理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年浙江,理1,5分】设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U A =( )(A )∅ (B ){2} (C){5} (D){2,5} 【答案】B【解析】2{|5}{|5}A x N x x N x =∈≥=∈≥,{|25}{2}U C A x N x =∈≤<=,故选B . 【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题. (2)【2014年浙江,理2,5分】已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2(i)2i a b +="的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D)既不充分也不必要条件 【答案】A【解析】当1a b ==时,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,则22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故选A .【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. (3)【2014年浙江,理3,5分】某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( ) (A )902cm (B)1292cm (C )1322cm (D)1382cm【答案】D【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故选D .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(4)【2014年浙江,理4,5分】为了得到函数sin3cos3y x x =+的图像,可以将函数2cos3y x =的图像( )(A )向右平移4π个单位 (B )向左平移4π个单位 (C )向右平移12π个单位 (D )向左平移12π个单位【答案】C【解析】sin3cos32sin(3)2sin[3()]412y x x x x ππ=+=+=+,而2cos32sin(3)2y x x π==+=2sin[3()]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需将2cos3y x =的图象向右平移12π个单位,故选C .【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查. (5)【2014年浙江,理5,5分】在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++=( ) (A )45 (B )60 (C)120 (D )210 【答案】C 【解析】令x y =,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x +展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C . 【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. (6)【2014年浙江,理6,5分】已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) (A )3c ≤ (B )36c <≤ (C )69c <≤ (D )9c >【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故选C .【点评】本题考查方程组的解法及不等式的解法,属于基础题. (7)【2014年浙江,理7,5分】在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x =的图像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函数()(0)a f x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故选D .【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.(8)【2014年浙江,理8,5分】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )(A)min{||,||}min{||,||}a b a b a b +-≤ (B )min{||,||}min{||,||}a b a b a b +-≥ (C )2222max{||,||}||||a b a b a b +-≤+ (D )2222max{||,||}||||a b a b a b +-≥+【答案】D【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-与min{||,||}a b 的大小不确定,平行四边形法可知max{||,||}a b a b +-所对的角大于或等于90︒ ,由余弦定理知2222max{||,||}||||a b a b a b +-≥+, (或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+),故选D .【点评】本题在处理时要结合着向量加减法的几何意义,将a ,b ,a b +,a b -放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法",“确定法”,“特殊值”代入法等也许是一种更快速,更有效的方法.(9)【2014年浙江,理9,5分】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则( )(A)1212,()()p p E E ξξ><(B)1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D )1212,()()p p E E ξξ<< 【答案】A【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m nC C C C p C C C +++=++=223323()(1)m m mn n n m n m n -++-++-, ∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >.又∵1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m nE m n m n m nξ+=⨯+⨯=+++,又222(1)(1)()(1)n m n C n n P C m n m n ξ+-===++-,11222(2)()(1)n m m n C C mnP C m n m n ξ+===++-,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mn m n m n +--+++- 21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m n m n ++=(1)0()(1)m m mnm n m n -+>++-,所以21()()E E ξξ>,故选A .