假设法解题六年级练习题

合集下载

六年级假设法解题练习题

六年级假设法解题练习题

六年级假设法解题练习题一、题目描述假设你是六年级学生小明,以下是关于饮食健康的一些假设,根据提供的假设和相关信息,回答问题。

1. 假设小明每天早餐都吃面包,午餐都吃米饭,晚餐都吃面条,能保证他的膳食均衡吗?2. 假设小明每天吃很多巧克力,他会变得更高吗?3. 假设小明经常吃糖果和甜饮料,他的牙齿会更健康吗?4. 假设小明非常喜欢吃垃圾食品,这对他的身体有什么影响?二、解题过程1. 饮食的均衡是指摄入的食物中包含了充足的营养元素。

尽管小明每天吃的是不同种类的主食,但仅仅靠面包、米饭和面条是无法保证膳食的均衡。

膳食均衡应包括五大类食物,即谷物、蔬菜、水果、肉类和奶制品。

建议小明在餐食中适当增加蔬菜和水果的摄入,以确保膳食的均衡。

2. 吃巧克力并不能让人变得更高。

人的身高主要由遗传因素和生长发育水平决定。

巧克力含有糖分和脂肪,过量摄入可能会导致肥胖和牙齿问题。

因此,小明应该适量饮食,保持均衡营养,而不是指望吃巧克力来增加身高。

3. 糖果和甜饮料含有大量的糖分,过量摄入对牙齿是有害的。

糖分容易被细菌利用,形成酸性环境,导致牙齿脱矿、蛀牙等问题。

因此,频繁食用糖果和甜饮料不利于牙齿的健康。

建议小明减少对这些食物的摄入,并养成良好的口腔卫生习惯,例如刷牙、漱口等。

4. 垃圾食品通常指含有高糖、高脂肪、高盐等不健康成分的食物。

经常食用垃圾食品会引发多种健康问题,如肥胖、心脏病、高血压等。

对于小明来说,经常吃垃圾食品可能导致体重增加、营养不良,还可能影响他的身体发育和免疫力。

因此,建议小明远离垃圾食品,选择健康的食物,保持良好的饮食习惯。

三、小结通过对以上假设的分析,我们可以得出以下结论:- 小明单一主食的饮食习惯无法保证膳食均衡,应适当增加其他食物的摄入。

- 吃巧克力并不能增加身高,应均衡膳食来维持健康。

- 经常食用糖果和甜饮料会对牙齿健康产生不利影响,应减少摄入并注意口腔卫生。

- 垃圾食品会对身体健康产生负面影响,应远离这些食物,选择健康的饮食。

小学六年级奥数:假设法解题

小学六年级奥数:假设法解题

小学六年级奥数:假设法解题1.假设有x台彩色电视机,那么黑白电视机的数量就是250-x台。

根据题意,x+5=1.1(250-x),解得x=95,所以彩色电视机卖出95台,黑白电视机卖出155台。

2.设冰箱数量为x,则洗衣机数量为126-x。

根据题意,x-23=2(126-x),解得x=89,所以冰箱卖出89台,洗衣机卖出37台。

3.设上学期男同学数量为x,则女同学数量为750-x。

本学期男同学增加y人,女同学减少y人,则男女同学数量分别为x+y和(750-x)-y=750-x-y。

根据题意,x+y+(750-x-y)=710,解得y=65,所以男同学增加65人,女同学减少65人。

4.设___今年的年龄为x岁,则他爸爸今年的年龄为2x岁。

根据题意,x+12=2(x+12),解得x=24,所以___今年24岁。

5.设甲队挖了x米,则乙队挖了300-x米。

根据题意,x+55=1.1(300-x),解得x=105,所以甲队挖了105米,乙队挖了195米。

6.设第一包糖中奶糖、水果糖、巧克力糖的粒数分别为x、y、z,则第二包糖中糖的总粒数为9x,水果糖的粒数为0.5(9y),巧克力糖的粒数为2z。

根据题意,x+y+z=0.28(x+y+z+9x),解得8x=3(y+z),再代入第三个条件,解得z=0.16(9y),代入第二个条件,解得y=20x。

最后代入第一个条件,解得x=10,所以第一包糖中奶糖、水果糖、巧克力糖的粒数分别为10、200、80,第二包糖中奶糖、水果糖、巧克力糖的粒数分别为90、180、90.混合后水果糖的粒数为200+180=380,所以水果糖占的百分比为380/900=42.22%。

