光学薄膜膜系设计
现代光学薄膜制造技术讲义

G|HLHLHLHLHLHLHLHLH |A
nH 为 Ta2O5 n≈2.05
n =1.45
L
在现在的计算程序中,考虑到了色散。λ 0=350nm。
(2)上述膜系在可见光区有激烈的波动。透射光带有颜色。要
在可见光区得到一条平坦, T≥95%的曲线可用薄膜光学中的长波通膜 系,即将上述膜系改为:
G|0.5HLHLHLHLHLHLHLHL0.5H |A
3
是一个严重的缺点。 实验发现,用极值法生产单色滤光片时有很高的定位精度。但同 时我们却发现:在单色滤光片的次峰严重变形,偏离理论值,而这时 用石晶法监控的产品则其次峰要规矩得多。 用石晶控法生产的膜系,膜层的误差没有补偿和传递作用。因此 虽然它在单一波长处误差较大,但从宽波长范围来说,其整体误差较 小。 如果我们要制造一个超宽带的增透膜(450nm~1150nm) (1)如单一波长的光控制造,其产品会经常 出现废品,次品会增 多。 (2)用石英晶控法生产,成品率高是一种好的选择。 (3)如现有设备只有光控时,可使用变波长监控, 切断每层膜的误 差传递。会有比较好的制造效果。 c.膜系设计中的灵敏度误差 膜系制造中的误差,我们已经讲了两个(a)膜层厚度判定方法误 差: (b)膜层厚度补偿误差。现在我们来讲座膜系设计中的灵敏 度误差! 应该说,对于给定的光谱曲线,我们可以设计很多种不同的 膜系来实现。现在的问题是哪种膜系设计好?哪种膜系设计差? 我们必须进行膜系膜层误差分析,摒弃那些对制造误差有非常严 重要求的膜系,最后选取有高成品率有优良光学性能的膜系。为 此我们要做到:
偏振分光膜和消偏振薄膜

1. 例如:nH=2.35,nL=1.35, ns=1.52,根据上式计算棱镜 应有的角度θs=50.5° 2.例如:nH=2.35,nL=1.35 ,θs=45° ,则,ns=1.66。
10
11
3. 金属栅偏振分光镜
原理: 当入射光的波长远大于栅距时,入射光中的电矢量 E
垂直于线栅的偏振光透过线栅,而电矢量 E平行于线栅 的偏振光则被线栅反射。
金属栅偏振器的主要优点是: 工作波段很宽; 全波段内偏振性好; 线栅用良导体制成,吸收可以忽略,抗光损伤阈值
高。所以,金属线栅偏振器是中,远红外区较理想的偏 振器 。
17
单层宽波段消偏振分光镜
18
③对于确定θ0和n,Δn随入射介质n0增大而增大,偏振分离也越大; 因此,①消偏振只能对膜层与周围介质组合、或多层膜系来实现;
②封闭在胶合棱镜中膜层的偏振效应更严重。
14
2.7.1 单波长消偏振
由于①多层膜系的偏振效应来源于光学导纳的偏振分离,
②多层膜系的光学导纳是膜层厚度的复函数, ③多层膜系的光学导纳色散非常严重,所以多层膜系
足 n1 n0 n2 ,且光线以等于或大于全反射临界角入射
时,通过调整膜层的厚度,由于膜层的作用,就会使全反射受
到抑制,得到没有偏振效应的各种透反比的分光效果。
可以证明,受抑全反射消偏振分光入射角只与膜
层和入射介质的折射率有关,而与波长和膜层厚度
无关。即:
sin0
2 n1 n0 1 n1 n0 2
7
中心波长处的反射率为:
R
ηs
第3章-Tfcal膜系设计软件的使用

第3章
光学薄膜的设计理论
《薄膜光学技术》
主讲人:孔伟金
kwjsd@
青岛大学物理科学学院
青岛大学物理科学学院
第3章
光学薄膜的设计理论
TFCALC3.5 膜系设计软件使用介绍
青岛大学物理科学学院
第3章
光学薄膜的设计理论
启动时的画面
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
Mics 菜单说明
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
光学薄膜的设计理论
青岛大学物理科学学院
第3章
如果想设计新膜系点击“取消”按钮
青岛大学物理科学学院
第3章
光学薄膜的设计理论
点击“取消”按钮后出现的画面
青岛大学物理科学学院
第3章
光学薄膜的设计理论
File菜单说明及新膜系设计
薄膜技术讲义

