高中物理--力学专题经典案例全解析

合集下载

高中物理二轮专题——弹簧模型(解析版)

高中物理二轮专题——弹簧模型(解析版)

高中物理第二轮专题——弹簧模型高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见。

由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高。

在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视。

弹簧类命题突破要点:1。

弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少。

弹性势能的公式E p=kx2,高考不作定量要求,该公式通常不能直接用来求弹簧的弹性势能,只可作定性讨论。

因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型。

由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。

高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结高考要求:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,倔强系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

高考 高中物理 力学专题 整体法和隔离法

高考 高中物理 力学专题 整体法和隔离法

专题整体法和隔离法一、静力学中的整体与隔离通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。

【例1】在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块()A.有摩擦力作用,摩擦力的方向水平向右B.有摩擦力作用,摩擦力的方向水平向左C.有摩擦力作用,但摩擦力的方向不能确定D.没有摩擦力的作用【例2】有一个直角支架 AOB,AO水平放置,表面粗糙,OB竖直向下,表面光滑,AO上套有小环P,OB上套有小环 Q,两环质量均为m,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。

现将P环向左移一小段距离,两环再次达到平衡,那么将移动后的平衡状态和原来的平衡状态比较,AO杆对P环的支持力N和细绳上的拉力T的变化情况是()A.N不变,T变大 B.N不变,T变小C.N变大,T变大 D.N变大,T变小【例3】如图所示,设A重10N,B重20N,A、B间的动摩擦因数为0.1,B与地面的摩擦因数为0.2.问:(1)至少对B向左施多大的力,才能使A、B发生相对滑动?(2)若A、B间μ1=0.4,B与地间μ2=0.l,则F多大才能产生相对滑动?【例4】将长方形均匀木块锯成如图所示的三部分,其中B、C两部分完全对称,现将三部分拼在一起放在粗糙水平面上,当用与木块左侧垂直的水平向右力F作用时,木块恰能向右匀速运动,且A与B、A与C均无相对滑动,图中的θ角及F为已知,求A与B之间的压力为多少?【例5】如图所示,在两块相同的竖直木板间,有质量均为m的四块相同的砖,用两个大小均为F的水平力压木板,使砖静止不动,则左边木板对第一块砖,第二块砖对第三块砖的摩擦力分别为A.4mg、2mg B.2mg、0 C.2mg、mg D.4mg、mg【例6】如图所示,两个完全相同的重为G的球,两球与水平地面间的动摩擦因市委都是μ,一根轻绳两端固接在两个球上,在A OBPQ绳的中点施加一个竖直向上的拉力,当绳被拉直后,两段绳间的夹角为θ。

高中物理——力学动态分析经典例题汇编

高中物理——力学动态分析经典例题汇编
高中物理——力学动态分析经典例题
众上所述,我们认为:我们的创意小屋计划或许虽然会有很多的挑战和困难,但我们会吸取和借鉴“漂亮女生”和“碧芝”的成功经验,在产品的质量和创意上多下工夫,使自己的产品能领导潮流,领导时尚。在它们还没有打入学校这个市场时,我们要巩固我们的学生市场,制作一些吸引学生,又有使学生能接受的价格,勇敢的面对它们的挑战,使自己立于不败之地。
为了解目前大学生ห้องสมุดไป่ตู้DIY手工艺品制作的消费情况,我们于己于人2004年3月22日下午利用下课时间在校园内进行了一次快速抽样调查。据调查本次调查人数共50人,并收回有效问卷50份。调查分析如下:
图1-5购物是对消费环境的要求分布
(一)创业机会分析
附件(一):(1)匀速提起重物时,地面对人的支持力就等于人对地面的压力,等于人的重力G1-重物G2=500N-300N=200N(2)匀速提起时重力应该等于人的拉力加上重物重力吧所以是600N因为是匀速提起所以受力平衡,所以这三个力可以组成一个直角三角形。Fab=600/根号3 N或者等于tan30° 600N Fbc=600/cos30°
400-500元1326%
300-400元1632%
8、你是如何得志DIY手工艺制品的?
此次调查以女生为主,男生只占很少比例,调查发现58%的学生月生活费基本在400元左右,其具体分布如(图1-1)
根本不知道□

(完整版)高中物理力学经典的题(含答案)

(完整版)高中物理力学经典的题(含答案)

