卟啉的合成

合集下载

卟啉的化学性质

卟啉的化学性质

卟啉的化学性质一、卟啉的来源与分类1。

卟啉的来源:以卟啉为基础合成新药物已进入研究阶段。

这些卟啉大多从天然药物或合成药物中提取,如从植物根中提取具有强心作用的亚油酸等;从某些动物内脏如猪肝、牛心、羊肾、牛胆、猪肾等中提取具有抗癌作用的卟啉。

2。

卟啉的分类:目前世界上应用较广泛的卟啉有三种,分别是1, 2, 4-三羟基卟啉(TMA)及其衍生物: 2, 5-双(四甲基-2, 3, 5, 6-五吡啶基)卟啉(TMB); 2, 4-双( 2, 4-二甲氧基- 6-吡啶基)卟啉(TMC); 3, 2, 4-双( 4, 5-二甲氧基-6-吡啶基)卟啉(TMD)。

这些卟啉都可通过化学方法合成。

2。

第一节卟啉的来源和性质二、卟啉的结构性质,了解第二节环系的概念。

三、掌握第四节含有不饱和键的环的鉴定方法。

四、第六节共轭多烯的环系特征及重要的共轭多烯药物的合成原则。

五、掌握第八节单环β-D-吡喃类化合物的性质。

第一节卟啉的来源和性质一、卟啉的来源天然药物及合成药物1。

第三节卟啉的性质第二节环系的概念一、了解环系的基本概念。

13。

含有不饱和键的环1)环是大分子的骨架。

环的稳定性取决于:含双键的环体系,环的稳定性取决于:环的主体部分越大越稳定,但在有氢键时稳定性降低,分子内或分子间存在着氢键时环的稳定性增加。

含有不饱和键的环体系,环的稳定性增加。

环的稳定性主要由成环反应来维持。

环的类型:稳定性分级:级别环数(数目越多越稳定)环的类型稳定性分级稳定性分级二、卟啉的结构性质,掌握第二节环系的基本概念。

熟悉各类环系的特征。

三、掌握第六节共轭多烯的环系特征。

共轭多烯环系:共轭多烯化合物的性质与主链相似。

四、第七节单环β-胡喃类化合物的性质。

单环β-胡喃类化合物的性质。

单环β-胡喃类化合物的鉴定。

主要反应有:酸碱反应:酯化反应:氧化反应:取代反应:硝化反应:消去反应:还原反应:酰化反应:醚化反应:其他反应:主要用途:抗菌药、消炎药、抗病毒药及调节蛋白质水平药等。

两种尾式卟啉及其金属钯配合物的合成与表征

两种尾式卟啉及其金属钯配合物的合成与表征

1 ,52 0 1 ,0一三 ( 氯苯基 ) 对 卟啉及其金 属钯配合物并 通过元 素分 析 、 紫外 一可见 光谱 、 红外 光谱 和核磁共 振氢谱 对
卟啉 合成 结构表征 金属配合物
这 些 卟 啉 化 合 物 的 结 构 进 行 了 a t r z to fTwo Po h r n nd y t e i n r ce ia in o p y i sa
第2 4卷 第 4期 21 0 0年 4月
化 工时 刊
Ch m ia n u ty T m e e c l d s r i s I
Vo12 No. . 4, 4 Ap . 2 1 r4. 0 0
d i1 .9 9 j i n 1 0 o:0 3 6 / . s .0 2—1 4 2 1 .4 O 9 s 5 X.0 0 0 . O
的应 用前 景 。本 工作 合 成 了新 的 5一( 2一戊 氧 基 苯 基 )一l 1 ,0一 对氯 苯基 卟 啉和 5一( 0,5 2 三 2一异 戊 氧 基苯基 )一1 l ,0一三对 氯 苯 基 卟 啉 及 其 金 属 钯 0,5 2 配合 物 , 进 行 了结构 表征 。 并
仪 ( D 1为溶剂 ,M C C3 T S为 内标 )P ri ;ekn—Em r a b le m - L d 7 型 U / i 谱 仪 ; 海 73型 分 光 光 度 计 a1 V Vs光 上 2 ( H I为参 比液 )上海 2 8 A型真 空干燥箱 。 C C ; K一 2 吡 咯为 分 析 纯 , 用 前蒸 馏 ; 层 析 用 中性 氧 化 使 柱
a ii l p cr s o y,i fa e p cr s o y a d p o o ce r ma n tc r s n nc p cr s o y nd vsb e s e to c p n r r d s e to c p n r tn nu l a g ei e o a e s e to c p .