7.设去年初中招生人数为x,则高中招生人数为4752-x。

今年初中招生人数为1.48x,高中招生人数为1.2(4752-x)。

根据题意,1.48x+1.2(4752-x)=640,解得x=1680,所以去年初中招生人数为1680人,高中招生人数为3072人,今年初中招生人数为2486人,高中招生人数为154.8.设每个足球加价为x元,则每个篮球加价为(2800-100x)/80元。

六年级假设法解题

六年级假设法解题

假设法解题l、例题彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,那么还比黑白电视机多5台。

问两种电视机原来各有多少台?2、光明小学今年春季共植杨树、柳树120棵,其中杨树棵树比柳树棵树的5/8少10棵,杨树多少棵?3、师徒二人共同加工170个零件。

已知师傅加工个数的1/3比徒弟加工个数的1/4多10个。

那么,徒弟加工了多少个?4、甲乙两个工程队合挖了一条长300米的水渠,甲队挖的2/5比乙队挖的1/4多55米,甲乙两个工程队各挖了多少米?5、某商店有冰箱和洗衣机共126台,卖出冰箱的1/6和洗衣机的2/9共23台,原来冰箱和洗衣机各有多少台?6、育红小学上学期有男、女同学共750人,本学期男同学增加1/6 ,女同学减少1/5 ,共有710人。

求本学期男、女同学各多少人?假设法解题1、苹果和梨共145筐,如果苹果卖出1/5,则比梨多8筐,问:苹果和梨原来各多少筐?2、兄弟俩共存钱2300元,如果弟弟取出1/3,还比哥哥多200元。

兄弟俩各存钱多少元?3、甲、乙两人共做了184个零件,其中甲做的5/8与乙做的3/4共123个。

问甲乙两人各做了多少个零件?4、有两块地共72公顷,第一块地的2/5和第二块地的5/9种西红柿;两块地余下的共39公顷种茄子,问第一块地是多少公顷?5、一次奥林匹克数学竞赛上共有84人参加,已知获奖人数的5/8与未获奖人数的3/4共有57人,求获奖人数。

6、学校买来排球和足球共64个,从中借出排球个数的1/4 和足球个数的1/3后,还剩46个,两种球原来各有多少个?7、饲养场有黄牛和奶牛共66头,奶牛的1/3比黄牛的1/6多4头,这个饲养场有黄牛和奶牛各多少头?8、姐妹俩养兔100只,姐姐养兔只数的1/3比妹妹养兔只数的1/10多16只。

求姐妹各养兔多少只?9、甲、乙两数的和是125,甲数的2/5比乙数的1/6多16,甲乙两数各是多少?10、光明小学共有800名学生,其中男学生的2/5比女学生的1/2多50人,光明小学有男、女生各多少人?11、师徒共加工一批零件,师傅比徒弟多加工120个,又知师傅加工零件个数的5/8比徒弟加工零件的2/3多60个,师傅和徒弟各加工多少个?12、一个人从A地到B地要乘汽车,从B地到C地需乘火车,原来从A地到C地需要250元的交通费;现由于汽车票上涨10%,火车票上涨20%,结果从A地到B地共花去280元,汽车票现在要用多少元?13、一项工程,甲、乙两人合作5天可以完成。

六年级假设法习题

六年级假设法习题

假设法解题
例1.小康村的副业组共养鸡兔400只,足数共1000只,副业组养鸡、兔各多少只?
练1.鸡兔同笼,数头共有90只,脚数共有252只。

鸡总共有多少只?
例2.卡卡用10元钱正好买了20分和50分的邮票共35张,求这两种邮票各买了多少张?
练2.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共108个轮子。

求小轿车和摩托车各有多少辆?
例3.鸡兔同笼,鸡兔共有107只,兔的脚数比鸡的脚数多56只,问鸡兔各有多少只?
练3.五元钞票和二元钞票共200张,已知五元钞票总值比二元钞票总值多160元,两种钞票各有多少张?
例4.一次数学竞赛共有20道题。

做对一道题得5分,做错一道倒扣3分,妮妮考了52分,你知道妮妮做对了几道题?
练4.公司委托托运站运送1000只玻璃花瓶,双方商定每只的运费是1角5分,如打破一只,这一只不但不计运费,并且要赔偿9角5分,结果托运站共得运费145.6元。

问搬运过程中共打破了几只花瓶?。

【精品】六年级下册数学奥数试题 假设法解题 人教版

【精品】六年级下册数学奥数试题 假设法解题 人教版

假设法解题知识导航:由于一些含有两个或两个以上未知量的问题,我们在解答时可以根据情况采用假设法解决,所谓假设法就是把两个或两个以上的未知量假设为同一个未知量,然后按照题目中的已知条件进行推算,从而找到答案。