高中物理力学计算题汇总经典精解(49题)1.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木)楔的摩擦力的大小和方向.(重力加速度取g=10/m·s22.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s内高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算:(1)飞机在竖直方向上产生的加速度多大?方向怎样?(2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2)(3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位?(注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅连为一体)3.宇航员在月球上自高h处以初速度v0水平抛出一小球,测出水平射程为L(地面平坦),已知月球半径为R,若在月球上发射一颗月球的卫星,它在月球表面附近环绕月球运行的周期是多少?4.把一个质量是2kg的物块放在水平面上,用12N的水平拉力使物体从静止开始运动,物块(1)2秒末物块的即时速度.(2)此后物块在水平面上还能滑行的最大距离.5.如图1-74所示,一个人用与水平方向成θ=30°角的斜向下的推力F推一个重G=200N的箱).求子匀速前进,箱子与地面间的动摩擦因数为μ=0.40(g=10m/s2(1)推力F的大小.(2)若人不改变推力F的大小,只把力的方向变为水平去推这个静止的箱子,推力作用时间t=3.0s后撤去,箱子最远运动多长距离?6.一网球运动员在离开网的距离为12m处沿水平方向发球,发球高度为2.4m,网的高度为0.9m.(1)若网球在网上0.1m处越过,求网球的初速度.(2)若按上述初速度发球,求该网球落地点到网的距离.取g=10/m·s2,不考虑空气阻力.7.在光滑的水平面内,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求:(1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的(2)质点经过P点时的速度.8.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力乙,试求拉力F.F,1s末后将拉力撤去.物体运动的v-t图象如图1-719.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少?10.如图1-72所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度)11.地球质量为M,半径为R,万有引力常量为G,发射一颗绕地球表面附近做圆周运动的人造卫星,卫星的速度称为第一宇宙速度.(1)试推导由上述各量表达的第一宇宙速度的计算式,要求写出推导依据.常量G=(2/3)×10-10N·m2/kg2,求地球质量(结果要求保留二位有效数字).12.如图1-75所示,质量2.0kg的小车放在光滑水平面上,在小车右端放一质量为1.0kg的物块,物块与小车之间的动摩擦因数为0.5,当物块与小车同时分别受到水平向左F1=6.0N的拉力和水平向右F2=9.0N的拉力,经0.4s同时撤去两力,为使物块不从小)车上滑下,求小车最少要多长.(g取10m/s213.如图1-76所示,带弧形轨道的小车放在上表面光滑的静止浮于水面的船上,车左端被固定在船上的物体挡住,小车的弧形轨道和水平部分在B点相切,且AB段光滑,BC段粗糙.现有一个离车的BC面高为h的木块由A点自静止滑下,最终停在车面上BC段的某处.已知木块、车、船的质量分别为m1=m,m2=2m,m3=3m;木块与车表面间的动摩擦因数μ=0.4,(设船足够长)水对船的阻力不计,求木块在BC面上滑行的距离s是多少?14.如图1-77所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球,今使手握的一端在水平桌面上做半径为R、角速度为ω的匀速圆周运动,且使绳始终与半径R的圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求:图1-77(1)小球做匀速圆周运动的线速度大小.(2)小球在运动过程中所受到的摩擦阻力的大小.15.如图1-78所示,长为L=0.50m的木板AB静止、固定在水平面上,在AB的左端面有一质量为M=0.48kg的小木块C(可视为质点),现有一质量为m=20g的子弹以v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因)数为μ=0.1.(g取10m/s2(1)求小木块C运动至AB右端面时的速度大小v2.(2)若将木板AB固定在以u=1.0m/s恒定速度向右运动的小车上(小车质量远大于小木块C的质量),小木块C仍放在木板AB的A端,子弹以v0′=76m/s的速度射向小木块C并留在小木块中,求小木块C运动至AB右端面的过程中小车向右运动的距离s.16.如图1-79所示,一质量M=2kg的长木板B静止于光滑水平面上,B的右边放有竖直挡板.现有一小物体A(可视为质点)质量m=1kg,以速度v0=6m/s从B的左端水平滑上B,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞时无机械能损失.图1-79(1)若B的右端距挡板s=4m,要使A最终不脱离B,则木板B的长度至少多长?(2)若B的右端距挡板s=0.5m,要使A最终不脱离B,则木板B的长度至少多长?17.如图1-80所示,长木板A右边固定着一个挡板,包括挡板在内的总质量为1.5M,静止在光滑的水平地面上.小木块B质量为M,从A的左端开始以初速度v0在A上滑动,滑到右端与挡板发生碰撞,已知碰撞过程时间极短,碰后木块B恰好滑到A的左端就停止滑动.已知B与A间的动摩擦因数为μ,B在A板上单程滑行长度为l.求:图1-80(1)若μl=3v02/160g,在B与挡板碰撞后的运动过程中,摩擦力对木板A做正功还是负功?做多少功?(2)讨论A和B在整个运动过程中,是否有可能在某一段时间里运动方向是向左的.如果不可能,说明理由;如果可能,求出发生这种情况的条件.18.在某市区内,一辆小汽车在平直的公路上以速度vA向东匀速行驶,一位观光游客正由南向北从班马线上横过马路.汽车司机发现前方有危险(游客正在D处)经0.7s作出反应,紧急刹车,但仍将正步行至B处的游客撞伤,该汽车最终在C处停下.为了清晰了解事故现场.现以图1-81示之:为了判断汽车司机是否超速行驶,警方派一警车以法定最高速度vm=14.0m/s行驶在同一马路的同一地段,在肇事汽车的起始制动点A紧急刹车,经31.5m后停下来.在事故现场测得=17.5m、=14.0m、=2.6m.问AB BC BD①该肇事汽车的初速度vA是多大?②游客横过马路的速度大小?(g取10m/s2)19.如图1-82所示,质量mA=10kg的物块A与质量mB=2kg的物块B放在倾角θ=30°的光滑斜面上处于静止状态,轻质弹簧一端与物块B连接,另一端与固定挡板连接,弹簧的劲度系数k=400N/m.现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速运动,已知力F在前0.2s内为变力,0.2s后为恒力,求(g取10m/s2)(1)力F的最大值与最小值;(2)力F由最小值达到最大值的过程中,物块A所增加的重力势能.20.如图1-83所示,滑块A、B的质量分别为m1与m2,m1<m2,由轻质弹簧相连接,置于水平的气垫导轨上.用一轻绳把两滑块拉至最近,使弹簧处于最大压缩状态后绑紧.两滑块一起以恒定的速度v0向右滑动.突然,轻绳断开.当弹簧伸长至本身的自然长度时,滑块A的速度正好为零.问在以后的运动过程中,滑块B是否会有速度等于零的时刻?试通过定量分析,证明你的结论.21.如图1-84所示,表面粗糙的圆盘以恒定角速度ω匀速转动,质量为m的物体与转轴间系有一轻质弹簧,已知弹簧的原长大于圆盘半径.弹簧的劲度系数为k,物体在距转轴R处恰好能随圆盘一起转动而无相对滑动,现将物体沿半径方向移动一小段距离,若移动后,物体仍能与圆盘?一起转动,且保持相对静止,则需要的条件是什么22.设人造地球卫星绕地球作匀速圆周运动,根据万有引力定律、牛顿运动定律及周期的概念,论述人造地球卫星随着轨道半径的增加,它的线速度变小,周期变大.23.一质点做匀加速直线运动,其加速度为a,某时刻通过A点,经时间T通过B点,发生的位移为s1,再经过时间T通过C点,又经过第三个时间T通过D点,在第三个时间T内发生的位移为s3,试利用匀变速直线运动公式证明:a=(s3-s1)/2T2.24.小车拖着纸带做直线运动,打点计时器在纸带上打下了一系列的点.如何根据纸带上的点证明小车在做匀变速运动?说出判断依据并作出相应的证明.25.如图1-80所示,质量为1kg的小物块以5m/s的初速度滑上一块原来静止在水平面上的木板,木板的质量为4kg.经过时间2s以后,物块从木板的另一端以1m/s相对地的速度滑出,在这一过程中木板的位移为0.5m,求木板与水平面间的动摩擦因数.图1-80图1-8126.如图1-81所示,在光滑地面上并排放两个相同的木块,长度皆为l=1.00m,在左边木块的最左端放一小金属块,它的质量等于一个木块的质量,开始小金属块以初速度v=2.00m/s向右滑动,金属块与木块之间的滑动摩擦因数μ=0.10,g取10m/s2,求:木块的最后速度.27.如图1-82所示,A、B两个物体靠在一起,放在光滑水平面上,它们的质量分别为mA=3kg、mB=6kg,今用水平力FA推A,用水平力FB拉B,FA和FB随时间变化的关到A、B脱离,它们的位移是多少?系是FA=9-2t(N),FB=3+2t(N).求从t=028.如图1-83所示,木块A、B靠拢置于光滑的水平地面上.A、B的质量分别是2kg、3kg,A的长度是0.5m,另一质量是1kg、可视为质点的滑块C以速度v0=3m/s沿水平方向滑到A上,C与A、B间的动摩擦因数都相等,已知C由A滑向B的速度是v=2m/s,求:(1)C与A、B之间的动摩擦因数;(2)C在B上相对B滑行多大距离?(3)C在B上滑行过程中,B滑行了多远?(4)C在A、B上共滑行了多长时间?29.如图1-84所示,一质量为m的滑块能在倾角为θ的斜面上以a=(gsinθ)/2匀加速下滑,若用一水平推力F作用于滑块,使之能静止在斜面上.求推力F的大小.30.如图1-85所示,AB和CD为两个对称斜面,其上部足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为120°,半径R=2.0m,一个质量为m=1kg的物体在离弧高度为h=3.0m处,以初速度4.0m/s沿斜面运动,若物体与两斜面间的动摩擦因数μ=0.2,重力加速度g=10m/s2,则(1)物体在斜面上(不包括圆弧部分)走过路程的最大值为多少?(2)试描述物体最终的运动情况.(3)物体对圆弧最低点的最大压力和最小压力分别为多少?31.如图1-86所示,一质量为500kg的木箱放在质量为2000kg的平板车的后部,木箱到驾驶室的距离L=1.6m,已知木箱与车板间的动摩擦因数μ=0.484,平板车在运动过程中所受阻力是车和箱总重的0.20倍,平板车以v0=22.0m/s恒定速度行驶,突然驾驶员刹车使车做匀减速运动,为使木箱不撞击驾驶室.g取1m/s2,试求:(1)从刹车开始到平板车完全停止至少要经过多长时间.(2)驾驶员刹车时的制动力不能超过多大.32.如图1-87所示,1、2两木块用绷直的细绳连接,放在水平面上,其质量分别为m1=1.0kg、m2=2.0kg,它们与水平面间的动摩擦因数均为μ=0.10.在t=0时开始用向右的水平拉力F=6.0N拉木块2和木块1同时开始运动,过一段时间细绳断开,到t=6.0s时1、2两木块相距Δs=22.0m(细绳长度可忽略),木块1早已停止.求此时木块2的动能.(g取10m/s2)33.如图1-88甲所示,质量为M、长L=1.0m、右端带有竖直挡板的木板B静止在光滑水平与右端挡板碰撞,最后恰好滑到木板B的左端,已知M/m=3,并设A与挡板碰撞时无机械能损失,碰撞时间可以忽略不计,g取10m/s2.求(1)A、B最后速度;(2)木块A与木板B之间的动摩擦因数.(3)木块A与木板B相碰前后木板B的速度,再在图1-88乙所给坐标中画出此过程中B相对地的v-t图线.图1-8834.两个物体质量分别为m1和m2,m1原来静止,m2以速度v0向右运动,如图1-89所示,它们同时开始受到大小相等、方向与v0相同的恒力F的作用,它们能不能在某一时刻达到相同的速度?说明判断的理由.图1-89图1-90图1-9135.如图1-90所示,ABC是光滑半圆形轨道,其直径AOC处于竖直方向,长为0.8m.半径OB处于水平方向.质量为m的小球自A点以初速度v水平射入,求:(1)欲使小球沿轨道运动,其水平初速度v的最小值是多少?(2)若小球的水平初速度v小于(1)中的最小值,小球有无可能经过B点?若能,求出水平初速度大小满足的条件,若不能,请说明理由.(g取10m/s2,小球和轨道相碰时无能量损失而不反弹)37.在光滑水平面上有一质量为0.2kg的小球,以5.0m/s的速度向前运动,与一个质量为0.3kg的静止的木块发生碰撞,假设碰撞后木块的速度为4.2m/s,试论证这种假设是否合理.38.如图1-91所示在光滑水平地面上,停着一辆玩具汽车,小车上的平台A是粗糙的,并靠在光滑的水平桌面旁,现有一质量为m的小物体C以速度v0沿水平桌面自左向右运动,滑过平台A后,恰能落在小车底面的前端B处,并粘合在一起,已知小车的质量为M,平台A离车底平面的高度OA=h,又OB=s,求:(1)物体C刚离开平台时,小车获得的速度;(2)物体与小车相互作用的过程中,系统损失的机械能.39.