解法二:在解法一中取3m n ==,计算后再比较,故选A .【点评】正确理解()1,2i i ξ=的含义是解决本题的关键.此题也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)【2014年浙江,理10,5分】设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i i a =,0,1,2i =,,99,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k =,则( ) (A )123I I I << (B )213I I I << (C)132I I I << (D )321I I I << 【答案】B【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,故2111352991199()199999999999999I ⨯-=++++==,由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯, 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-=12574[2sin(2)2sin(2)]139999ππ->,故213I I I <<,故选B . 解法二:估算法:k I 的几何意义为将区间[0,1]等分为99个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数21()f x x =的区间[0,1]等分为4个小区间的情形,因1()f x 在[0,1]上递增,此时110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+- =11223344A H A H A H A H +++(1)(0)f f =-1=,同理对题中给出的1I ,同样有11I =;而2I 略小于1212⨯=,3I 略小于14433⨯=,所以估算得213I I I <<,故选B .【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)【2014年浙江,理11,5分】若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 . 【答案】6【解析】第一次运行结果1,2S i ==;第二次运行结果4,3S i ==;第三次运行结果11,4S i ==;第四次运行结果26,5S i ==;第五次运行结果57,6S i ==;此时5750S =>,∴输出6i =.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.(12)【2014年浙江,理12,5分】随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ= .【答案】25 【解析】设1ξ=时的概率为p ,ξ的分布列为: 由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξ的分布列为即为故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.(13)【2014年浙江,理13,5分】当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是__.【答案】3[1,]2【解析】解法一:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三点坐标代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩解得312a ≤≤ ,∴实数a 的取值范围是3[1,]2.解法二:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤得,由图分析可知,0a ≥且在(1,0)A 点取得最小值,在(2,1)B 取得最大值,故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故实数a 的取值范围是3[1,]2.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.(14)【2014年浙江,理14,5分】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答). 【答案】60【解析】解法一:不同的获奖分两种,一是有一人获两张奖券,一人获一张奖券,共有223436C A =, 二是有三人各获得一张奖券,共有3424A =,因此不同的获奖情况共有362460+=种. 解法二:ξ 0 1 2 P 15p 115p -- ξ 0 1 2P 15 35 15将一、二、三等奖各1张分给4个人有3464=种分法,其中三张奖券都分给一个人的有4种分法, 因此不同的获奖情况共有64460-=种.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.(15)【2014年浙江,理15,5分】设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是 .【答案】(,2]-∞.【解析】由题意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得2a ≤.【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.(16)【2014年浙江,理16,5分】设直线30x y m -+=(0m ≠) 与双曲线22221x y a b-=(0,0a b >>)两条渐近线分别交于点A ,B .若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是 .【答案】52【解析】解法一:由双曲线的方程可知,它的渐近线方程为b y x a =和by x a =-,分别与直线l : 30x y m -+= 联立方程组,解得,(,)33am bm A a b a b ----,(,)33am bmB a b a b -++,设AB 中点为Q ,由||||PA PB = 得,则3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b m Q a b a b ----,PQ 与已知直线垂直,∴1PQ lk k =-,即222222319139b m a b a m m a b --=----, 即得2228a b =,即22228()a c a =-,即2254c a =,所以52c e a ==.