假设法作为一种重要的解题方法应用很广,我们不仅可以把不同的事物进行假设,还可以把事物的几种不同情况假设成同一种情况,本讲我们就此展开探究。

经典例题1、鸡和兔共27个头,72只脚。

鸡、兔各有多少只?举一反三1、1、鸡和兔共60个头,160只脚。

鸡、兔各有多少只?2、鸡比兔多16只,鸡的脚比兔的脚多12只。

鸡、兔各有多少只?3、某城市实行峰谷电价,收费标准如下:小刚家8月份用电150千瓦时,缴纳电费70.5元,你知道小刚家谷时用电多少千瓦时吗?请你算乙算。

经典例题2、星期天,小丹和姐姐去游乐场玩,她们买了1元、2元、5元的游乐劵共40张,面值共计75元,且1元的游乐劵比2元的游乐劵多5张,三种游乐劵各有多少张?举一反三2、1、明明有10元、2元、5元的游乐劵27张,面值共计108元,且10元的游乐劵比5元的少7张。

三种游乐劵各有多少张?2、王阿姨买10元、5元、4元的公园门票20张,共用去115元,其中10元和5元的门票张数相等。

三种门票各买了多少张?3、某公司有大、中、小型卡车共19辆,每次共运货155箱。

每辆大型卡车每次运10箱,每辆中型卡车每次运9箱,每辆小型卡车每次运6箱。

中型卡车和小型卡车的辆数一样多。

大卡车有多少辆?经典例题3、物资公司用大、小两种型号的卡车运货,每辆大卡车装16箱,每辆小卡车装12箱。

共有27车货,价值5000元。

若每箱便宜2元,则这批货价值4200元。

大卡车、小卡车各有多少辆?举一反三3、1、超市运来一批西瓜准备按大小分两类卖,大西瓜每千克1.2元,小西瓜每千克1元,这批西瓜共卖了168元。

如果每千克西瓜降价0.2元,这批西瓜只能卖138元。

大西瓜、小西瓜各有多少千克?2、商场有鸡蛋18箱,每个大箱装180个鸡蛋,每个小箱装120个鸡蛋,这批鸡蛋价值756元,若将每个鸡蛋便宜2分出售,则这批鸡蛋价值705.6元。

六年级奥数 假设法解题2

六年级奥数  假设法解题2

3.甲车间的工人人数是乙车间工人人数的1/4, 从甲、乙两个车间各抽出30人后,甲车间的工人 人数只占乙车间工人人数的1/6。甲、乙两个车间 原来各有多少人?
甲班种树数量的1/10与乙班种的1/10共 100x1/10=10(棵),根据题意,把乙班 种树数量的1/10换成甲班种树数量的1/3, 则甲班种树数量的1/10与甲班种树数量的 1/3共10+16=26(棵),甲班种了26÷ (1/10+1/3)=60(棵)树,乙班种了 100-60=40(棵)
篮球:(21-1)÷(1+1-1/3)=12(个) 足球:21-12=9(个)
3.箱子里有红、白两种玻璃球,红球的数量比白球 数量的3倍多2个,每次从箱子里取出7个白球和15个 红球。若干次后,箱子里剩下3个白球和53个红球, 那么,箱子里白球原有多少个?
假设鸭增加17只,那么鸡和鹅共有 (100+17)只,是鸡的只数的 (1+1-1/20)。
【6.40+(4.40×3-4.40】÷(7-3)+4.40=8.20(元)
答:陈刚原来有零花钱8.20元。
练习2: 1.甲书架上的书比乙书架上的3倍多50本,若甲、乙 两个书架上各增加150本,则甲书架上的书是乙书架上 的2倍,甲、乙两个书架原来各有多少本书?
假设妹妹多养了10只兔,那么,姐妹共养 120+10=130(只)免,此时妹妹养兔的只数 是姐姐养免只数的(1-1/7),这130只兔是姐 姐养免只数的(1+1-1/7)。
小刚原有的支数:(5-5×1/2)÷(2/3-1/2)-5=10 (支)
小红原有的支数:10×1/2=5(支)
答:小刚原来有彩笔10支,小红原来有彩笔5支。

数学假设法解题

数学假设法解题

假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。

解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。

【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1/9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。

(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。

这样就可以求出师傅加工了【11÷(4/7-3/8)】=56个。

即:师傅:(105×4/7-49)÷(4/7-3/8)=56(个)徒弟:105-56=49(个)答:师傅加工了56个,徒弟加工了49个。

(完整word版)六年级奥数假设法解题答案

(完整word版)六年级奥数假设法解题答案

第十周 假设法解题(一)例题1甲、乙两数之和是185,已知甲数的14 与乙数的15 的和是42,求两数各是多少?【思路导航】假设将题中“甲数的14 ”、“乙数的15”与“和为42”同时扩大4倍,则变成了“甲数与乙数的45 的和为168”,再用185减去168就是乙数的15。