一质量M=2kg的长木板B静止于光滑水平面上,B的右端离竖直挡板0.5m,现有一小物体A(可视为质点)质量m=1kg,以一定速度v0从B的左端水平滑上B,如图1-92所示,已知A和B间的动摩擦因数μ=0.2,B与竖直挡板的碰撞时间极短,且碰撞前后速度大小不变.①若v0=2m/s,要使A最终不脱离B,则木板B的长度至少多长?②若v0=4m/s,要使A最终不脱离B,则木板B又至少有多长?(g取10m/s2)图1-92图1-9340.在光滑水平面上静置有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,动摩擦因数为μ,滑块CD上表面为光滑的1/4圆弧,它们紧靠在一起,如图1-93所示.一可视为质点的物块P质量也为m,它从木板AB右端以初速v0滑入,过B点时速度为v0/2,后又滑上滑块,最终恰好滑到最高点C处,求:(1)物块滑到B处时,木板的速度vAB;(2)木板的长度L;(3)物块滑到C处时滑块CD的动能.41.一平直长木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同间的动摩擦因数均为μ,A、B、C三者质量相等.①若A、B两小物块不发生碰撞,则由开始滑上C到静止在C上止,B通过的总路程是多大?经过的时间多长?②为使A、B两小物块不发生碰撞,长木板C的长度至少多大?图1-94图1-9542.在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与一轻弹簧固定相连,弹簧的另一端与小车左端固定连接,将弹簧压缩后用细线将m栓住,m静止在小车上的A点,如图1-95所示.设m与M间的动摩擦因数为μ,O点为弹簧原长位置,将细线烧断后,m、M开始运动.(1)当物体m位于O点左侧还是右侧,物体m的速度最大?简要说明理由.(2)若物体m达到最大速度v1时,物体m已相对小车移动了距离s.求此时M的速度v2和这一过程中弹簧释放的弹性势能Ep?(3)判断m与M的最终运动状态是静止、匀速运动还是相对往复运动?并简要说明理由.43.如图1-96所示,AOB是光滑水平轨道,BC是半径为R的光滑1/4圆弧轨道,两轨道恰好相切.质量为M的小木块静止在O点,一质量为m的小子弹以某一初速度水平向右射入小木块内,并留在其中和小木块一起运动,恰能到达圆弧最高点C(小木块和子弹均可看成质点).问:(1)子弹入射前的速度?(2)若每当小木块返回或停止在O点时,立即有相同的子弹射入小木块,并留在其中,则当第9颗子弹射入小木块后,小木块沿圆弧能上升的最大高度为多少?图1-96图1-9744.如图1-97所示,一辆质量m=2kg的平板车左端放有质量M=3kg的小滑块,滑块与平板车间的动摩擦因数μ=0.4.开始时平板车和滑块共同以v0=2m/s的速度在光滑水平面上向右运动,并与竖直墙壁发生碰撞,设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反,平板车足够长,以至滑块不会滑到平板车右端.(取g=10m/s2)求:(1)平板车第一次与墙壁碰撞后向左运动的最大距离.(2)平板车第二次与墙壁碰撞前瞬间的速度v.(3)为使滑块始终不会从平板车右端滑下,平板车至少多长?(M可当作质点处理)45.如图1-98所示,质量为0.3kg的小车静止在光滑轨道上,在它的下面挂一个质量为0.1kg的小球B,车旁有一支架被固定在轨道上,支架上O点悬挂一个质量仍为0.1kg的小球A,两球的球心至悬挂点的距离均为0.2m.当两球静止时刚好相切,两球心位于同一水平线上,两条悬线竖直并相互平行.若将A球向左拉到图中的虚线所示的位置后从静止释放,与B球发生碰撞,如果碰撞过程中无机械能损失,求碰撞后B球上升的最大高度和小车所能获得的最大速度.图1-98图1-9946.如图1-99所示,一条不可伸缩的轻绳长为l,一端用手握着,另一端系一个小球,今使手握的一端在水平桌面上做半径为r、角速度为ω的匀速圆周运动,且使绳始终与半径为r的圆相切,小球也将在同一水平面内做匀速圆周运动.若人手提供的功率恒为P,求:(1)小球做圆周运动的线速度大小;(2)小球在运动过程中所受到的摩擦阻力的大小.47.如图1-100所示,一个框架质量m1=200g,通过定滑轮用绳子挂在轻弹簧的一端,弹簧的另一端固定在墙上,当系统静止时,弹簧伸长了10cm,另有一粘性物体质量m2=200g,10m/s2,设弹簧右端一直没有碰到滑轮,不计滑轮摩擦,求框架向下移动的最大距离h多大?48.如图1-101所示,在光滑的水平面上,有两个质量都是M的小车A和B,两车之间用轻质弹簧相连,它们以共同的速度v0向右运动,另有一质量为m=M/2的粘性物体,从高处自由落下,正好落在A车上,并与之粘合在一起,求这以后的运动过程中,弹簧获得的最大弹性势能E.49.一轻弹簧直立在地面上,其劲度系数为k=400N/m,在弹簧的上端与盒子A连接在一起,盒子内装物体B,B的上下表面恰与盒子接触,如图1-102所示,A和B的质量mA=mB=1kg,g=10m/s2,不计阻力,先将A向上抬高使弹簧伸长5cm后从静止释放,A和B一起做上下方向的简谐运动,已知弹簧的弹性势能决定于弹簧的形变大小.(1)试求A的振幅;(2)试求B的最大速率;(3)试求在最高点和最低点A对B的作用力.参考解题过程与答案1.解:由匀加速运动的公式v2=v02+2as得物块沿斜面下滑的加速度为a=v2/2s=1.42/(2×1.4)=0.7ms-2,由于a<gsinθ=5ms-2,可知物块受到摩擦力的作用.图3分析物块受力,它受3个力,如图3.对于沿斜面的方向和垂直于斜面的方向,由牛顿定律有mgsinθ-f1=ma,mgcosθ-N1=0,分析木楔受力,它受5个力作用,如图3所示.对于水平方向,由牛顿定律有f2+f1cosθ-N1sinθ=0,由此可解得地面的作用于木楔的摩擦力f2=mgcosθsinθ-(mgsinθ-ma)cosθ=macosθ=1×0.7×(/2)=0.61N.此力的方向与图中所设的一致(由指向).2.解:(1)飞机原先是水平飞行的,由于垂直气流的作用,飞机在竖直方向上的运动可看成初速度为零的匀加速直线运动,根据h=(1/2)at2,得a=2h/t2,代入h=1700m,t=10s,得a=(2×1700/102)(m/s2)=34m/s2,方向竖直向下.(2)飞机在向下做加速运动的过程中,若乘客已系好安全带,使机上乘客产生加速度的力是向下重力和安全带拉力的合力.设乘客质量为m,安全带提供的竖直向下拉力为F,根据牛顿第二定律F+mg=ma,得安全带拉力F=m(a-g)=m(34-10)N=24m(N),∴安全带提供的拉力相当于乘客体重的倍数n=F/mg=24mN/m·10N=2.4(倍).(3)若乘客未系安全带,飞机向下的加速度为34m/s2,人向下加速度为10m/s2,飞机向下的加速度大于人的加速度,所以人对飞机将向上运动,会使头部受到严重伤害.3.解:设月球表面重力加速度为g,根据平抛运动规律,有h=(1/2)gt2,①水平射程为L=v0t,②联立①②得g=2hv02/L2.③根据牛顿第二定律,得mg=m(2π/T)2R,④联立③④得T=(πL/v0h).⑤4.解:前2秒内,有F-f=ma1,f=μN,N=mg,则a1=(F-μmg)/m=4m/s2,vt=a1t=8m/s,撤去F以后a2=f/m=2m/s,s=v12/2a2=16m.5.解:(1)用力斜向下推时,箱子匀速运动,则有Fcosθ=f,f=μN,N=G+Fsinθ,联立以上三式代数据,得F=1.2×102N.(2)若水平用力推箱子时,据牛顿第二定律,得F=ma,则有合F-μN=ma,N=G,联立解得a=2.0m/s2.v=at=2.0×3.0m/s=6.0m/s,s=(1/2)at2=(1/2)×2.0×3.02m/s=9.0m,推力停止作用后a′=f/m=4.0m/s2(方向向左),s′=v2/2a′=4.5m,则s总=s+s′=13.5m.6.解:根据题中说明,该运动员发球后,网球做平抛运动.以v表示初速度,H表示网球开始运动时离地面的高度(即发球高度),s1表示网球开始运动时与网的水平距离(即运动员离开网的距离),t1表示网球通过网上的时刻,h表示网球通过网上时离地面的高度,由平抛运动规律得到s1=vt1,H-h=(1/2)gt12,消去t1,得v=m/s,v≈23m/s.以t2表示网球落地的时刻,s2表示网球开始运动的地点与落地点的水平距离,s表示网球落地点与网的水平距离,由平抛运动规律得到H=(1/2)gt22,s2=vt2,消去t2,得s2≈16m,网球落地点到网的距离s=s2-s1≈4m.7.解:设经过时间t,物体到达P点(1)xP=v0t,yP=(1/2)(F/m)t2,xP/yP=ctg37°,联解得t=3s,x=30m,y=22.5m,坐标(30m,22.5m)(2)vy=(F/m)t=15m/s,tgα=vy/v0=15/10=3/2,∴α=arctg(3/2),α为v与水平方向的夹角.8.解:在0~1s内,由v-t图象,知a1=12m/s2,由牛顿第二定律,得F-μmgcosθ-mgsinθ=ma1,①在0~2s内,由v-t图象,知a2=-6m/s2,因为此时物体具有斜向上的初速度,故由牛顿第二定律,得-μmgcosθ-mgsinθ=ma2,②②式代入①式,得F=18N.9.解:在传送带的运行速率较小、传送时间较长时,物体从A到B需经历匀加速运动和匀速运动两个过程,设物体匀加速运动的时间为t1,则(v/2)t1+v(t-t1)=L,所以t1=2(vt-L)/v=(2×(2×6-10)/2)s=2s.为使物体从A至B所用时间最短,物体必须始终处于加速状态,由于物体与传送带之间的滑动摩t2,则(1/2)at22=L,t2=s.vmin=at2=m/s.传送带速度再增大1倍,物体仍做加速度为1m/s2的匀加速运动,从A至B的传送时间为4.5.10.解:启动前N1=mg,升到某高度时N2=(17/18)N1=(17/18)mg,对测试仪N2-mg′=ma=m(g/2),∴g′=(8/18)g=(4/9)g,GmM/R2=mg,GmM/(R+h)2=mg′,解得:h=(1/2)R.11.解:(1)设卫星质量为m,它在地球附近做圆周运动,半径可取为地球半径R,运动速度为v,有GMm/R2=mv2.(2)由(1)得:M=v2R/G==6.0×1024kg.12.解:对物块:F1-μmg=ma1,6-0.5×1×10=1·a1,a1=1.0m/s2,s1=(1/2)a1t2=(1/2)×1×0.42=0.08m,v1=a1t=1×0.4=0.4m/s,对小车:F2-μmg=Ma2,9-0.5×1×10=2a2,a2=2.0m/s2,s2=(1/2)a2t2=(1/2)×2×0.42=0.16m,v2=a2t=2×0.4=0.8m/s,撤去两力后,动量守恒,有Mv2-mv1=(M+m)v,v=0.4m/s(向右),∵((1/2)mv12+(1/2)Mv22)-(1/2)(m+M)v2=μmgs3,s3=0.096m,∴l=s1+s2+s3=0.336m.13.解:设木块到B时速度为v0,车与船的速度为v1,对木块、车、船系统,有m1gh=(m1v02/2)+((m2+m3)v12/2),m1v0=(m2+m3)v1,木块到B后,船以v1继续向左匀速运动,木块和车最终以共同速度v2向右运动,对木块和车系统,有m1v0-m2v1=(m1+m2)v2,μm1gs=((m1v02/2)+(m2v12/2))-((m1+m2)v22/2),得v2=v12h.14.解:(1)小球的角速度与手转动的角速度必定相等均为ω.设小球做圆周运动的半径为.(2)设手对绳的拉力为F,手的线速度为v,由功率公式得P=Fv=F·ωR,∴F=P/ωR.小球的受力情况如图4所示,因为小球做匀速圆周运动,所以切向合力为零,即.15.解:(1)用v1表示子弹射入木块C后两者的共同速度,由于子弹射入木块C时间极短,系统动量守恒,有mv0=(m+M)v1,∴v1=mv0/(m+M)=3m/s,子弹和木块C在AB木板上滑动,由动能定理得:(1/2)(m+M)v22-(1/2)(m+M)v12=-μ(m+M)gL,解得v2(2)用v′表示子弹射入木块C后两者的共同速度,由动量守恒定律,得mv0′+Mu=(m+M)v1′,解得v1′=4m/s.木块C及子弹在AB木板表面上做匀减速运动a=μg.设木块C和子弹滑至AB板右端的时间由于m车≥(m+M),故小车及木块AB仍做匀速直线运动,小车及木板AB的位移s=ut,由图5可知:s1=s+L,联立以上四式并代入数据得:t2-6t+1=0,解得:t=(3-3+)s不合题意舍去), (11)∴s=ut=0.18m.16.解:(1)设A滑上B后达到共同速度前并未碰到档板,则根据动量守恒定律得它们的共同速度为v,有图5mv0=(M+m)v,解得v=2m/s,在这一过程中,B的位移为sB=vB2/2aB且aB=μmg/M,解得sB=Mv2/2μmg=2×22/2×0.2×1×10=2m.设这一过程中,A、B的相对位移为s1,根据系统的动能定理,得μmgs1=(1/2)mv02-(1/2)(M+m)v2,解得s1=6m.当s=4m时,A、B达到共同速度v=2m/s后再匀速向前运动2m碰到挡板,B碰到竖直挡板后,根据动量守恒定律得A、B最后相对静止时的速度为v′,则Mv-mv=(M+m)v′,解得v′=(2/3)m/s.在这一过程中,A、B的相对位移为s2,根据系统的动能定理,得μmgs2=(1/2)(M+m)v2-(1/2)(M+m)v′2,解得s2=2.67m.因此,A、B最终不脱离的木板最小长度为s1+s2=8.67m(2)因B离竖直档板的距离s=0.5m<2m,所以碰到档板时,A、B未达到相对静止,此时B的速度vB为。