解法二:不妨设1a =,渐近线方程为222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,设AB 中点为00(,)Q x y ,由韦达定理得:202391b m y b =-……① ,又003x y m =-,由1PQ l k k =-得00113y x m =--,即得0011323y y m =--得035y m =代入①得2233915b m m b =-,得214b =,所以22215144c a b =+=+=,所以52c =,得52c e c a ===.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题. (17)【2014年浙江,理17,5分】如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m =,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ为直线AP 与平面ABC 所成角).【答案】539【解析】解法一:∵15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,过P 作PP BC '⊥,交BC 于P ',1︒当P 在线段BC 上时,连接AP ',则'tan 'PP AP θ=,设BP x '=,则20CP x '=-,(020x ≤<)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=-. 在直角ABP ∆'中,2'225AP x =+ ∴2'320tan '3225PP x AP x θ-==+,令220225xy x -=+,则函数在[]0,20x ∈单调递减,∴0x =时,tan θ取得最大值为232002034334592250-==+ 2︒当P 在线段CB 的延长线上时,连接AP ',则'tan 'PP AP θ=,设BP x '=, 则20CP x '=+,(0x >)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=+,在直角ABP ∆'中,2'225AP x =+,∴2'320tan '3225PP xAP x θ+==+, 令220225x y x +=+,则2222520'(225x )225xy x -=++,∴当225450204x <<=时'0y >;当454x >时'0y <, 所以当454x =时max 2452054345225()4y +==+,此时454x =时,tan θ取得最大值为3553339=, 综合1︒,2︒可知tan θ取得最大值为539. 解法二:如图以B 为原点,BA 、BC 所在的直线分别为x ,y 轴,建立如图所示的空间直角坐标系,∵15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,由30BCM ∠=︒,可设3(0,,(20))3P x x -(其中20x ≤),'(0,,0)P x ,(15,0,0)A ,所以2223(20)'3203tan '315225x PP x AP x x θ--===++, 设2320(x)tan 3225x f x θ-==+(20x ≤),22322520'(x)3(225)225xf x x +=-++,所以,当22545204x <-=- 时'0y >;当45204x -<≤时'0y <,所以当454x =-时max 24520453534()()43945225()4f x f +=-==+,所以tan θ取得最大值为539. 解法三: 分析知,当tan θ取得最大时,即θ最大,最大值即为平面ACM 与地面ABC 所成的锐二面角的度量值,如图,过B 在面BCM 内作BD BC ⊥交CM 于D , 过B 作BH AC ⊥于H ,连DH ,则BHD ∠即为平面ACM 与地面ABC 所成 的二面角的平面角,tan θ的最大值即为tan BHD ∠,在Rt ABC ∆中,由等面积法可得15201225AB BC BH AC ===,203tan303DB BC =︒=, 所以max 203533(tan )tan 129DB BHD BH θ=∠===.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题. 三、解答题:本大题共5题,共72分.解答应写出文字说明,演算步骤或证明过程.(18)【2014年浙江,理18,14分】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知,3a b c ≠=,22cos cos 3sin cos 3sin cos A B A A B B -=-.(1)求角C 的大小;(2)若4sin 5A =,求ABC ∆的面积. 解:(1)由题得1cos21cos233sin 2sin 22222A B A B ++-=-,即3131sin 2cos2sin 2cos22222A AB B -=-, sin(2)sin(2B )66A ππ-=-,由a b ≠得A B ≠,又(0,)A B π+∈ ,得22B 66A πππ-+-=, 即23A B π+=,所以3C π=.(2)3c =,4sin 5A =,sin sinC a c A =,得85a =,由a c < 得A C <,从而3cos 5A =, 故sin sin()B AC =+=433sinAcosC cosAsinC 10++=,所以,ABC ∆的面积为18318sin 225S ac B +==.【点评】本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.(19)【2014年浙江,理19,14分】已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈.若{}n a 为等比数列,且1322,6a b b ==+.(1)求n a 与n b ;(2)设11(*)n n n c n N a b =-∈.记数列{}n c 的前n 项和为n S .(ⅰ)求n S ;(ⅱ)求正整数k ,使得对任意*n N ∈均有k n S S ≥.解:(1)∵123(2)(*)n b n a a a a n N =∈ ①,当2n ≥,*n N ∈时,11231(2)n b n a a a a --=②,由①÷②知:当2n ≥时,1(2)n n b b n a --=,令3n =,则有323(2)b b a -=,∵326b b =+,∴38a =.∵{}n a 为等比数列,且12a =,∴{}n a 的公比为q ,则2324aq a ==,由题意知0n a >,∴0q >,∴2q =.∴*2nn a n N ∈=().