解: 乙:(185-42×4)÷(1-15 ×4)=85答:甲数是100,乙数是85。

练习11. 甲、乙两人共有钱150元,甲的12 与乙的110的钱数和是35元,求甲、乙两人各有多少元钱?2. 甲、乙两个消防队共有338人。

抽调甲队人数的17 ,乙队人数的13,共抽调78人,甲、乙两个消防队原来各有多少人?3. 海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的13多50吨,五月份完成总数的25 少70吨,还有420吨没完成,第二季度原计划生产多少吨?彩色电视机和黑白电视机共250台。

如果彩色电视机卖出19 ,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出19后剩下的一样多。

黑白电视机增加5台后,相当于彩色电视机的(1-19 )=89。

(250+5)÷(1+1-19)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。

练习21. 姐妹俩养兔120只,如果姐姐卖掉17 ,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2. 学校有篮球和足球共21个,篮球借出13后,比足球少1个,原来篮球和足球各有多少个?3. 小明甲养的鸡和鸭共有100只,如果将鸡卖掉120,还比鸭多17只,小明家原来养的鸡和鸭各有多少只师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的38 与徒弟加工零件个数的47的和为49个,师、徒各加工零件多少个? 【思路导航】假设师、徒两人都完成了47 ,一个能完成(105×47 )=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的38 与完成加工零件的47 相差的个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

假设法解题六年级练习题
假设法(也称为猜想法)是一种常用的数学解题方法,在解决复杂问题时,通过假设或猜测问题的一些条件来寻找解答的思路。

在六年级数学练习题中,假设法也是一个经常被使用的解题技巧。

本文将通过几个案例来展示如何运用假设法解决六年级练习题。

案例一:小明的饮料
小明一天能喝下10瓶矿泉水,如果小明每天都喝矿泉水,那么30天后他喝了多少瓶矿泉水?
解题思路:
假设小明每天都喝矿泉水,且每天喝10瓶。

那么30天后,他总共喝了10 * 30 = 300瓶矿泉水。

案例二:鸡兔同笼
一个笼子里有鸡和兔子,一共有35个头,94只脚。

问鸡和兔子各有多少只?
解题思路:
假设笼子里只有鸡,没有兔子。

由于鸡只有一只头,所以35只鸡就有35个头。

但是,94只脚明显超过了只有鸡的情况(假设每只鸡有两只脚)。

所以我们需要调整假设。

因为兔子有一只头和四只脚,所以鸡和兔子的总脚数为:
2 * 鸡的数量 + 4 * 兔子的数量 = 94
由此可知,鸡的数量和兔子的数量必然是整数。

通过尝试不同的鸡的数量,我们可以找到满足条件的解答:当假设有20只鸡时,我们发现35 - 20 = 15,15只兔子的脚数为60。

而20只鸡的脚数为40,加在一起正好是94只脚。

所以鸡有20只,兔子有15只。

案例三:书包中的苹果与梨
小明的书包里有苹果和梨,一共有12个。

如果我们无法看见书包里的水果,而只能摸得到,问小明最少需要摸几次才能保证摸到两个梨或两个苹果?
解题思路:
假设小明一开始摸到的是苹果。

从简单的情况出发,我们假设书包里只有苹果。

那么,小明最多需要摸11次才能保证他摸到两个苹果。

同理,如果书包里只有梨,最多也只需要摸11次就能摸到两个梨。

但是,由于题目中说书包里既有苹果又有梨,所以我们需要调整假设。

通过尝试不同的情况,我们发现若小明摸到的是10个苹果和2个梨,他只需要摸3次就能摸到两个梨或者两个苹果。

所以小明最少需要摸3次。

通过以上案例,我们可以看到假设法在解决六年级数学练习题中的重要作用。

通过合理假设、不断尝试与调整,我们能够找到问题的解答。

六年级的同学们在遇到问题时,可以尝试使用假设法来寻找解决思路,提高解题能力和思维逻辑能力。

总结起来,假设法是一种灵活运用的数学解题方法,通过合理假设和调整,能够寻找到问题的解答。

在六年级的练习题中,假设法常常被用到。

希望同学们在解题过程中能够灵活使用假设法,通过不断尝试与调整,找到解答并提升数学思维能力。

相关文档
最新文档