卟啉化合物的合成及物理化学性质

卟啉化合物的合成及物理化学性质

卟啉化合物的合成及物理化学性质周彬 ,张文 ,曾琪 ,张智(武汉大学 化学与分子科学学院 ,武汉 430072)【摘要】利用中位-四[对羟基苯基]卟啉和四水合乙酸钴在DMF 中搅拌加热至100℃回流30min 合成了金属钴卟啉。

然后再用柱层析分离得到纯净的金属卟啉产物。

利用电导率仪研究了金属卟啉金属钴卟啉的电迁移性质。

通过金属钴卟啉配合物与咪唑配位动力学的研究证实了其轴向上存在配位作用。

【关键词】 卟啉、金属(钴)卟啉配合物、咪唑、动力学性质、电迁移性质【前言】卟啉化合物是一类含氮杂环的共轭化合物,其中环上的各原子处于同一平面内(如图1所示) :NHNHNNNHNHNNXXXX图1X=COOH;OH;NH 2如图2卟啉环中含有四个吡咯环,每两个吡咯环在2位与5位之间由一个次甲基桥连,在5,10,15,20,位上也可键合四个取代苯基(如图2),形成四取代苯基卟啉。

卟啉环中有交替的单键和双键,有18个π电子组成的共轭体系,具有芳香性。

当两个氮原子上的质子电离后,其形成的空腔中可以容纳Fe,Co,Mg,Cu,Zn,等金属离子而形成金属配合物,并且这些金属配合物都具有一些生理上的作用。

卟啉化合物具有对光,热的良好稳定性。

它的这种稳定性,大的可见光消光系数和它在电荷转移过程中的特殊作用,使得它在光电领域中的应用受到高度重视,它被用于气体传感器,太阳能的贮存,生物模拟氧化反应的催化剂,生物大分子探针,还可以作为模拟天然产物的母体,金属卟啉配合物被广泛的应用于微量分析等领域。

本实验合成并提纯了卟啉配合物,采用电导仪测定金属配合物在溶液中的电迁移性质,还就其与有机碱的轴向配位反应进行动力学的测定。

【实验部分】⒈试剂与仪器:1.1试剂卟啉,醋酸钴,DMF(二甲基甲酰胺),无水乙醇,无水乙醚,二氯甲烷,丙酮,环己烷,薄层层析硅胶,柱层析硅胶,氢氧化钠,咪唑,1.2仪器紫外-可见分光光度仪,傅立叶变换红外光谱仪,DD3001电导率仪,分析天平,电磁搅拌器,减压蒸馏装置,旋转蒸发仪,抽滤装置,真空干燥器.⒉实验步骤:2.1金属(钴)卟啉配合物的合成与分离在25 ml两口烧瓶中加入0.1540g中位-四(对羟基苯基)卟啉与8mlDMF,搅拌加热,至100o C时加入卟啉量的10倍摩尔量的四水和乙酸钴(0.5606g),继续加热至回流,并保持回流状态20-30min。