又由123(2)(*)n b n a a a a n N =∈,得:1232222(2)n b n ⨯⨯⨯⨯=,即(1)22(2)n n n b +=,∴*1n b n n n N =+∈()(). (2)(ⅰ)∵1111111()2(1)21n n n n n c a b n n n n =-=-=--++, ∴123n n S c c c c =++++=2111111111()()()21222321n n n --+--++--+ =21111(1)2221n n +++--+ =111121n n --++=1112n n -+. (ⅱ)因为10c =,20c >,30c >,40c >;当5n ≥时,1(1)[1](1)2n nn n c n n +=-+,而11(1)(1)(2)(n 1)(n 2)0222n n n n n n n ++++++--=>,得5(1)5(51)122n n n ++≤<, 所以,当5n ≥时,0n c <,综上,对任意*n N ∈恒有4n S S ≥,故4k =.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.(20)【2014年浙江,理20,15分】如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =.(1)证明:DE ⊥平面ACD ; (2)求二面角B AD E --的大小.解:(1)在直角梯形BCDE 中,由1DE BE ==,2CD =,得2BD BC ==,由2AC =,2AB =得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE , 所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD . (2)解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AB 交于点G ,连接BG , 由(1)知DE AD ⊥,则FG AD ⊥,所以BFG ∠就是二面角B AD E --的平面角, 在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥,又平面ABC ⊥平面BCDE , 得BD ⊥平面ABC ,从而BD AB ⊥,由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD ∆中,由2DC =,2AC =,得6AD =;在Rt AED ∆中,由1ED =,6AD =得7AE =;在Rt ABD ∆中,由2BD =,2AB =,6AD =,得233BF =,23AF AD =,从而23GF =,在ABE ∆,ABG ∆中,利用余弦定理分别可得57cos 14BAE ∠=,23BC =.在BFG ∆中,2223cos 22GF BF BG BFG BF GF +-∠==,所以,6BFG π∠=,即二面角B AD E --的大小为6π. 解法二:以D 的原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz -,如图 所示.由题意知各点坐标如下:(0,0,0)D ,(1,0,0)E ,(0,2,0)C ,(0,2,2)A ,(1,1,0)B . 设平面ADE 的法向量为111(,,)m x y z =,平面ABD 的法向量为222(,,)n x y z =, 可算得:(0,2,2)AD =--,(1,2,2)AE =--,(1,1,0)DB =,由0m AD m AE ⎧=⎪⎨=⎪⎩,即11111220220y z x y z ⎧--=⎪⎨--=⎪⎩,可取(0,1,2)m =-,由00n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩即22222200y z x y ⎧--=⎪⎨+=⎪⎩可取(0,1,2)n =-,于是||33|cos ,|2||||32m n m n m n ⋅<>===⋅⋅.由题意可知,所求二面角是锐角,故二面角B AD E --的大小为6π. 【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.(21)【2014年浙江,理21,15分】如图,设椭圆C:22221(0)x y a b a b+=>>动直线l 与椭圆C只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -. 解:(1)解法一:设l 方程为(0)y kx m k =+<,22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,消去y 得:222222222()20b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为22222222(,)a km b mP b a k b a k -++,又点P 在第一象限,故点P 的坐标为22222222(,)a k b P b a k b a k-++. 解法二:''1P l k =-,得222,b b a k (2几何的基本思想方法、基本不等式应用等综合解题能力.(22)【2014年浙江,理22,14分】已知函数()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (2)设若()24f x b +≤⎡⎤对[]1,1x ∈-恒成立,求3a b +的取值范围.解:((2。
2014年浙江省高考理科数学真题试题及答案解析(完整版)
2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤ B.min{||,||}min{||,||}a b a b a b +-≥ C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则 A.321I I I << B. 312I I I << C. 231I I I << D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-b y a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人 为了准确瞄准目标点,需计算由点观察点的仰角的大小. 若则的最大值三、解答题:本大题共5小题,共72分。
绵阳市高中2014-2015学年第一学期高二期末教学质量测试数学试题(理科)(含详细解答)