《高中物理力学课件-简易桥梁结构分析》

《高中物理力学课件-简易桥梁结构分析》

桥梁荷载的种类
自重
桥梁本身的重量。
活荷载
移动车辆、行人和设备施工等引 起的荷载。
恒荷载
道路表层、人行道、护栏等固定 的荷载。
荷载分析方法
1
静力分析
采用静力学原理分析桥梁对各个荷载的受力
有限元分析
2
及其影响。
通过将桥梁划分为有限数量的元素,使用数
值分析方法进行力学计算。
3
数字模拟
使用计算机模拟桥梁在不同荷载下的响应和 变形。
桥梁结构的荷载计算
弯矩计算
通过计算弯矩来确定桥梁不同部分 的受力情况。
荷载分布
荷载抗力
计算各个桥墩和支撑点的荷载分布。 确定荷载对桥梁的破坏影响和抗力 需求。
桥面板的受力分析
压力分析
分析桥面板受到的压力分布情况。
裂缝分析
预测桥面板在荷载下的裂缝形成情况。
弯曲分析
计算桥面板在施加荷载时的弯曲程度。
优化桥梁的设计,提高结构 稳定性和荷载承载能力。
在满足设计要求的前提下, 控制桥梁建设和维护的成本。
实例分析:某桥梁结构的设计 演示
通过实例演示一座具体桥梁结构的设计过程,包括荷载分析、受力分析和设 计优化。帮助学生更好地理解和应用桥梁结构的知识。
高中物理力学课件—简易 桥梁结构分析
本课件将介绍桥梁结构的分类和主要力学问题,解释荷载分析方法,讲解桥 梁结构的荷载计算,以及各个部分的受力分析和设计优化。通过实例演示, 帮助您更好地理解桥梁的结构和原理。
桥梁结构的分类
梁桥
由梁和支座构成,承受跨越水沟或峡谷的载荷。
悬索桥
通过悬杆或钢缆悬挂桥面,支撑跨越较大距离的桥 梁。
3
结构设计

高中物理-专题2.22 受力分析(解析版)

2021年高考物理100考点最新模拟题千题精练第二部分相互作用专题2.22.受力分析一.选择题1. (2020安徽合肥一模)图示装置为阅读时使用的角度可调支架,现将一本书放在倾斜支架上,书始终保持静止。

关于该书受力情况,下列说法正确的是A.可能受两个力B.可能受三个力C.一定受摩擦力D.支架下边缘对书一定有弹力【参考答案】B【名师解析】。

由题意可知,物体受到重力和弹力作用,由于当物体沿斜面向下的分力作用,所以物体必然受到一个沿斜面向上的力,以期维持平衡,这个力可时摩擦力,也可以是支架下边缘对书弹力,也可以是摩擦力和支架下边缘对书弹力的合力。

故可能受三个力,四个力作用。

A错B对;.由于当物体沿斜面向下的分力作用与支架下边缘对书弹力相等时,此时摩擦力不存在,C错;.由于当物体沿斜面向下的分力作用,与向上的摩擦力相等时,则支架下边缘对书弹力不存在。

2. (2020浙江七彩阳光名校联盟模拟)平衡艺术家在不使用任何工具的情况下,仅靠大自然重力就能将形状各异的石头叠在一起,赢得了无数惊叹声。

某次一平衡艺术家将石块A、B、C从上到下依次叠放在一块大石头上,并使它们始终保持静止,整个环境处于无风状态,则()A. 石块A对B的压力就是A的重力B. 石块B受力的个数不可能超过4个C. 石块C对石块B的作用力竖直向上D. 石块C对石块B的作用力大小是石块B对石块A作用力大小的两倍【参考答案】.C【命题意图】本题以叠放的ABC石块为情景,考查受力分析、物体平衡、牛顿第三定律及其相关知识点,考查的核心素养是受力分析。

【解题思路】隔离石块A分析受力,由平衡条件可得,B对A的支持力和摩擦力之和等于A的重力,由牛顿第三定律可知石块A对B的压力合摩擦力之和等于A的重力,由于重力和压力是两种不同性质的力,两力的施力物体和受力物体都不相同,所以不能说石块A对B的压力就是A的重力,选项A错误;隔离石块B分析受力,石块B除受到重力、石块C的支持力、石块B的压力外,由于接触面不是水平,所以石块B还受到石块C对B的摩擦力、石块A对B的摩擦力,所以石块B受力个数超过了4个,达到5个,选项B错误;把AB两石块看作整体,受到竖直向下的重力、C对B竖直向上的作用力(石块C对石块B 支持力和摩擦力的合力),选项C正确;根据牛顿第三定律,石块C对石块B的作用力与石块B对石块C 的作用力是作用力和反作用力,大小相等,选项D错误。