薄膜技术讲义薄膜基础知识一、光学图纸和技术文件中的常用术语及符号符号术语N 光圈数△N 光圈局部误差△R 标准样板精度B 表面疵病C 透镜偏心差d透镜中心厚度T透镜边缘厚度D零件直径D0(Dm)零件有效直径二、光学材料的基本知识1、光学材料的种类光学玻璃分为2大类:冕牌玻璃(K)和火石玻璃(F)2、光学性能:1)化学稳定性:玻璃抵抗水溶液、潮湿空气及其他侵蚀性介质如酸、碱、盐等破坏的能力;(DW DA)2)机械性能:比重、脆性、弹性、硬度(相对抗磨硬度FA);3)热性能:热稳定性:指玻璃经受急冷急热的性能。
三、光学薄膜的分类及设计§3-1光学薄膜的分类1.减反膜2.滤光膜 3 保护膜4 内反射5 外反射6 高反膜7 分束膜8 分色膜9 偏振膜10 导电膜§3-2光学薄膜的基本特性和内容基本特性序号基本特性主要内容1 光学性能膜层在某一光谱范围内的反射、透射、吸收、散射等特性,同时包括折射率和消光系数等光学常数2 表面质量包括麻点、脱膜、擦痕、印迹、膜色不匀等3 力学性质主要包括附着力、硬度和应力4 环境适应性主要包括膜层的化学稳定性和热稳定性§3-3 光学薄膜的设计§3-3-1 减反射膜减反射膜是用来减少光能在光学元件表面的反射损失.可见光的光谱区域通常认为是400nm~760nm.1、单层减反射膜:当光线从折射率为n0的介质射入折射率为n1的介质时,在分界面上会产生光的反射,根据费涅尔定律,反射率R=(n0-n1)2/(n0+n1)2= (1-n1)2/(1+n1)2 当介质为空气时,认为n0=1 单层膜在中心波长λ0处的反射率R= (1- n12/ nS )2 / (1+ n12/ nS )2 其中nS是玻璃基底的折射率,n1是所镀膜料的折射率。
在光线垂直入射时,在中心波长λ0 出现零反射的条件为膜层的光学厚度n1d1等于λ0的1/4,即:n1d1= λ0/4,同时膜层的折射率n1等于基底折射率nS与入射介质折射率n0乘积的平方根,即n1=∨nsn02、双层减反膜(V形减反膜):λ/4—λ/4(W形膜): λ/4—λ/23、多层减反膜:四、镀膜技术§4-1 真空的基本知识1、定义:指在给定空间内,压强低于1标准大气压的气体状态。
TFCD光学膜介绍

一、光学薄膜简介1、光学薄膜的定义光学薄膜在我们的生活中无处不在,从精密及光学设备、显示器设备到日常生活中的光学薄膜应用;比方说,平时戴的眼镜、数码相机、各式家电用品,或者是钞票上的防伪技术,皆能被称之为光学薄膜技术应用之延伸。
倘若没有光学薄膜技术作为发展基础,近代光电、通讯或是镭射技术将无法有所进展,这也显示出光学薄膜技术研究发展的重要性。
光学薄膜系指在光学元件或独立基板上,制镀上或涂布一层或多层介电质膜或金属膜或这两类膜的组合,以改变光波之传递特性,包括光的透射、反射、吸收、散射、偏振及相位改变。
故经由适当设计可以调变不同波段元件表面之穿透率及反射率,亦可以使不同偏振平面的光具有不同的特性。
一般来说,光学薄膜的生产方式主要分为干法和湿法的生产工艺。
所谓的干式就是没有液体出现在整个加工过程中,例如真空蒸镀是在一真空环境中,以电能加热固体原物料,经升华成气体后附着在一个固体基材的表面上,完成涂布加工。
日常生活中所看到装饰用的金色、银色或具金属质感的包装膜,就是以干式涂布方式制造的产品。
但是在实际量产的考虑下,干式涂布运用的范围小于湿式涂布。
湿式涂布一般的做法是把具有各种功能的成分混合成液态涂料,以不同的加工方式涂布在基材上,然后使液态涂料干燥固化做成产品。
在本文中仅讨论湿式涂布技术的光学薄膜产业。
2、光学薄膜种类光学薄膜根据其用途分类、特性与应用可分为:反射膜、增透膜/减反射膜、滤光片、偏光片/偏光膜、补偿膜/相位差板、配向膜、扩散膜/片、增亮膜/棱镜片/聚光片、遮光膜/黑白胶等。
相关衍生的种类有光学级保护膜、窗膜等。
2.1、反射膜反射膜一般可分为两类,一类是金属反射膜,一类是全电介质反射膜。
此外,还有将两者结合的金属电介质反射膜,功能是增加光学表面的反射率。
一般金属都具有较大的消光系数。
当光束由空气入射到金属表面时,进入金属内的光振幅迅速衰减,使得进入金属内部的光能相应减少,而反射光能增加。
消光系数越大,光振幅衰减越迅速,进入金属内部的光能越少,反射率越高。
2_1_5月29日光学颜色镀膜