绵阳市高中2014-2015学年第一学期高二期末教学质量测试数学试题(理科)一、选择题(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、刘徽是我国古代最伟大的数学家之一,他的 是极限思想的开始,他计算体积的思想是积分学的萌芽.( )A .割圆术B .勾股定理C .大衍求一术D .辗转相除法2、在极坐标系中,极坐标方程4sin ρθ=表示的曲线是( )A .圆B .直线C .椭圆D .抛物线3、直线l 310y +-=,则直线l 的倾斜角为( )A .30B .60C .120D .1504、下列关于统计的说法正确的是( )A .一组数据只能有一个众数B .一组数据可以有两个中位数C .一组数据的方差一定是非负数D .一组数据中的每一个数据都加上同一非零常数后,平均数不会发生变化5、有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是( )A .至少有1件次品与至多有1件正品B .至少有1件次品与都是正品C .至少有1件次品与至少有1件正品D .恰有1件次品与恰有2件正品6、某市要对辖区内的中学教师的年龄进行调查,现从中随机抽出200名教师,已知抽到的教师年龄都在[)25,50岁之间,根据调查结果得出教师的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市辖区内中学教师的年龄的中位数大约是( )A .37.1岁B .38.1岁C .38.7岁D .43.1岁7、执行右图的程序框图,任意输入一次x (x ∈Z ,22x -≤≤)与y (y ∈Z ,22y -≤≤),则能输出数对(),x y 的概率为( )A .725 B .825 C .925D .258、已知O 为坐标原点,F 为抛物线C :2y =的焦点,P 为C 上一点,若F ∆PO 的面积为F P =( )A .B .C .D .92x m =+有实数解,则实数m 的取值范围是( )A .)[)2,⎡+∞⎣B .)(0,3⎡⎤⎣⎦C .([),2,-∞+∞D .(][),22,-∞-+∞10、已知点P 是椭圆221135x y +=(0x ≠,0y ≠)上的动点,1F ,2F 为椭圆的两个焦点,O 是坐标原点,若M 是以线段1F P 为直径的圆上一点,且M 到12F F ∠P 两边的距离相等,则OM 的取值范围是( )A .(B .(0,C .D .(3,二、填空题(本大题共5小题,每小题4分,共20分.)11、设()3,2,1A ,()1,0,5B ,则AB 的中点M 的坐标为 .12、右面算法最后输出的结果是 . 13、质检部门对某超市甲、乙、丙三种商品共750件进行分层抽样检查,抽检员制作了如下的统计表格:表格中甲、丙商品的有关数据已被污染看不清楚(分别用1x ,2x ,3x ,4x 表示),若甲商品的样本容量比丙商品的样本容量多6,则根据以上信息可求得丙商品数量2x 的值为 .14、已知1F 是双曲线22221x y a b-=(0a >,0b >)的左焦点,以线段1F O 为边作正三角形1F OM ,若顶点M 在双曲线上,则双曲线的离心率是 .15、已知椭圆22221x y a b+=(0a b >>)及内部面积为S ab π=,1A ,2A 是长轴的两个顶点,1B ,2B 是短轴的两个顶点,在椭圆上或椭圆内部随机取一点P ,给出下列命题:①12∆PA A 为钝角三角形的概率为1;②12∆PB B 为钝角三角形的概率为b a ; ③12∆PA A 为钝角三角形的概率为b a ; ④12∆PB B 为锐角三角形的概率为a b a -. 其中正确的命题有 .(填上你认为所有正确的命题序号)三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤.)16、直线l 经过两直线240x y -+=与50x y -+=的交点,且与直线1:l 60x y +-=平行.()1求直线l 的方程;()2若点(),1a P 到直线l 的距离与直线1l 到直线l 的距离相等,求实数a 的值.17、甲、乙两个竞赛队都参加了10场比赛,比赛得分情况记录如下(单位:分): 甲队:57,41,51,40,49,39,52,43,45,53乙队:30,50,67,47,66,34,46,30,64,66()1根据得分情况记录,请将茎叶图补充完整,并求乙队得分的中位数;()2如果从甲、乙两队的10场得分中,各随机抽取一场不小于50分的得分,求甲的得分大于乙的得分的概率.18、已知圆C :22230x y x ++-=.()1求过点()1,3P 且与圆C 相切的直线方程;()2问是否存在斜率为1的直线l ,使以l 被圆C 截得的弦AB 为直线的圆经过原点?若存在,请求出的方程;若不存在,请说明理由.19、已知椭圆C :22221x y a b+=(0a b >>)的左焦点为()F 1,0-,O 为坐标原点,点G 1,2⎛ ⎝⎭在椭圆上,过点F 的直线l 交椭圆于不同的两点A 、B .()1求椭圆C 的方程;()2求弦AB 的中点M 的轨迹方程;()3设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,P 为x 轴上一点,若PA 、PB 是菱形的两条邻边,求点P 横坐标的取值范围.。
郑州二中2013-2014学年下期期中考试高二理科数学试题(含答案)
1 郑州二中2013—2014学年下学期期中考试高二年级数学(理科)试卷考试时间:120分钟本试卷分第Ⅰ卷 (选择题)和第Ⅱ卷 (非选择题)两部分,满分150分,测试时间120分钟。
答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡的相应位置上。
参考公式:1、()0.6826,P X μσμσ-<≤+=(22)0.9544,P X μσμσ-<≤+=(33)0.9974.P X μσμσ-<≤+=2、独立性检验公式 :()()()()()22n ad bc K a b a c c d b d -=++++,其中n a b c d =+++为样本容量. 独立性检验临界值表:第Ⅰ卷(选择题 共60分)一、选择题:(本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
)1.若n ∈N *,则(20-n )(21-n)……(100-n)等于( )A .80100n A - B.n n A --20100 C .81100n A - D .8120n A -2.三位同学独立地做一道物理竞赛题,他们做出的概率分别为21、31、41,则三位同学能够将此题解答出的概率为( )A .0.25 B. 0.5 C. 0.6 D.0.753. 两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下,其中拟合效果最好的模型是( )A .模型1的相关指数2R 为0.50 B. 模型2的相关指数2R 为0.80C. 模型3的相关指数2R 为0.98D. 模型4的相关指数2R 为0.254.从1,2,3,4,5,6,7中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件 B =“取到的2个数均为偶数”,则P (|B A )等于( )A.41B.31C.43D.325. 某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程x y b a ∧∧∧=+中的b ∧为9.4,据此模型预测广告费用为6万元时销售额。
北京市西城区2014-2015学年度高二上学期期末考试数学试题(理科)