高三物理力学典型例题解析PPT31页

高三物理力学典型例题解析
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对韧勤 勉。
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭

高中物理二轮教学案:第二板块-力学(计算题)(,含解析)

第10讲 |应用“动力学观点”破解力学计算题[考法·学法]考查点一 匀变速直线运动规律的应用题点(一) 多过程运动1.运动学公式中正、负号的规定直线运动可以用正、负号表示矢量的方向,一般情况下,我们规定初速度v 0的方向为正方向,与初速度同向的物理量取正值,反向的物理量取负值,当v 0=0时,一般以加速度a 的方向为正方向。

2.多过程问题如果一个物体的运动包含几个阶段,就要分段分析,各段交接处的速度往往是连接各段的纽带,应注意分析各段的运动性质。

[例1] 甲、乙两人在某一直道上完成200 m 的赛跑,他们同时、同地由静止开始运动,都经过4 s 的匀加速,甲的爆发力比乙强,加速过程甲跑了20 m 、乙跑了18 m ;然后都将做一段时间的匀速运动,乙的耐力比甲强,匀速持续时间甲为10 s 、乙为13 s ,因为体力、毅力的原因,他们都将做匀减速运动的调节,调节时间都为2 s ,且速度都降为8 m/s ,最后冲刺阶段以8 m/s 的速度匀速达到终点。

求:(1)甲做匀减速运动的加速度; (2)甲冲刺阶段完成的位移大小。

[解析] (1)在匀加速过程,设甲的位移为x 1,所用的时间为t 1,达到的末速度为v 1, 由x 1=v 1t 12,解得v 1=10 m/s ;甲做匀减速运动的末速度为v 2,匀减速运动的加速度为a 2,由a 2=v 2-v 1Δt得a 2=-1 m/s 2。

(2)甲匀速运动的位移:x 2=v 1t 2=10×10 m =100 m甲匀减速的位移:x 3=v 1+v 22Δt解得x 3=18 m最后甲冲刺的位移为:x 4=200 m -(x 1+x 2+x 3)=200 m -(20+100+18)m =62 m 。

[答案] (1)-1 m/s 2 (2)62 m题点(二) 自由落体运动与竖直上抛运动 1.竖直上抛运动的两种研究方法(1)分段法:将全程分为两个阶段,即上升过程的匀减速阶段和下落过程的自由落体阶段。