卟啉化合物的合成

卟啉化合物的合成

柱进行层析 ,产率为 915 %。微波合成卟啉在我国 发展较快 ,研究表明微波作用的时间与强度 、反应体 系溶剂及催化剂的选择 、反应试剂的组成及用量等 均对四苯基卟啉的合成有较大的影响 ,经过改进 ,微 波合成卟啉的产率有较大的提高 ( > 30 %) [29 ,30] 。 112 八乙基卟啉的合成
卟啉类化合物的合成方法归纳起来主要有两 种 : (1) 由非卟啉前体合成卟啉 ; (2) 卟啉化合物的官 能团修饰 。非卟啉前体合成卟啉的方法按照缩合成 环方式的不同大致可以分为 : (1) 4 个吡咯单体直接 缩合环化生成卟啉 ,适用于图 1 中化合物 1 和 2 ; (2) 模块法 ,适用于图 1 中化合物 3 —10 。合成方法和路 线的选择取决于目标卟啉分子的结构特点和性质 。
中 ,以三氟化硼和乙醚络合物催化 ,整个反应分两步 进行 ,先得到卟啉合成的中间体 (porphyrinogen ,卟啉 原 ———Dolphin 等[13] 曾证实了这一反应中间体的存 在) ,然后 , 以二氯二腈基苯醌 (DDQ) 或四氯苯醌 (TCQ) 将卟啉原氧化得到最终产物卟啉 ,从而使反 应可以在常温下进行 。由于 Lindsey 法的反应温度 较低 ,一般不会产生焦油状副产物 ,目标产物的分离 提纯较容易 ;同时温和的反应条件也允许反应物先 经过化学修饰 ,连接上一些敏感基团 ,平均产率可达 30 % —40 %。但该反应浓度低 ,以吡咯计仅为 10- 2 molΠL ,且最大反应容积为 1L ,放大后则效果不好 。 1994 年 ,Lindsey 等[14] 研究了在高浓度下的反应 ( ≥ 011molΠL) ,实验采用一步法 ,即将原料 、氧化剂 、催 化剂同时加入 ,最后产率可达 10 % —20 % ; 采用两 步法 , 即先加催化剂 , 反应后再加氧化剂 , 产率为 20 % —30 % , (图 3) 。Lindsey 法经过改良 ,还能得到 立体位阻较大的苯基 2 ,52位有取代基的四芳基卟 啉[12] ,其 非 共 平 面 的 构 型 表 现 出 不 同 的 光 学 性 能[15] 。四 (2 ,4 ,62三甲基苯基) 卟啉[16] 就是这样一 个例子 ,合成时在 BF3 中加入乙醇作为协同催化剂 , 产率达 30 %。Llama 等[17] 合成 TPP 时加入了过渡金 属盐 ,这一改良使产率高达 68 % ,而且可以做到比 传统 Lindsey 法的反应液浓度高 。

卟啉,氮杂卟啉杂化体的设计,合成与性能研究

卟啉,氮杂卟啉杂化体的设计,合成与性能研究

卟啉,氮杂卟啉杂化体的设计,合成与性能研究随着科技的发展,卟啉在研究和应用方面正越来越受到重视,它在有机合成、光电化学、光电催化等研究领域都有了广泛的应用,而氮杂卟啉则作为新型卟啉杂化体,具有更好的性能,因此有必要进行设计、合成和性能研究。

卟啉(或称联苯胺)是一种多用途的有机分子,对电子传输特性和光化学性质具有重要作用。

它可以与其他分子官能团结合,形成聚合物、复合物和杂化体,以改变其光谱和物理化学性质,扩展其应用范围。

氮杂卟啉是一种新型的卟啉杂化体,其中的氮原子可以容纳多个电子,提供更多的电子传输通道,从而改善卟啉的电子传导性能。

此外,氮原子还可以激发空穴,促进光解和电子迁移,有效地改善卟啉的光电化学和电子催化性能。

要设计和合成氮杂卟啉杂化体,首先要了解杂化体的结构。

氮杂卟啉杂化体是由一个卟啉核和一个氮原子共同构成的,卟啉核含有苯环和联苯胺基团,而氮原子则直接与卟啉核相连,形成一种类似“连接球”的结构。

其次,要确定氮杂卟啉杂化体的合成方法。

根据氮杂卟啉杂化体的结构,可以采用分子印迹技术,将氮原子限域定位,并利用空穴和电子传输通道结合,将氮原子与卟啉核结合。

此外,可以采用离子液体法、金属氧化物负载的溶剂热法、碱金属催化降解卟啉等方法,制备氮杂卟啉杂化体。

最后,要研究氮杂卟啉杂化体性能。

通过研究,可以发现,与普通卟啉相比,氮杂卟啉杂化体可以更好地调节电子能量转移,具有更高的电子传输效率和更强的光电化学性能。

此外,氮杂卟啉杂化体的热稳定性和对抗氧化剂的性能也显著增强。

综上所述,氮杂卟啉杂化体是一种新型的卟啉杂化体,具有高电子传输效率、强光电化学性能和良好的热稳定性等优势,可以进一步改善卟啉的性能,丰富卟啉的应用范围。

因此,设计、合成和性能研究是一个重要的课题,值得继续深入研究。

总之,氮杂卟啉杂化体的设计、合成与性能研究已经取得了较好的成果,具有重要的意义。

未来,我们将继续加强在该领域的研究,以探索更多可能性,更好地发挥卟啉在环境保护和能源利用等方面的潜力。

四羧基苯基锌卟啉合成

四羧基苯基锌卟啉合成

四羧基苯基锌卟啉合成
四羧基苯基锌卟啉(Zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrin, ZnTCPP)是一种重要的金属有机框架(Metal-Organic Frameworks, MOFs)前驱体,广泛应用于催化、光电材料及生物医学等领域。