北京市西城区2014 —2015学年度第一学期期末试卷高二数学2015.1(理科)试卷满分:150分考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分. 在每小题给出的四个选项中,只有一项是符合要求的.角角60角二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.11. 命题“2,20x x x ∃∈-<R ”的否定是_______________.12. 空间向量(1,1,2)=--a ,(1,2,1)=--b ,(,,2)x y =-n ,且//n b . 则⋅a n =_______.13. 右图是一个四棱锥的三视图,则该四棱锥的 体积为_______. 14. 已知F 为双曲线22:13xC y -=的一个焦点, 则点F 到双曲线C 的一条渐近线的距离为_______.15. 由直线y x =上一点向圆22(4)1x y -+=引切线,则切线长的最小值为 . 16 .已知点(3,0)M 和点(3,0)N -,直线PM ,PN 的斜率乘积为常数a (0a ≠),设点P 的轨迹为C .给出以下几个命题:①存在非零常数a ,使C 上所有点到两点(4,0),(4,0)-距离之和为定值; ②存在非零常数a ,使C 上所有点到两点(0,4),(0,4)-距离之和为定值; ③不存在非零常数a ,使C 上所有点到两点(4,0),(4,0)-距离差的绝对值为定值; ④不存在非零常数a ,使C 上所有点到两点(0,4),(0,4)-距离差的绝对值为定值. 其中正确的命题是________.(填出所有正确命题的序号)三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)如图,四边形ABCD 为矩形,AD ⊥平面ABE ,90AEB ∠=o , F 为CE 上的点.(Ⅰ)求证://AD 平面BCE ; (Ⅱ)求证:AE ⊥BF .正(主)视图 侧(左)视图俯视图AEBCDF18.(本小题满分13分)已知三个点(0,0)A ,(4,0)B ,(3,1)C ,圆M 为△ABC 的外接圆. (Ⅰ)求圆M 的方程;(Ⅱ)设直线1y kx =-与圆M 交于,P Q两点,且PQ =k 的值.19.(本小题满分14分)在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面四边形ABCD 为直角梯形,//AD BC ,AD AB ⊥,2PA AD ==,1AB BC ==,Q 为PD 中点.(Ⅰ)求证:PD BQ ⊥;(Ⅱ)求直线BQ 与平面PCD 所成角的正弦值.20.(本小题满分14分)已知椭圆22:14x W y +=,直线l 过点(0,2)-与椭圆W 交于两点,A B ,O 为坐标原点.(Ⅰ)设C 为AB 的中点,当直线l 的斜率为32时,求线段OC 的长; (Ⅱ)当△OAB 面积等于1时,求直线l 的斜率.PAB CDQ21.(本小题满分13分)在如图所示的几何体中,四边形ABCD 是矩形,24AB BC ==,四边形CDEF 是等腰梯形,//EF DC ,2EF =,且平面ABCD ⊥平面CDEF ,AF CF ⊥. (Ⅰ)过BD 与AF 平行的平面与CF 交于点G . 求证:G 为CF 的中点; (Ⅱ)求二面角B AF D --的余弦值.22.(本小题满分13分)如图,曲线E 是由抛物线弧1E :x y 42=(203x ≤≤)与椭圆弧2E :12222=+by a x (a x ≤≤32)所围成的封闭曲线,且1E 与2E 有相同的焦点.(Ⅰ)求椭圆弧2E 的方程;(Ⅱ)设过点(1,0)F 的直线与曲线E 交于,A B 两点,1||r FA =,2||r FB =,且α=∠AFx (0α≤≤π),试用αcos 表示1r ;并求21r r的取值范围.ABCDE F G北京市西城区2014 — 2015学年度第一学期期末试卷高二数学(理科)参考答案及评分标准2015.1一、选择题:本大题共10小题,每小题4分,共40分.1.A2.D3.C4. D5. A6. B7.A8. C9.C 10. A 二、填空题:本大题共6小题,每小题5分,共30分.11. 2,20x x x ∀∈-≥R 12. 2- 13.38 14. 116. ②④ 注:16题,仅选出②或④得3分;错选得0分. 三、解答题:本大题共6小题,共80分. 17. (本小题满分13分)(Ⅰ)证明:因为四边形ABCD 为矩形,所以//AD BC . ………………2分 又因为BC ⊂平面BCE ,AD ⊄平面BCE ,………………4分所以//AD 平面BCE . ………………5分 (Ⅱ)证明:因为AD ⊥平面ABE ,BC AD //,所以BC ⊥平面ABE ,则BC AE ⊥ . ………………7分 又因为90AEB ∠=o,所以AE BE ⊥. ………………9分 所以AE ⊥平面BCE . ………………11分 又BF ⊂平面BCE ,所以AE BF ⊥. ………………13分 18. (本小题满分13分)(Ⅰ)设圆M 的方程为 220x y Dx Ey F ++++=, ………………1分因为点(0,0)A ,(4,0)B ,(3,1)C 在圆M 上,则2220,440,3130.F D F D E F =⎧⎪++=⎨⎪++++=⎩………………4分解得4D =-,2E =,0F =. ………………6分所以ABC ∆外接圆的方程为22420x y x y +-+=. ………………7分 (Ⅱ)由(Ⅰ)圆M 的圆心为(2,1)-AEBCDF又PQ =所以圆M 的圆心到直线1y kx =-的距离为2.………………9分 所以=………………11分 解得215k =. k =. ………………13分19. (本小题满分14分)(Ⅰ)证明:因为PA ⊥平面ABCD ,所以PA AB ⊥PA AD ⊥,又AD AB ⊥,如图,建立以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴的空间直角坐标系. ………………2分由已知,2PA AD ==,1AB BC ==,//AD BC所以,(0,0,0)A ,(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,0,2)P ………………4分又Q 为PD 中点,所以(0,1,1)Q . 所以(0,2,2)PD =-,(1,1,1)BQ =-, 所以0PD BQ ⋅=, ………………6分 所以PD BQ ⊥. ………………7分 (注:若第一问不用空间向量,则第一问4分) (Ⅱ)解:设平面PCD 的法向量为(,,)a b c =n ,则0PD ⋅=n ,0CD ⋅=n .又(1,1,0)CD =-,所以220b c a b -=⎧⎨-+=⎩, ………………9分令1c =,得1a b ==,所以(1,1,1)=n . ………………11分因此cos ,3BQ BQ BQ ⋅1〈〉===n n n, ………………13分 所以直线BQ 与平面PCD 所成角的正弦值为31. ………………14分 20.(本小题满分14分)解:(Ⅰ)当直线l 的斜率为32时,直线l 的方程为22y x 3=-. ………………1分 由222,214y x x y 3⎧=-⎪⎪⎨⎪+=⎪⎩ 得251260x x -+=, ………………2分 设11(,)A x y ,22(,)B x y ,00(,)C x y .则12125x x +=, ………………3分所以点C 的坐标065x =,0031225y x =-=-, ………………4分所以OC ==. ………………5分 (Ⅱ)设直线:2l y kx =-,由221,42x y y kx ⎧+=⎪⎨⎪=-⎩得22(14)16120k x kx +-+=, ………………6分 所以222(16)48(14)16(43)k k k ∆=-+=- ………………7分1221614k x x k +=+,1221214x x k =+. ………………8分AB ===. ………………10分原点O 到直线l的距离d =. ………………11分所以△OAB 面积为1122AB d ==. 