简析锌粉置换渣中镓锗浸出工艺

合集下载

从锌置换渣中分段浸出锌、铅、镓和锗

从锌置换渣中分段浸出锌、铅、镓和锗

Trans. Nonferrous Met. Soc. China 31(2021) 555−564Hydrometallurgical process for recovery ofZn, Pb, Ga and Ge from Zn refinery residuesShuai RAO1,2,3, Zhi-qiang LIU1,2,3, Dong-xing WANG1,2,3,Hong-yang CAO1,2,3, Wei ZHU1,2,3, Kui-fang ZHANG1,2,3, Jin-zhang TAO1,2,31. Research Institute of Rare Metals, Guangdong Academy of Sciences, Guangzhou 510650, China;2. State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals,Guangdong Academy of Sciences, Guangzhou 510650, China;3. Guangdong Province Key Laboratory of Rare Earth Development and Application,Guangdong Academy of Sciences, Guangzhou 510650, ChinaReceived 3 March 2020; accepted 28 October 2020Abstract: Zn, Pb, Ga and Ge were separated and recovered from zinc refinery residues by stepwise leaching. In the first stage, by leaching with H2SO4 media, more than 90% of Zn and 99% of Ga were dissolved, leaving 92% of Ge in the leaching residue. In the second stage, by leaching with HCl media, approximately 99% of Pb and less than 2% of Ge were selectively dissolved. Finally, the remaining 90% of Ge was extracted in 1 mol/L NaOH solution by destroying the correlation between SiO2 and Ge. XRD pattern of the leaching residue demonstrated that ZnSO4·H2O, PbSO4 and SiO2 were removed sequentially through the stepwise leaching. The proposed process achieved high recoveries of Zn, Pb, Ga and Ge, thus presenting a potential industrial application.Key words: zinc refinery residues; gallium; germanium; stepwise leaching1 IntroductionGermanium (Ge) and gallium (Ga) areconsidered as strategic metals in many countriesowing to their wide applications in high-tech fieldssuch as semiconductors, optical fibers and solarcells [1−4]. However, geological and mineralogicalstudies have shown that it is difficult to findindependent deposits enriched with Ga and Ge [5,6].Currently, Ga and Ge are mainly extracted fromnon-ferrous metal residues [7−10] or secondaryresources [11,12]. The ZnS ores located inGuangdong province contain relatively highcontents of Ga and Ge [13,14]. Based on theproperties of the raw material, pressure leaching isapplied to treating the minerals for recovering Zn,Ga and Ge. During pressure leaching, almost allZn, Ga and Ge are dissolved in the leachingsolution. Zinc powder is then used as thereducing agent to remove Pb and Fe during thesubsequent purification procedure. Ga and Ge(0.1−0.5 wt.%) are also enriched in Zn refineryresidues, which usually contain large amounts of Pband Fe [15,16].Currently, Ga and Ge are extracted from zincplant residues by hydrometallurgical methodsowing to high economic benefits and lowenvironment pollution [17−19]. However, since Gaand Ge are closely correlated with Fe and Si, therecoveries of Ga and Ge are relatively low. Duringsulfuric acid leaching, the formation of silica gelresults in a deteriorating filtration performanceand significant loss of Ga and Ge [20]. To avoid theCorresponding author:Zhi-qiangLIU;Tel:+86-20-61086372;E-mail:*****************DOI:10.1016/S1003-6326(21)65517-61003-6326/© 2021 The Nonferrous Metals Society of China. Published by Elsevier Ltd & Science PressShuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 556problem, hydrofluoric acid has been supplemented to sulfuric acid solutions to enhance the leaching rates of Ga and Ge [21]. However, the subsequent defluorination procedure constrains its commercial applications. Alkaline leaching has also been proposed to recover Ga and Ge [22]. Although a relatively high recovery of Ga and Ge is obtained, a large amount of sodium hydroxide is consumed owing to the dissolution of Pb and Si [23]. Organic weak acids provide milder leaching conditions than mineral acids; therefore, they exhibit a high selectivity [24]. LIU et al [25] researched the recovery of Ga and Ge from Zn refinery