高中物理力学竞赛辅导资料专题04受力分析含解析

专题04 受力分析一、平衡状态下的受力分析1.L 形木板P (上表面光滑)放在固定斜面上,轻质弹簧一端固定在木板上,另一端与置于木板上表面的滑块Q 相连,如图1所示.若P 、Q 一起沿斜面匀速下滑,不计空气阻力.则木板P 的受力个数为( )图1A .3B .4C .5D .6【解析】选C 在它们一起沿斜面匀速下滑的过程中,弹簧对Q 必然有弹力,再选木板P 为研究对象,它受到重力、斜面的支持力、斜面的摩擦力、Q 对它的压力及弹簧对它的向下的弹力5个力的作用.2.如图2所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g ,若接触面间的摩擦力忽略不计,则石块侧面所受弹力的大小为( )图2A .mg2sin α B .mg2cos α C .12mg tan αD .12mg cot α【解析】选A 楔形石块受力如图.将弹力沿水平方向和竖直方向分解,由竖直方向受力平衡可得mg =2F cos(90°-α),解得F =mg 2cos 90°-α=mg2sin α,故本题答案为A.3.如图,两个轻环a 和b 套在位于竖直面内的一段固定圆弧上;一细线穿过两轻环,其两端各系一质量为m 的小球.在a 和b 之间的细线上悬挂一小物块.平衡时,a 、b 间的距离恰好等于圆弧的半径.不计所有摩擦.小物块的质量为( )A.m2 B.32m C .m D .2m【解析】如图所示,圆弧的圆心为O ,悬挂小物块的点为c ,由于ab =R ,则△aOb 为等边三角形,同一条细线上的拉力相等,T =mg ,合力沿aO 方向,则aO 为角平分线,由几何关系知,∠acb =120°,故绳的拉力的合力与物块的重力大小相等,即每条线上的拉力T =G =mg ,所以小物块质量为m ,故C 对.]4.如图,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A (A 、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑.已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力.A 与B 的质量之比为( )A.1μ1μ2B.1-μ1μ2μ1μ2 C.1+μ1μ2μ1μ2 D.2+μ1μ2μ1μ2【解析】 B 对物体A 、B 整体在水平方向上有F =μ2(m A +m B )g ;对物体B 在竖直方向上有μ1F =m B g ;联立解得:m A m B =1-μ1μ2μ1μ2,选项B 正确.5.如图所示,斜面体A 上的物块P ,用平行于斜面体的轻弹簧拴接在挡板B 上,在物块P 上施加水平向右的推力F ,整个系统处于静止状态,下列说法正确的是( )A .物块P 与斜面之间一定存在摩擦力B .轻弹簧一定被拉长C .地面对斜面体A 一定存在摩擦力D .若增大推力F ,则弹簧弹力一定减小【解析】C 若物块P 受到弹簧的弹力与物块的重力及推力F 、支持力平衡,则不受摩擦力,选项A 错误;若物块P 受到支持力与物块的重力及推力F 三力平衡,则无弹簧弹力,选项B 错误;物块P 、斜面A 及弹簧相对静止,可看成一整体,受到的水平面的摩擦力等于推力F,选项C正确;增大推力F,根据此时静摩擦力的特点,即f≤f m,判断弹簧弹力减小、不变或者增大都有可能,选项D错误.6.如图所示,a、b两个小球穿在一根光滑的固定杆上,并且通过一条细绳跨过定滑轮连接.已知b球质量为m,杆与水平面成θ角,不计所有摩擦,重力加速度为g.当两球静止时,Oa段绳与杆的夹角也为θ,Ob段绳沿竖直方向,则下列说法正确的是( )A.a可能受到2个力的作用B.b可能受到3个力的作用C.绳子对a的拉力等于mgD.a的重力为mg tan θ【解析】C 对a、b受力分析可知,a一定受3个力,b一定受2个力作用,选项A、B错误;对b受力分析可知,b受绳子拉力等于mg,因此绳子对a的拉力等于mg,选项C正确;对a受力分析,G a sin θ=mg cos θ,可得:G a=mgtan θ,选项D错误.7.如图所示,水平桌面上平放有一堆卡片,每一张卡片的质量均为m.用一手指以竖直向下的力压第1张卡片,并以一定速度向右移动手指,确保第1张卡片与第2张卡片之间有相对滑动.设最大静摩擦力与滑动摩擦力相同,手指与第1张卡片之间的动摩擦因数为μ1,卡片之间、卡片与桌面之间的动摩擦因数均为μ2,且有μ1>μ2,则下列说法正确的是( )A.任意两张卡片之间均可能发生相对滑动B.上一张卡片受到下一张卡片的摩擦力一定向左C.第1张卡片受到手指的摩擦力向左D.最后一张卡片受到水平桌面的摩擦力向右【解析】B[对第一张卡片而言,手指对第一张卡片的滑动摩擦力为μ1F,由于与第二张之间有相对滑动,则μ2(F+mg)>μ1F;则对第二张卡片而言,第一张卡片对第二张卡片的静摩擦力为μ2(F+mg),而下一张卡片对第二张卡片的最大静摩擦力为μ2(F+2mg)>μ2(F+mg)成立,可知第二张卡片也不会产生滑动,以此类推,故任意两张卡片之间均不可能发生相对滑动,选项A 错误;对任意一张卡片来说,上表面受到的静摩擦力向右,下表面受到的下一张的静摩擦力向左,选项B 正确;第1张卡片受到手指的摩擦力向右,选项C 错误;最后一张卡片受到水平桌面的摩擦力向左,选项D 错误.8. (多选)如图甲、乙所示,一物块在粗糙斜面上,在平行斜面向上的外力F 的作用下,斜面和物块始终处于静止状态.当外力F 按照图乙的规律变化时,下列说法中正确的是( )A .地面对斜面的摩擦力逐渐减小B .地面对斜面的摩擦力逐渐增大C .物块对斜面的摩擦力可能一直增大D .物块对斜面的摩擦力可能一直减小【解析】AC 将两者看做一个整体,整体受到重力,支持力,拉力和地面的摩擦力,因为两物体始终处于静止状态,所以合力为零,故有f =F cos θ,当F 逐渐减小时,地面对斜面的摩擦力在减小,A 正确,B 错误;隔离小物块,若拉力的最大值大于重力平行斜面的分力,静摩擦力沿着斜面向下,则:F -f -mg sin θ=0,故拉力减小后,静摩擦力先减小后反向增加;若拉力的最大值小于重力的平行斜面的分力,静摩擦力沿着斜面向上,则:F +f -mg sin θ=0,故拉力减小后,静摩擦力一直增大,故C 正确,D 错误.9.如图所示,质量为m 的物体A 静止在倾角为θ=30°、质量为M 的斜面体B 上.现用水平力F 推物体A ,在F 由零增大至3mg 再逐渐减为零的过程中,A 和B 始终保持静止.对此过程下列说法正确的是( )A .地面对B 的支持力大于(M +m )gB .A 对B 的压力的最小值为32mg ,最大值为334mgC .A 受到摩擦力的最小值为0,最大值为14mg D .A 受到摩擦力的最小值为0,最大值为mg【解析】D 对A 、B 整体应用平衡条件可得地面对B 的支持力等于(M +m )g ,A 项错;对A 受力分析如图所示.当F=0时,A对B的压力最小,如图(1)为F N1=mg cos θ=32mg,当F=3mg,A对B的压力最大,如图(2)为F N2=mg cos 30°+3mg sin 30°=3mg,B项错;当F cos 30°=mg sin 30°,即F=33mg(在0~3mg之间)时,A受的静摩擦力为零,当F=3mg时,如图(2),由平衡条件得:摩擦力F f=F cos 30°-mg sin 30°=mg,最大,故C项错,D项正确.10.如图所示,斜面放置于粗糙水平地面上,物块A通过跨过光滑定滑轮的轻质细绳与物块B连接,系统处于静止状态,现对B施加一水平力F使B缓慢地运动,使绳子偏离竖直方向一个角度(A与斜面均保持静止),在此过程中( )A.斜面对物块A的摩擦力一直增大B.绳对滑轮的作用力不变C.地面对斜面的摩擦力一直增大D.地面对斜面的支持力一直增大【解析】C 因为物块A一直保持静止,沿平行于斜面方向受到的静摩擦力和重力沿斜面向下的分力,以及绳子的拉力,三者大小关系不能确定,所以无法判断静摩擦力的变化,A错误;设细绳与竖直方向夹角为α,则有:F=mg tan α;因为过程中α在增大,所以拉力在增大,因为滑轮受到两端绳子的压力,而绳拉力的大小在变化,所以绳子对滑轮的作用力也在变化,B错误;将A、B和斜面体看做一个整体,整体在水平方向上受到拉力F和地面给的摩擦力,拉力在增大,所以摩擦力在增大,C正确;整体在竖直方向上只受重力和支持力,所以地面对斜面的支持力不变,D错误.11.(多选)如图3所示,甲、乙两物体用压缩的轻质弹簧连接静置于倾角为θ的粗糙斜面体上,斜面体始终保持静止,则下列判断正确的是( )图3A.物体甲一定受到4个力的作用B.物体甲所受的摩擦力方向一定沿斜面向下C.物体乙所受的摩擦力不可能为零D.水平面对斜面体无摩擦力作用【解析】CD 若压缩的弹簧对甲向上的弹力大小恰好等于m甲g sin θ,则甲只受三个力作用,A、B错误;因弹簧对乙有沿斜面向下的弹力,乙的重力也有沿斜面向下的分力,故乙一定具有向下运动的趋势,乙一定受沿斜面向上的摩擦力作用,C正确;取甲、乙和斜面为一整体分析受力,由水平方向合力为零可得,水平面对斜面体无摩擦力作用,D正确.12.如图4所示,一个半球形的碗放在桌面上,碗口水平,O点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m1和m2的小球.当它们处于平衡状态时,质量为m1的小球与O点的连线与水平线的夹角为α=90°,质量为m2的小球位于水平地面上,设此时质量为m2的小球对地面压力大小为F N,细线的拉力大小为F T,则( )图4A.F N=(m2-m1)g B.F N=m2gC.F T=22m1g D.F T=(m2-22m1)g【解析】选B 分析小球m1的受力情况,由物体的平衡条件可得,绳的拉力F T=0,故C、D均错误;分析m2受力,由平衡条件可得:F N=m2g,故A错误,B正确.13.如图5所示,a、b两个质量相同的球用线连接,a球用线挂在天花板上,b球放在光滑斜面上,系统保持静止(线的质量不计),以下图示哪个是正确的( )图5【解析】选B 把a、b两个质量相同的球看作整体,所受重力竖直向下,所受斜面支持力垂直斜面向上,根据平衡条件,要使系统保持静止,悬挂在天花板上的细线应斜向右上方,但A图中小球a、b不可能处于平衡状态,故只有B图示正确.14.如图6,一不可伸长的光滑轻绳,其左端固定于O点,右端跨过位于O′点的固定光滑轴悬挂一质量为M 的物体;OO′段水平,长度为L;绳上套一可沿绳滑动的轻环.现在轻环上悬挂一钩码,平衡后,物体上升L.则钩码的质量为( )图6A.22M B.32MC.2MD.3M【解析】选D 平衡后,物体上升L,说明环下移后将绳子拉过来的长度为L,取环重新平衡的位置为A点,则OA=O′A=L,由图可得mg=3Mg,选项D正确.15.如图7所示,滑轮本身的质量可忽略不计,滑轮轴O安在一根轻木杆B上,一根轻绳AC绕过滑轮,A端固定在墙上,且绳保持水平,C端挂一重物,BO与竖直方向夹角θ=45°,系统保持平衡.若保持滑轮的位置不变,改变夹角θ的大小,则滑轮受到木杆作用力大小变化情况是( )图7A.只有角θ变小,作用力才变大B.只有角θ变大,作用力才变大C.不论角θ变大或变小,作用力都是变大D.不论角θ变大或变小,作用力都不变【解析】D 由于两侧细绳中拉力不变,若保持滑轮的位置不变,则滑轮受到木杆作用力大小不变,与夹角θ没有关系,选项D 正确,A 、B 、C 错误.16.如图8所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m 的小球.下列关于斜杆对小球的作用力F 的判断中,正确的是( )图8A .小车静止时,F =mg sin θ,方向沿杆向上B .小车静止时,F =mg cos θ,方向垂直于杆向上C .小车向右匀速运动时,一定有F =mg ,方向竖直向上D .小车向右匀加速运动时,一定有F >mg ,方向一定沿杆向上【解析】小车静止或匀速向右运动时,小球的加速度为零,合力为零,由平衡条件可得,杆对球的作用力竖直向上,大小为F =mg ,故A 、B 错误,C 正确;若小车向右匀加速运动,小球的合力沿水平方向向右,由牛顿第二定律可得:F y =mg ,F x =ma ,F >mg ,tan α=F x F y =ag ,当a 的取值合适时,α可以等于θ,但不一定相等,故D 错误.17.如图9所示,一重为10 N 的球固定在支杆AB 的上端,用一段绳子水平拉球,使杆发生弯曲,已知绳的拉力为7.5 N,则AB 杆对球的作用力( )图9A 大小为7.5 NB .大小为10 NC .方向与水平方向成53°角斜向右下方D .方向与水平方向成53°角斜向左上方【解析】D 对小球进行受力分析可得,AB 杆对球的作用力、绳子对球的拉力的合力,与小球重力等值反向,令AB 杆对小球的作用力与水平方向夹角为α,可得:tan α=G F 拉=43,α=53°,故D 项正确.18.如图所示,与水平面夹角为30°的固定斜面上有一质量m =1.0 kg 的物体.