因为△OAB 面积等于1,1=, ………………12分 解得k=, ………………13分带入判别式检验,符合题意,所以2k =±. ………………14分21. (本小题满分13分)(Ⅰ)证明:连接AC 交BD 于点H ,ABCD 为矩形,则H 为AC 中点,连接GH . ………………1分因为//AF 平面BDG ,平面ACF平面BDG GH =, ………………2分所以//AF HG . ………………3分 所以G 为CF 的中点. ………………4分 (Ⅱ)解:在平面CDEF 上作FO CD ⊥,垂足为O ,由于平面CDEF 为等腰梯形,所以1OC =, 因为且平面ABCD ⊥平面DCFE ,所以FO ⊥平面ABCD , ………………5分 在平面ABCD 中,作OM CD ⊥,交AB 于M , 所以FO OM ⊥,如图,以O 为原点建立空间直角坐标系O xyz -. ………………6分 则(2,3,0)A -,(2,1,0)B ,(0,1,0)C ,(0,3,0)D -. 设(0,0,)F h (0h >). 因为AF CF ⊥,所以0AF CF ⋅=,即(2,3,)(0,1,)0h h -⋅-=,所以2030h -+=,解得h =………………7分 设平面ABF 的法向量为(,,)a b c =n ,而(AF =-,(0,4,0)AB =,由0,0AF AB ⎧⋅=⎪⎨⋅=⎪⎩n n得230,40.a b b ⎧-++=⎪⎨=⎪⎩令2c =,解得a =0b =.所以(3,0,2)=n . (9)分由于(2,0,0)AD =-,(0,1CF =-, 所以0AD CF ⋅=,CF AD ⊥, 又CF AF ⊥,所以CF ⊥平面ADF ,所以CF 为平面ADF 的法向量, ………………11分cos ,CF 〈〉===n . ………………12分 由图知,二面角的平面角为钝角,所以二面角B AF D --的余弦值为7-. ………………13分22. (本小题满分13分)解:(Ⅰ)抛物线弧1E :x y 42=的焦点为(1,0),且23x =时,283y =, 所以2(3为椭圆上一点,又椭圆的焦点为(1,0),-(1,0), ………………2分 所以752433a ==+=. ………………3分 所以2a =,2213b a =-=, ………………4分 所以椭圆2E 的方程为22143x y +=(223x ≤≤). ………………5分 (Ⅱ)曲线E 由两部分曲线1E 和2E 组成,所以按A 在抛物线弧1E 或椭圆弧2E 上加以分类,由曲线E 的对称性,不妨设A 在x 轴上方(或x 轴上).当32=x 时,362±=y ,此时35=r ,51cos -=α; 当1cos 51≤≤-α时,A 在椭圆弧2E 上,由题设知)sin ,cos 1(11ααr r A +,将A 点坐标代入13422=+y x 得,012)sin (4)cos 1(32121=-++ααr r , 整理得09cos 6)cos 4(1212=-+-ααr r ,解得αcos 231+=r 或2cos 31-=αr (舍去). ………………6分当51cos 1-≤≤-α时,A 在抛物线弧1E 上,由抛物线定义可得αcos 211r r +=,所以αcos 121-=r , ………………7分综上,当51c o s 1-≤≤-α时,αcos 121-=r ;当1c o s 51≤≤-α时,αcos 231+=r .相应地,22(1cos(),sin())B r r αα++π+π,当1cos 15α≤≤时,B 在抛物线弧1E 上, 所以222cos()r r α=++π,221cos r α=+, ………………8分当11cos 5α-≤≤时,B 在椭圆弧2E 上,根据图形的对称性,232cos r α=-. ………………9分所以,当51cos 1-≤≤-α时A 在抛物线弧1E 上,B 在椭圆弧2E 上,]911,1[)cos 111(323cos 2cos 1221∈-+=-⋅-=αααr r ; ………………10分 当1cos 51≤≤α时A 在椭圆弧2E 上,B 在抛物线弧1E 上,]1,119[)cos 211(232cos 1cos 2321∈+-=+⋅+=αααr r ; ………………11分 当51cos 51<<-α时A 、B 在椭圆弧2E 上,)911,119(cos 2cos 23cos 2cos 2321∈+-=-⋅+=ααααr r ; ………………12分 综上,21r r 的取值范围是]911,119[. ………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学(理科)试卷 第 1 页(共 4 页)
2014年沈阳市高中二年级教学质量监测
数 学(理科)
命题:沈阳市第4中学 孙玉才 沈阳市第2中学 许世洲
沈阳市第9中学 付一博 沈阳市第38中学 王 磊
审题:沈阳市教育研究院 王恩宾 本试卷分第Ⅰ卷和第Ⅱ卷两部分. 第Ⅰ卷1至2页,第Ⅱ卷3到4页. 满分150分,考试时间120分钟.
注意事项:
1. 答题前,考生务必将自己的姓名、考号填写在答题卡上,并将条形码粘贴在答题卡指定区域.
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案标号. 第Ⅱ卷用黑色墨水签字笔在答题卡指定位置书写作答,在本试题卷上作答无效.
3. 考试结束后,考生将答题卡交回.
第Ⅰ卷(共60分)
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,
只有一项是符合题目要求的)
1.在等差数列{}n a 中,若252,5a a ==,则数列{}n a 的通项公式为 ( ) A .n a n =
B .2n a n =
C .1n a n =-
D .21n a n =-
2.若a b c ∈R ,,,则下列说法正确的是 ( )
A .若a b >,则a c b c -->
B .若a b >,则a b
c c
>
C .若ac bc <,则a b <
D .若a b >,则2
2
ac bc >
3.若抛物线y 2=4x 上的点A 到其焦点的距离是6,则点A 的横坐标是 ( ) A .5
B .6
C .7
D .8
4.若等差数列{}n a 的前n 项和为S n ,且S 3=6,a 1=4,则公差d 等于 ( )
高二数学(理科)试卷 第 2 页(共 4 页)
A .1
B .53
C .-2
D .3
5.若一个动点(),M x y 到两个定点()()125,0,5,0F F -的距离之差的绝对值等于8,则动 点M 的轨迹方程为 ( ) A .
2
2
19
16
x
y
-
= B .
2
2
116
9
x
y
+
=
C .
2
2
116
9
x
y
-
= D .
2
2
19
16
x
y
+
=
6.若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且2
2
2
2
a c
b b a =-+,则∠C=( )
A .