residues using an oxalic acid solution after selectively removing Cu and Zn in a sulfuric acid solution. Although this method can achieve high leaching rates of Ga and Ge, it is difficult to regenerate the leaching agent, resulting in a high production cost. In general, considering environmental conservation and process efficiency, there is no appropriate technology for the comprehensive recovery of valuable metals, including Zn, Pb, Ga and Ge, from Zn refinery residues.In this study, based on the properties of Zn refinery residues, stepwise leaching is proposed for the comprehensive recovery of Zn, Pb, Ga and Ge from Zn refinery residues. Firstly, Zn and Ga are dissolved in a sulfuric acid solution through controlled suitable leaching conditions, leaving behind Ge and Pb in the leaching residue. The resulting leaching solution can be further processed by adjusting the pH of the leaching solution to a weak acid environment for an effective separation of Zn and Ga. Secondly, Pb is selectively removed in a hydrochloric acid solution based on the complexation between Pb2+and Cl−. Moreover, a PbCl2product can be obtained through cooling crystallization. Finally, Ge is effectively extracted in a sodium hydroxide solution by destroying the embedded correlation between Ge and silica. The stepwise leaching method is a novel technology for the effective recovery of valuable metals from Zn refinery residues, with the potential to be applied on an industrial scale.2 Experimental2.1 MaterialsThe Zn refinery residue was obtained from a Zn metallurgy enterprise located in Shaoguan city, Guangdong province, China. Before conducting leaching, the material was dried, grounded and sieved to a particle size below 100 μm. The main elemental content of the residue was determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Table 1 shows that the residue mainly contains Zn, Pb, Fe and Si. The contents of Ga and Ge are 0.15 wt.% and 0.47 wt.%, respectively.Table 1 Main elemental contents of Zn refinery residue (wt.%)Zn Pb Fe Si Ga Ge 5.93 4.18 6.30 12.6 0.15 0.47The main phases of the Zn refinery residue were determined by X-ray diffraction (XRD). As shown in Fig. 1, the main diffraction peaks were related to some obvious phases, including SiO2, ZnSO4·H2O, PbSO4and ZnFe2O4. No other characteristic peaks corresponding to Ga or Ge phases were detected, owing to their low contents.Fig. 1 XRD pattern of Zn refinery residueFigure 2 shows the SEM image and elemental surface scanning images of the Zn refinery residue. The residue was mainly composed of many tiny dark particles representing SiO2. Some large blocky-shaped particles suggesting various phases were also observed. The brightest particle can be viewed as PbSO4, owing to the enrichment of Pb. Similarly, Fe and Zn were concentrated in some gray particles, confirming the presence of ZnFe2O4. The distributions for Ga and Ge were very sparse due to their low contents.Shuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 5572.2 Experimental procedureBased on the properties of Zn refinery residue, an environmentally friendly and economical process was proposed for the efficient recovery of Zn, Pb, Ga and Ge. The integrated process flow comprises three procedures, as shown in Fig. 3, namely, Zn and Ga leaching in a H 2SO 4 solution, Pb recovery in a HCl solution, and Ge extraction in a NaOH solution. After Zn and Ga leaching, the pH of the leaching solution was adjusted to weak acid for the separation of Zn and Ga by adding ZnO.During Pb recovery, soluble 24PbClcomplex was transformed into PbCl 2 precipitate through dilution and cooling crystallization. The crystalline mothersolution was regenerated by adding CaCl 2. The pHof the leaching solution obtained from Ge extraction was adjusted to a weak alkaline condition for the separation of Ge and Si by adding HCl. All leaching experiments were performed in a beaker immersed in a water bath with a thermostat, equipped with a magnetic stirrer. All chemical reagents used were analytical grade.Fig. 2 SEM image and main elemental surface scanning images of Zn refinery residueFig. 