细绳的一端与物体相连.另一端经摩擦不计的定滑轮与固定的弹簧秤相连.物体静止在斜面上,弹簧秤的示数为4.9 N.关于物体受力的判断(取g=9.8 m/s2).下列说法正确的是( )A.斜面对物体的摩擦力大小为零B.斜面对物体的摩擦力大小为4.9 N,方向沿斜面向上C.斜面对物体的支持力大小为4.9 3 N,方向竖直向上D.斜面对物体的支持力大小为4.9 N,方向垂直斜面向上【解析】因物体的重力沿斜面方向的分力mg sin 30°=1×9.8×0.5 N=4.9 N,与弹簧秤的示数相等,故斜面对物体的摩擦力大小为0,则选项A正确,选项B错误;斜面对物体的支持力大小为mg cos 30°=1×9.8×32 N=4.93 N,方向垂直斜面向上,则选项C、D错误.19.如图所示,质量分别为m1、m2的两个物体通过轻弹簧连接,在力F的作用下一起沿水平方向做匀速直线运动(m1在地面,m2在空中),力F与水平方向成θ角.则m1所受支持力N和摩擦力f正确的是( )A.N=m1g+m2g-F sinθB.N=m1g+m2g-F cosθC.f=F cosθD.f=F sinθ【解析】本题考查整体法和隔离法及受力分析、物体平衡条件应用等知识点,意在考查考生对新情景的分析能力和综合运用知识的能力.把两个物体看做一个整体,由两个物体一起沿水平方向做匀速直线运动可知水平方向f=F cosθ,选项C正确,D错误;设轻弹簧中弹力为F1,弹簧方向与水平方向的夹角为α,隔离m2,分析受力,由平衡条件知,在竖直方向有,F sinθ=m2g+F1sinα,隔离m1,分析受力,由平衡条件知,在竖直方向有,m1g=N+F1sinα,联立解得,N=m1g+m2g-F sinθ,选项A正确,B错误.20. 如图,光滑的四分之一圆弧轨道AB固定在竖直平面内,A端与水平面相切.穿在轨道上的小球在拉力F作用下,缓慢地由A向B运动,F始终沿轨道的切线方向,轨道对球的弹力为N.在运动过程中( )A.F增大,N减小 B.F减小,N减小C.F增大,N增大 D.F减小,N增大【解析】选A 小球一直受到重力、支持力、拉力作用,根据共点力平衡,有:F=mg sin α,N=mg cos α(α是小球转过的角度),随着夹角的增大,支持力逐渐减小,拉力逐渐增大,A项正确.21.如图,一不可伸长的光滑轻绳,其左端固定于O点,右端跨过位于O′点的固定光滑轴悬挂一质量为M的物体;OO′段水平,长度为L;绳上套一可沿绳滑动的轻环.现在轻环上悬挂一钩码,平衡后,物体上升L.则钩码的质量为( )A.22M B.32MC.2MD.3M【解析】选D 平衡后,物体上升L,说明环下移后,将绳子拉过来的长度为L,取环重新平衡的位置为A点,则OA=O′A=L,由图可得mg=3Mg,选项D正确.22.如图,在固定斜面上的一物块受到一外力F的作用,F平行于斜面向上.若要物块在斜面上保持静止,F的取值应有一定范围,已知其最大值和最小值分别为F1和F2(F2>0).由此可求出( )A.物块的质量B.斜面的倾角C.物块与斜面间的最大静摩擦力C.物块对斜面的正压力【解析】选C 本题考查受力分析、力的分解、摩擦力、平衡条件及其相关知识,意在考查考生分析解决问题的能力.设斜面倾角为θ,斜面对物块的最大静摩擦力为f.平行于斜面的外力F取最大值F1时,最大静摩擦力f方向沿斜面向下,由平衡条件可得:F1=f+mg sin θ;平行于斜面的外力F取最小值F2时,最大静摩擦力f方向沿斜面向上,由平衡条件可得:f+F2=mg sin θ;联立解得物块与斜面间的最大静摩擦力f=(F1-F2)/2,选项C正确.23.如图所示,用完全相同的轻弹簧A、B、C将两个相同的小球连接并悬挂,小球处于静止状态,弹簧A与竖直方向的夹角为30°,弹簧C水平,则弹簧A、C的伸长量之比为( )A.3∶4 B.4∶ 3C.1∶2 D.2∶1【解析】选D 本题考查共点力平衡问题,意在考查考生利用整体法处理平衡问题的能力.将两小球及弹簧B 视为一个整体系统,该系统水平方向受力平衡,故有kΔx A sin 30°=kΔx C,可得Δx A∶Δx C=2∶1,D项正确. 24.如图,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为N1,球对木板的压力大小为N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中( )A.N1始终减小,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大【解析】对小球受力分析,如图所示.根据物体的平衡条件,可将三个力构建成矢量三角形,随着木板顺时针缓慢转到水平位置,球对木板的压力大小N2逐渐减小,墙面对球的压力大小N1逐渐减小,故B对.25.如图所示,半圆形槽半径R=30 cm,质量m=1 kg的小物块在沿半径方向的轻弹簧挤压下处于静止状态.已知弹簧的劲度系数k=50 N/m,自由长度L=40 cm,一端固定在圆心O处,弹簧与竖直方向的夹角为37°.取g=10 m/s2,sin 37°=0.6,cos 37°=0.8.则()A.物块对槽的压力大小是15 NB.物块对槽的压力大小是13 NC.槽对物块的摩擦力大小是6 ND.槽对物块的摩擦力大小是8 N【解析】物块受重力mg、支持力N、弹簧的弹力F、沿半圆形槽切线向上的静摩擦力f,根据共点力平衡条件,切线方向上有mg sin 37°=f,半径方向上有F+mg cos 37°=N,根据胡克定律,F=k·Δx=50×(0.4-0.3) N=5 N,解得f=6 N,N=13 N,选项B、C正确.26.如图所示,置于水平地面的三脚架上固定着一质量为m的照相机.三脚架的三根轻质支架等长,与竖直方向均成30°角,则每根支架中承受的压力大小为( )A.13mg B.23mgC.36mg D.239mg【解析】本题考查力的平衡,意在考查考生受力分析的能力.题中每根支架对照相机的作用力F沿每根支架向上,这三个力的合力等于照相机的重力,所以有3F cos30°=mg,得F=mg3cos30°=239mg,故选项D正确.27.(多选)如图10所示,两相同轻质硬杆OO1、OO2可绕其两端垂直纸面的水平轴O、O1、O2转动,在O点悬挂一重物M,将两相同木块m紧压在竖直挡板上,此时整个系统保持静止.F f表示木块与挡板间摩擦力的大小,F N 表示木块与挡板间正压力的大小.若挡板间的距离稍许增大后,系统仍静止且O1、O2始终等高,则( )图10A.F f变小B.F f不变C .F N 变小D .F N 变大【解析】BD 对O 点受力分析如图甲所示.竖直方向有2F T cos θ=Mg ,所以F T =Mg2cos θ,当θ增大时,F T 增大.对m 受力分析如图乙所示,F T ′=F T .水平方向有F T ′sin θ=F N ,当θ增大时,F T 增大,F T ′增大,sin θ增大,所以F N 增大;竖直方向有F T ′cos θ+mg =F f ′,解得F f =Mg2+mg ,所以F f 不变.28.如图11所示,小球用细绳系住,绳的另一端固定于O 点.现用水平力F 缓慢推动斜面体,小球在斜面上无摩擦地滑动,细绳始终处于直线状态,当小球升到接近斜面顶端时细绳接近水平,此过程中斜面对小球的支持力F N 以及绳对小球的拉力F T 的变化情况是( )图11A .F N 保持不变,F T 不断增大B .F N 不断增大,F T 不断减小C .F N 保持不变,F T 先增大后减小D .F N 不断增大,F T 先减小后增大【解析】D 推动斜面时,小球始终处于平衡状态,根据共点力的平衡条件解决问题.选小球为研究对象,其受力情况如图所示,用平行四边形定则作出相应的“力三角形OAB”,其中OA 的大小、方向均不变,AB 的方向不变,推动斜面时,FT 逐渐趋于水平,B 点向下转动,根据动态平衡,FT 先减小后增大,FN 不断增大,选项D 正确.29.气象研究小组用图示简易装置测定水平风速.在水平地面上竖直固定一直杆,质量为m 的薄空心塑料球用细线悬于杆顶端O ,当水平风吹来时,球在水平风力的作用下飘起来.已知风力大小正比于风速,当风速v 0=3m/s 时,测得球平衡时细线与竖直方向的夹角θ=30°.则A .细线拉力与风力的合力大于mgB .若风速增大到某一值时,θ 可能等于90°C .细线拉力的大小为cos mgD .θ=60°时,风速v=6m/s 【解析】A 、小球受重力、拉力、风力处于平衡,如图所示,则拉力和风力的合力等于重力,选项A 错误. B 、风速增大,θ不可能变为90°,因为绳子拉力在竖直方向上的分力与重力平衡,故B 错误.C 、由合成法可求得,选项C 正确.根据共点力平衡知风力F=mgtanθ,θ变为原来的2倍,则风力变为原来的3倍,因为风力大小正比于风速和球正对风的截面积,所以风速v=9m/s,故D 错误.30.如图甲所示,两段等长细线串接着两个质量相等的小球a 、b ,悬挂于O 点.现在两个小球上分别加上水平方向的外力,其中作用在b 球上的力大小为F 、作用在a 球上的力大小为2F ,则此装置平衡时的位置可能如图乙中( )【解析】本题主要考查共点力平衡的条件及其应用和力的合成与分解的运用,意在考查学生灵活应用整体法和隔离法解决问题的能力.设两个小球的质量均为m ,Oa 与ab 和竖直方向的夹角分别为α、β.以两个小球组成的整体为研究对象,分析其受力情况,如图1所示,根据平衡条件可知,Oa 绳的方向不可能沿竖直方向,且有tan α=F2mg .以b 球为研究对象,分析其受力情况,如图2所示,由平衡条件得:tan β=Fmg .因此α<β.选项C 正确.31.如图所示,两段等长的细线将质量分别为2m 和m 的小球A 、B 悬挂在O 点,小球A 受到水平向右、大小为4F的恒力作用,小球B受到水平向左、大小为F的恒力作用,当系统处于静止状态时,可能出现的状态是()【解析】设系统处于静止状态时,小球A的悬线张力为T A与竖直方向夹角为、小球B的悬线张力为T B与竖直方向夹角为,分析小球B的受力应满足①、②,由此可知小球B的悬线张力方向应为斜向右上方,故D错误;分析小球A的受力有③、④,联立①②③④可得,因悬线等长可知B正确、AC错误.32.如图所示半圆柱体P固定在水平地面上,其右端有一固定放置的竖直挡板MN.在半圆柱体P和MN之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态.现使MN保持竖直并且缓慢地向右平移,在Q滑落到地面之前的此过程中,下列说法中正确的是()A.MN对Q的弹力逐渐减小 B.MN对Q的弹力保持不变C.P对Q的作用力逐渐增大 D.P对Q的作用力先增大后减小【解析】对圆柱体Q受力分析,受到重力、杆MN的支持力和半球P对Q的支持,如图:重力的大小和方向都不变,杆MN的支持力方向不变、大小变,半球P对Q的支持力方向和大小都变,然后根据平衡条件,得到N1=mgtanθ,N2=,由于θ不断增大,故N1不断增大,N2也不断增大,故C正确.33.某小孩在广场游玩时,将一氢气球系在了水平地面上的砖块上,在水平风力的作用下,处于如图12所示的静止状态.若水平风速缓慢增大,不考虑气球体积及空气密度的变化,则下列说法中正确的是()A.细绳受到的拉力逐渐减小B.砖块受到的摩擦力可能为零C.砖块可能被绳子拉离地面 D.砖块对地面的压力保持不变【解析】以气球和砖块整体为研究对象,分析受力如图1,根据平衡条件得:竖直方向:N+F1=G1+G2,水平方向:f=F,气球所受的浮力F1、气球的重力G1、砖块的重力G2都不变,则地面对砖块的支持力N不变,地面受到砖块的压力也不变.在砖块滑动前,当风力F增大时,砖块所受的摩擦力增大,当砖块滑动后受到的摩擦力f=μN保持不变,B错误.由于地面对砖块的支持力N=G1+G2-F1保持不变,与风力无关,所以当风力增大时,砖块连同气球一起不可能被吹离地面,C错误.以气球为研究对象,分析受力如图2所示:气球受力:重力G1、空气的浮力F1、风力F、绳子的拉力T.设绳子与水平方向的夹角为α,当风力增大时,α将减小.根据平衡条件得竖直方向有:F1=G1+Tsi nα,当α减小时,sinα减小,而F1、G1都不变,则绳子拉力T增大.故A错误.故选:D.二、非平衡状态下受力分析34.(多选)如图,物块a、b和c的质量相同,a和b,b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断.将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g.在剪断的瞬间( )A.a1=3g B.a1=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
高中物理--力学专题经典案例全解析
1、在水平地面上放一重为30N的物体,物体与地面间的滑动摩
擦因数为。若要使物体在地面上做匀速直线运动,问F与地
面的夹角为多大时最省力,此时的拉力多大?