2.PET颜色膜在盖板领域的发展历史
2017年10月华为Mate10电池盖3D(黑、蓝、白金、摩卡金 、粉金) 2018年oppo R15 电池盖3D(红、白、紫) 2018年vivo X21电池盖3D(黑、白) 2018年华为荣耀10(黑、银灰、幻绿、幻蓝) 2018年华为、小米、oppo、vivo、魅族、锤子、三星……
140-180;50-70 10-20;40-60;15-30 10-25;15-35;20-40;10-30
4.PET颜色膜镀膜工艺体系的建立
非主流颜色
图片
工艺类别
亮黄色
PVD
大红色 灰紫色 珊瑚蓝
渐变色
着色材料+UV+PVD 着色材料+UV+PVD 着色材料+UV+PVD
PVD(溅射) PVD
如图中折射率为N,厚度为d为单层膜,基底是折射率为Ns,构成 两个界面a,b
1.光学薄膜基础介绍
➢ 当光垂直入射单层膜,光学厚度Nd为(λ0/2)、 λ0、 (3λ0/2) …膜层对光的反射强度不变 ➢ 若于膜膜层 的光 折学 射厚 率度 是大Nd于为还(λ0是/4小) 、于(基3λ底0/4折)、射(率5λ,0/4当) n…>反ns射时率,将反为射极率大为值极和大极值小,值当,n<其ns值时决,定反
SIO2-TIO2-SIO2-TIO2-SIO2-TIO2 SiO2-In-TiO2 TIO2-In-TIO2 SiO2-TIO2 SiO2-In-SiO2
TIO2-SiO2-In-TiO2
厚度区间
5-13;15-30;25-60 5-15;5-20
6-70;50-80;40-80
----5-20;30-60;10-20 4-12;20-60;10-50
薄膜光学

教材参考书[1] H.A.LightingColour Control in LCD ProjectionSystems光学薄膜理论与薄膜设计软件从事科学活动的目的是认识自然、改造自然、造福人类薄膜光学通过近几十年的发展在以下方面都有了长足的进步:1.前言薄膜光学讲什么薄 膜 光 学——前言前言——光学薄膜的应用 目前光学薄膜两个重要的应用领域:¾光通信:以DWDM(dense wavelengh division multiplexer)filter为代表的光无源器件¾信息显示技术:LCD、LCOS投影显示技术薄膜怎样工作的:紧密合作 各司其职 严密的理论、精密的制备光学薄膜在投影显示中的应用光学薄膜在液晶投影显示中的应用薄 膜 光 学——前言 光学薄膜在液晶投影显示中的应用薄 膜 光 学——前言光学薄膜在液晶投影显示中的应用 ¾高效率的减反射膜与高反射膜 ¾冷光镜及红外、紫外截止滤光片 ¾偏振光转换用膜 ¾分色与合色光学薄膜液晶投影显示系统中,几乎所有的典型的光学薄 膜都得到了应用。
-----唐晋发薄 膜 光 学——前言本学期课程安排光学薄膜的基础理论 分析光学薄膜的有效方法 几种典型膜系介绍 成膜机理及工艺(薄膜制造技术及制作工艺)简介 常用的薄膜材料特性薄 膜 光 学——基础理论光学薄膜基础理论几个条件: 9工作波段:光学 9薄膜厚度与考虑的波长在一个数量级 9薄膜的面积与波长相比可认为无限大 9薄膜材料各向均匀、同性 9薄膜材料为非铁磁性材料 9光穿过膜层而非沿着膜层在膜层内传播。
光学薄膜基础理论