合成四羧基苯基锌卟啉通常需要通过多步反应完成,以下是一个基本的合成过程概述:
首先,合成卟啉环的起始材料通常是吡咯和相应的芳香醛。

在本例中,使用4-甲酰苯甲酸作为原料,它与吡咯在酸性催化剂存在下发生缩合反应,形成自由的卟啉配体(meso-tetrakis(4-carboxyphenyl)porphyrin)。

这个反应需要在惰性气体保护下进行,以避免卟啉环被氧化。

接着,将上述得到的卟啉配体与过量的锌盐(如氯化锌或醋酸锌)反应,使得中心的两个氢离子被锌离子取代,从而得到四羧基苯基锌卟啉。

此步骤通常在回流的甲醇或二甲基甲酰胺(DMF)等溶剂中进行,以确保反应充分进行。

最后,通过冷却、过滤、洗涤和干燥等步骤纯化产物,以获得高纯度的四羧基苯基锌卟啉。

此外,根据不同的应用需求,可能还需要进一步的修饰或功能化处理。

整个合成过程需要严格控制反应条件,如温度、时间、pH值和摩尔比等,以保证产物的质量和产率。

同时,由于涉及有毒化学品和敏感化合物,实验操作应在良好的通风和安全措施下进行。

卟啉化合物的合成、理化性质及其应用

卟啉化合物的合成、理化性质及其应用

2010.10.09-2010.10.16 卟啉化合物的合成、理化性质及其应用孙广道0709401094苏州大学材料与化学化工学部2007级化学专业摘要:为了掌握卟啉化合物的合成及表征,用郭灿城等人提出新方法合成TPPH2和CoTPP,并测其红外、紫外与荧光光谱。

关键词:TPPH2、CoTPP、红外光谱、紫外光谱、荧光光谱Abstract:To master the synthesis and token of Porphyrins,we synthetise TPPH2 and CoTPP with new method raised by Cancheng Guo,and characterized by FT-IR,UV and fluorescence spectrum.Keywords :TPPH2、CoTPP、IR spectrum、ultraviolet spectrum、fluorescence spectrum1.前言卟啉化合物是一类特殊的大环共轭芳香体系,自然界中存在许多天然卟啉及其金属配合物,如血红素、叶绿素、维生素B12 、细胞色素P-450、过氧化氢酶等。

天然卟啉化合物具有特殊的生理活性。

人工合成卟啉来模拟天然卟啉化合物的各种性能一直是人们感兴趣和研究的重要课题。

由于卟啉化合物独特的结构、优越的物理、化学及光学特征,使得卟啉化合物在仿生学、材料化学、药物化学、电化学、光物理与化学、分析化学、有机化学等领域都具有十分广阔的应用前景,正吸引着人们对卟啉化学不断深入地研究。

本实验采用郭灿城等人提出的合成四苯基卟啉的新方法,合成TPPH2和CoTPP,并测其红外、紫外与荧光光谱。

2.实验部分2.1、仪器与药品仪器:烧杯(50mL×2、100mL×1)、量筒(50mL)、三颈烧瓶(250mL,19#×1/14#×2)、双颈烧瓶(50mL,19#×2)、茄形瓶(250mL,24#)、恒压滴液漏斗(14#)、球形冷凝管(19#)、干燥管(19#)、空心塞(19#×2、14#×2)、布氏漏斗及抽滤瓶、色谱柱(24#)、调压变压器、旋转蒸发仪、温度计(300℃)、油浴、磁力搅拌器、回流装置。

四苯基卟啉的合成与表征

四苯基卟啉的合成与表征

四苯基卟啉的合成与表征四苯基卟啉是一种重要的有机分子材料,被广泛用于光电子学、生物医疗、催化等领域。

本文将介绍四苯基卟啉的合成和表征方法。

合成方法四苯基卟啉的合成方法较为复杂,以下将介绍其中较为常见的几种方法。

第一种方法:Anderson方法Anderson方法是四苯基卟啉合成的一种传统方法,其主要步骤如下:1.将酞菁代入和苯甲醛反应得到卟啉-phenaldazine。