解析:物体受力分析如图,建
直角坐标系,因为物体做匀速直线运动,所以物体所受合外力为
零。有:

二式联立可解得:
要使力F有最小值,则需cosa+msina有最大值

cosa+msina=(cosa+sina)
令tanb=m,则cosa+msina=[cos(a-b)]
当a=b时,cos(a-b)有最大值等于1

cosa+msina=
2

所以,当F与地面的夹角a=b=tan-1m=tan

1
=30°时,F取最小值,有:Fmin=

2、气球以1m/s2的加速度由静止开始从地面竖直上升,在10s
末有一个物体从气球上自由落下,这个物体从离开气球到落地所
需要的时间是多少?落地时的速度有多大?
解析:取向上为正方向
对气球:已知a=1m/s2,v0=0m/s,经过t1=10s,

则上升高度为H=v0t1+at12=×1×102=50(m)
10s末速度为v1=v0+at1=1×10=10(m/s)
物体从气球脱落后,做竖直上抛运动,至落地时位移为-H=-
50m,

设落地所用的时间为t,则有:即:-50=10t-gt
2
得:t=(1+)≈4.3(s)
设落地时速度为v,则有:v=v1-gt=10-10×4.3=33(m/s)
3、一艘宇宙飞船,靠近某星表面作匀速圆周运动,测得其周期
为T,万有引力恒量为G,则该星球的平均密度是多少?
3

解析:飞船绕星球做匀速圆周运动,因此,该飞船需要的向心力
由其受到的合外力即万有引力提供。设该飞船的质量为m,轨道
半径为r,则

F引=G=ma
n

因为在星球表面做圆周运动,所以轨道半径近似为星球半径

R

所以上式变为G=m·, 故M=
而M=rV=r·pR
3
因而得:

4、如图所示,一根长为l的细线,一端固
定于O点,另一端拴一个质量为m的小球。当小球处于最低位置
时,获得一个水平初速度,要使小球能绕O点在竖直内做圆周运
动通过最高点,求水平初速度至少应多大?
解析:设小球在最低点的速度大小为v0,在最高点的速度大小为
v

小球在线拉力T和重力mg作用下,绕O点在竖直面内做变
速率圆周运动。由于拉力不做功,小球向下运动过程中动能转化
为势能,小球与地球系统机械能守恒,以小球在最低点时的重力

势能为零,有mv02+0=mv2+mg(2l)……①
小球在最高点时受重力mg与拉力T的作用,两力方向都竖

直向下。根据牛顿第二定律有T+mg=m……②
4

重力mg恒定,v越大,T也越大,v越小T也越小。v最小
的条件为
T=0……③

由②③两式得v=代入①得
v
0
=

5、以10m/s的初速度竖直向上抛出一个质量为0.5kg的物体,
它上升的最大高度为4m。设空气对物体的阻力大小不变,则物
体落回抛出点时的动能为_________J。(g=10m/s2)

解析:物体在上升过程中的受力情况如图1,
设物体的初速度大小为v0,上升的最大高度为h,根据动能定理,
有-mgh-fh=0-mv02/2……………………(1)
物体在下落过程中的受力情况如图2所示,物体落回抛出点
时的速度大小为v,根据动能定理,有mgh-fh=mv2/2-
0……………………(2)
(2)-(1)得2mgh=mv2/2+mv02/2……………………(3)
由(3)式得物体落回抛出点时的动能为
Ek=mv2/2=2mgh-mv02/2=(2×0.5×10×4-0.5×
102/2)J=15J

6、一根内壁光滑的细圆钢管,形状如图
所示,一小钢球从A处正对管中射入。第一次小球恰能达到C点;
第二次小球从C孔平抛出恰好落回A孔。这两次小球进入A孔时
的动能之比为____________。
解析:小球从A处正对管中射入,沿光滑的细圆钢管运动到C点
5

的过程中,受重力和弹力的作用,其中只有重力做功,小球和地
球构成的系统机械能守恒,选A点为重力势能零点。
设第一次小球进入A孔时的动能为Ek1,小球质量为m,圆管半径
为R,由题意可知,小球到达C点时的速度为0,根据机械能守
恒定律,有
Ek1+0=0+mgR…………(1)
小球第二次进入A孔时的动能为Ek2,到达C点时的速度为v,根
据机械能守恒定律,有Ek2+0=mgR+mv2/2……(2)
小球从C孔平抛出恰好落回A孔所需时间为t,根据平抛运动规
律,有
R=vt………(3)
R=gt2/2…………(4)
由(2)(3)(4)得 Ek2=5mgR/4………(5)
由(1)(5)得Ek1/Ek2=4/5
7、如图所示,在光滑的水平面上有一质量为25kg的小车B,上
面放一个质量为15kg的物体,物体与车间的滑动摩擦系数为
0.2。另有一辆质量为20kg的小车A以3m/s的速度向前运动。A
与B相碰后连在一起,物体一直在B车上滑动。求:

(1)当车与物体以相同的速度前进时的速度。
(2)物体在B车上滑动的距离。
解:(1)选取小车A、B和B车上的物体组成的系统为研究对象,
从A、B接触到车与物体以相同的速度前进的整个过程中,系统
所受合外力为零,根据动量守恒定律,有mAv0=(mA+mB+mC)
v
2

代入数据,可解得:v2=1m/s,即小车与物体以1m/s的速度前进。

(2)选取小车A、B组成的系统为研究对象,在它们相碰的短暂
过程中,系统所受合外力为零,动量守恒,则mAv0=(mA+mB)v1

可解得:v1=m/s
再选取小车A、B和B车上的物体组成的系统为研究对象,
从A、B接触到车与物体以相同的速度前进的整个过程中,根据
6

动能定理,有
-mmCgs=(mA+mB+mC)v22-(mA+mB)
v
1
2

可解得:s=m=0.33m
8、质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在
地上。平衡时,弹簧的压缩量为x0,如图所示,一物块从钢板正
上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起
向下运动,但不粘连,它们到达最低点后又向上运动。若物块质
量为m时,它们恰能回到O点;若物块质量为2m,仍从A处自
由落下,则物块与钢板回到O点时,还具有向上的速度。求物块
向上运动到达的最高点与O点的距离。

解析:由得,物块与钢板碰撞时的速度v0=
设v1表示质量为m的物块与钢板碰撞后一起开始向下运动的速
度,因碰撞时间极短,它们的动量守恒,则mv0=2m
v
1

刚碰完时弹簧的弹性势能为Ep,从它们碰后至又返回O点的

过程中,只有重力和弹簧弹力做功,机械能守恒,取钢板在原来

平衡位置时的重力势能为零,则Ep+(2m)v12=2mgx0
设v2表示质量为2m的物块与钢板碰撞后一起开始向下运动
的速度,则2mv0=3m
v
2

刚碰完时弹簧的弹性势能为Ep',设物块在O点时的速度是

v
,从它们碰后至又返回O点的过程中机械能守恒,则有

Ep'+(3m)v22=3mgx0+(3m)
v
2
在以上两种情况中,弹簧的初始压缩量都是x0,故Ep= Ep'
质量为2m的物块在O点与钢板分离,以速度v竖直上升,
7

由以上各式可解得,物块向上运动到达的最高点与O点的距离为
h=。

相关文档
最新文档