π6
B .
5π6
C .
π4
D .3π4
7.下列说法中,正确的是 ( ) A .当x >0且x ≠1时,1lg 2lg x x
+≥
B .当x >0时,12x x
+≥
C .当x ≥2时,x+
1x
的最小值为2 D .当0<x ≤2时,x-
1x
无最大值
8.已知(3,3,1)A ,(1,0,5)B ,则下面说法中,正确的个数是 ( )
(1)线段AB 的中点坐标为3232⎛⎫ ⎪⎝⎭
,,;
(2)线段AB 的长度为29; (3)到A ,B 两点的距离相等的点(,,)P x y z 的坐标,,x y z 满足46870x y z +-+=. A .0个
B .1个
C .2个
D .3个
9.若原点O ()0,0和点()1,1A 在直线x+y=a 的两侧,则实数a 的取值范围是 ( ) A .02a a <或> B .02a <<
C .02a a ==或
D .02a ≤≤
10.已知ABCD 是四面体,且O 为△BCD 内一点,则1()3
AO AB AC AD =++
是O 为
△BCD
的重心的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件
11.若θ是任意实数,则方程x 2+4y 2πcos 4θ+⎛
⎫ ⎪⎝⎭=1所表示的曲线一定不是 ( )
A .圆
B .双曲线
C .直线
D .抛物线
12.若3x ,2x+1,2x+4是钝角三角形的三条边,则实数x 的取值范围是 ( )
高二数学(理科)试卷 第 3 页(共 4 页)
A .{}|4x x >
B .{}
|10117x x >+
C .219|13
x x +<<
⎧⎫⎨⎬⎩
⎭
D .219|1101173
x x x +<<
>+⎧⎫⎨⎬⎩
⎭
或
第Ⅱ卷(共90分)
二、填空题(本大题共4小题,每小题5分,共20分)
13.顶点在原点,且过点(4,4)-的抛物线的标准方程是 . 14.将下列说法中,正确说法的序号填写在后面的横线上 .
①至少有一个整数x ,能使5x-1是整数; ②对于2
,440x x x ∀∈-+R ≥; ③a b =是a b =的充要条件;
④若命题:sin p y x =为周期函数;:sin q y x =为偶函数,则p q ∨为真命题. 15.在等差数列{}n a 中,当r s a a =()r s ≠时,{}n a 必定是常数数列. 然而在等比数列
{}n a 中,对某些正整数r 、s ()r s ≠,当r s a a =时,{}n a 可以不是常数列,写出非
常数数列{}n a 的一个通项公式 .
16.已知实数x ,y 满足302500x y x y y +-+-⎧⎪⎨⎪⎩
≥≤≥,则(
)2
2
1z x y =-+的最小值是 .
三、解答题(共6小题,满分 70分)
17.(本小题满分10分) 解关于x 的一元二次不等式()()()2
21142150x x x -+-++<.
18.(本小题满分12分)辽宁广播电视塔位于沈阳市沈河区青年公园西侧,蜿蜒的南运河
带状公园内,占地8000平方米.全塔分为塔座、塔身、塔楼和桅杆四部分. 某数学活动小组在青年公园的A 处测得塔顶B 处的仰角为45°,在地面上,沿着A 点与塔底
高二数学(理科)试卷 第 4 页(共 4 页)
中心C 处连成的直线行走129米后到达D 处(假设可以到达),此时测得塔顶B 处的仰角为60°.
(1)请你根据题意,画出一个ABCD 四点间的简单关系图形; (2)根据测量结果,计算辽宁广播电视塔的高度(精确到1米).
19.(本小题满分12分) 已知数列{}n a 的前n 项和n S 满足()112n n S k S +=++,又12a =,
21a =.
(1)求实数k 的值;
(2)问数列{}n a 是等比数列吗?若是,给出证明;若不是,说明理由; (3)求出数列{}n a 的前n 项和n S .
20.(本小题满分12分)已知函数2()f x x x
=+
的定义域为(0,)+∞.设点P 是函数图象上
的
任意一点,过点P 分别作直线y=x 和y 轴的垂线,垂足分别为M 、N. (1)求证:PM PN 是定值;
(2)判断并说明PM PN +有最大值还是最小值,并求出此最大值或最小值.
21.(本小题满分12分) 在正方体1111ABCD A B C D -中,,E F 分别1,BB CD 的中点.
(1)求证:11AE A FD ⊥平面;
(2)已知G 是靠近1C 的11A C 的四等分点,
求证:11EG A FD ∥平面.
高二数学(理科)试卷 第 5 页(共 4 页)
22.(本小题满分12分) 设椭圆的方程为()222
2
:
10x y E a b a
b
+
=>> ,斜率为1的直线不
经
过原点O ,而且与椭圆相交于,A B 两点,M 为线段AB 的中点.
(1)问:直线OM 与AB 能否垂直?若能,,a b 之间满足什么关系;若不能,说明
理由;
(2)已知M 为ON 的中点,且N 点在椭圆上.若π2
OAN ∠=
,求椭圆的离心率.。