n0 cos1 N1 cos0 n0 cos1 N1 cos0
可见rs、rp都是复数,rs rs eis 和rp rp ei p的
辐角是反射的位相变化,反射率由模的平方确定
波长为 546nm的 光入射到金 属Ag和Cu 上的情形
第二种介质为吸收时的情况
不管入射角如何,反射光的位相变化不 再是00或1800而是它们中间的某一角度, 同时s—分量和P—分量之间有一个不为0的 相对位相差, 因而当入射光为线偏振光在吸 收介质上反射后通常成为椭圆偏振光, 正 是基于这种认识,利用反射光的椭圆偏振 测量就可确定吸收介质的光学常数。
η2/Y。由于λ/2和λ/4的光学厚度的膜层组成的膜系比较简
单,所以膜系设计常常用指定波长1/4的倍数来表示,一般
只用两种或三种不同的膜料构造膜系, λ/4光学厚度的常用
缩写符号是H、M、L分别表示高、中、低折射率。
λ/2和λ/4的光学厚度
当膜层的光学厚度为λ/2时
cos
i sin
i
sin cos
sin0
ik1
可 见1为 复 数, 除0 1 0时 ,1不 再 为折 射 角 ;
当0
1
0时 ,rp
rs
n0 n1 ik1 n0 n1 ik
第二种介质为吸收时的情况
当0 0时情况要复杂的多
rs
rs
eis
n0 cos0 n0 cos0
N1 cos1 N1 cos1
rp
rp
ei p
负向行进的波位相因子应乘以ei
单层膜的反射
在膜层内E和H在边界a上的值为:
E1a
E1bei ,即k
E1a
1 2
Hb
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光学薄膜膜系设计
光学薄膜膜系设计是一项关键的技术,旨在通过优化薄膜层的结构和
材料,达到特定的光学性能。
光学薄膜在眼镜、液晶显示器、太阳能电池
等领域起着重要的作用。
本文将介绍光学薄膜膜系设计的基本原理和常用
方法,并以太阳能电池为例进行详细阐述。
在光学薄膜膜系设计中,常用的方法包括布拉格条件法、计算机辅助
设计和光学膜层堆积生长技术等。
布拉格条件法是光学薄膜设计的基础理论,根据布拉格干涉条件,通
过对薄膜层结构、光波长和入射角度等因素的优化,可以实现特定的光学
性能。
布拉格条件法主要应用于光学薄膜的波长选择和色彩滤光器的设计。
计算机辅助设计是一种基于计算机模拟的方法,通过数值计算和优化
算法,快速确定最佳的薄膜层结构和参数。
这种方法可以通过遗传算法、
蒙特卡洛模拟等算法,对大量的设计空间进行,得到最优解。
计算机辅助
设计主要应用于复杂的多层膜结构和非均匀膜厚的设计。
光学膜层堆积生长技术是指通过物理气相沉积或溅射等方法,在基底
上逐层生长所需的薄膜材料。
这种技术可以实现高质量的薄膜层,并且可
以控制薄膜层的厚度和组分。
光学膜层堆积生长技术主要应用于光学反射
镜和透明导电薄膜的制备。
以太阳能电池为例,光学薄膜膜系设计在提高太阳能电池的转换效率、增强光吸收和抗反射等方面起着重要的作用。
在太阳能电池中,常用的光
学薄膜包括透明导电薄膜、抗反射膜和光学增透膜等。
透明导电薄膜是太阳能电池的关键组件之一,用于收集和输送光电池
产生的电子。
常见的透明导电薄膜材料包括氧化锌、氧化铟锡等。
在设计
透明导电薄膜时,需要考虑电导率和透明度的平衡,以达到最佳的光电转
换效率。
抗反射膜是为了减少太阳能电池上的反射损失,提高对太阳光的吸收。
常见的抗反射膜材料包括氧化硅、氮化硅、二氧化硅等。
在设计抗反射膜时,需要根据太阳光的光谱分布和太阳能电池的工作波长范围,选择合适
的材料和膜层厚度,来实现最佳的抗反射效果。
光学增透膜可以提高太阳能电池对特定波长范围内光的吸收。
常见的
光学增透膜材料包括氮化硅和二氧化硅等。
在设计光学增透膜时,可以通
过计算机辅助设计和优化算法,确定最佳的膜层厚度和组分。
总之,光学薄膜膜系设计是一项复杂而关键的技术,可以通过选择合
适的薄膜材料和优化薄膜层的结构,实现特定的光学性能。
在太阳能电池
等领域,光学薄膜膜系设计对于提高转换效率和光电吸收是至关重要的。