2.经过获取、晶化、减压干燥等处理后,将卟啉-phenaldazine与甲硫醇等在碱性条件下反应,得到四苯基卟啉。

这种方法虽然操作相对简单,但其产率较低且对环境有较大的污染。

第二种方法:Lindh方法Lindh方法是一种改良版的四苯基卟啉合成方法,其操作步骤如下:1.将酞菁代入和苯丙酮反应,生成卟啉-phenalenone。

2.利用杂环化合物类似三苯基硼烷的还原剂将卟啉-phenalenone还原,生成四苯基卟啉。

Lindh方法不仅产率较高,且环保性能也较好。

由于使用的还原剂不是常见的危险化学品,因此该方法也更加安全。

表征方法四苯基卟啉是一种具有复杂结构的分子,其得到后需要进行表征。

以下将介绍主要的表征方法。

红外光谱分析红外光谱是测量物质分子振动状态的一种分析方法。

用红外光谱仪对四苯基卟啉进行分析,可以通过不同波长的光波与分子间的能量转移关系,给出其分子结构、化学键类型以及化学键键长等信息。

紫外-可见吸收光谱分析紫外-可见吸收光谱是表征物质电子结构的一种分析方法。

在紫外-可见吸收光谱仪中,四苯基卟啉物质吸收位置及强度可获得分子内部电子结构及电子能级等信息。

核磁共振光谱分析核磁共振光谱将磁场作用于分子,根据原子核固有的磁学特征,分析分子内部结构与化学键的信息。

通过核磁共振光谱分析,可以解析出四苯基卟啉分子的各个质子交换及化学位移信息。

结论本文介绍了四苯基卟啉的合成和表征方法,其中Anderson方法和Lindh方法分别为较为常见的合成方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卟啉的合成
卟啉是一类重要的有机化合物,广泛应用于生物学、化学和医学等领域。

它是一种由四个吡咯环通过甲烷基连接而成的大环状结构,具有多种生物活性和光物理性质。

本文将介绍卟啉的合成方法和应用。

卟啉的合成方法有多种途径,其中最常见的是通过多步反应合成。

一种常用的合成方法是从苯乙烯出发,经过多步反应制备卟啉。

首先,苯乙烯经过氧化反应得到苯乙酮,然后经过氨化反应生成苯乙酰胺。

接下来,苯乙酰胺经过环化反应生成吡咯烷酮,再经过羧化反应得到吡咯烷酮酸。

最后,吡咯烷酮酸经过环化反应得到卟啉。

除此之外,还有其他合成方法,如格里氏反应、Meerwein-Ponndorf-Verley还原等。

卟啉在生物学中起着重要的作用,其中最著名的应用是在光合作用中光合色素叶绿素中的卟啉结构。

通过吸收光能,卟啉能够将光能转化为化学能,从而驱动光合作用中的反应。

除了叶绿素,卟啉还存在于其他生物分子中,如血红素、细胞色素等。

这些卟啉分子在生物体内参与氧气运输、电子传递和催化反应等重要生物过程中起着关键作用。

在化学领域,卟啉也有广泛的应用。

卟啉具有良好的电子传递性质和催化活性,可以作为催化剂用于有机合成反应中。

例如,卟啉催
化剂可以催化氧化反应、还原反应和环化反应等。

此外,卟啉还可以与金属离子形成稳定的配合物,这些卟啉金属配合物在催化剂、药物和材料等方面具有重要应用价值。

在医学领域,卟啉也有广泛的应用。

卟啉分子具有丰富的光物理性质,可以吸收特定波长的光线并发生激发态反应。

通过选择合适的光源和卟啉分子,可以实现光动力疗法。

光动力疗法是一种新兴的肿瘤治疗方法,通过激发卟啉分子产生的活性氧物质来杀灭癌细胞。

此外,卟啉还可以用于光热疗法、荧光成像和光敏化学等领域。

卟啉是一类重要的有机化合物,具有多种合成方法和广泛的应用领域。

通过合成卟啉和研究其性质和应用,可以推动化学、生物学和医学等领域的发展。

随着科学技术的进步,相信卟啉的合成和应用将会得到更多的突破和创新,为人类社会带来更多的福祉。

相关文档
最新文档