3 Principal flow sheet for recovering valuable metals from Zn refinery residueShuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 5582.3 Analytical methodsThe phases of the material and leaching residue were determined using a Rigaku TTRAX-3 X-ray diffraction instrument (40 kV, 30 mA, 10 (°)/min). The contents of the main elements, including Zn, Pb, Fe, Ga, Ge and Si, were determined using an inductively coupled plasma- atomic emission spectrometer (Thermo Electron IRIS Intrepid II XSP). The morphology and chemical composition of the samples were analyzed through SEM−EDS (SEM, JEOL, Ltd., JSM−6360LV).3 Results and discussion3.1 Zn and Ga leaching in H2SO4 solutionOwing to the formation of Ge−silica gel and PbSO4 precipitate in a H2SO4 solution, sulfuric acid leaching mainly focuses on the leaching efficiency of Zn and Ga. Moreover, the separation of Zn and Ga should also be considered after the leaching is completed. The φ–pH diagram for a Zn−Ga−Fe−H2O system has been depicted using the HSC 6.0. As illustrated in Fig. 4, Zn2+, Ga3+and Fe3+ were predominant under the acidic conditions, suggesting that sulfuric acid was an effective leaching agent to extract Zn and Ga. However, Zn, Ga and Fe each presented a different pH of hydrolysis precipitation. The precipitation of Ga3+and Fe3+in the form of Fe(OH)3and Ga(OH)3could occur at a pH above 3.0, while soluble Zn2+ existed in the solution at a pH below 6.0. Therefore, an effective separation of Zn and Ga could be obtained by adjusting the pH of the leaching solution to be 3.0−6.0.Fig. 4φ–pH diagram for Zn−Ga−Fe−H2O system at 25 °C (α(Zn2+)=1, α(Fe3+)=1, α(Ga3+)=0.01)Based on the above analyses, the effect of sulfuric acid concentration on the leaching process was investigated in detail. The other leaching conditions included a liquid solid ratio of 10 mL/g, reaction temperature of 80 °C, and leaching time of 2 h. As shown in Fig. 5, increasing the sulfuric acid concentration to 2 mol/L improved the leaching rate of Ga significantly. The Ga leaching rate approached 100% in a 2 mol/L H2SO4solution. Moreover, large amounts of Zn and Fe dissolved in the leaching solution, whereas the Ge leaching rate was relatively low due to the formation of Ge−silica gel. Therefore, a suitable sulfuric acid concentration of 2 mol/L should be selected for optimal leaching of Zn and Ga.Fig. 5 Effect of H2SO4 concentration on leaching rates of Zn, Fe, Ga and GeTable 2 lists the main elemental content of the leaching residue obtained in a 2 mol/L H2SO4 solution. It can be seen that Zn, Fe and Ga decreased significantly, whereas Pb, Si and Ge increased in the H2SO4 leaching residue. The XRD pattern of the H2SO4 leaching residue is shown in Fig. 6. Compared with the results in Fig. 1, the characteristic peaks of ZnSO4·H2O disappeared and the remaining phases contained ZnFe2O4, SiO2 and PbSO4. Figure 7 presents the SEM image of the H2SO4 leaching residue. Based on the results of the EDS analyses from Table 3, the blocky-shaped particles given by Spots 1 and 2 were confirmed as PbSO4and ZnFe2O4, respectively. These tiny dark particles (Spots 3, 4, and 5) were viewed as an enriching Si phase. More importantly, these enriching Si particles exhibited a high Ge content.Shuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 559Table 2Main elemental contents of leaching residue obtained in 2 mol/L H2SO4 solution (wt.%)Zn Pb Fe Si Ga Ge 1.49 9.64 1.52 26.1 0.01 1.03Fig. 6 XRD pattern of H2SO4 leaching residueFig. 7 SEM image of H2SO4 leaching residueTable 3 Chemical composition of selected particles shown in Fig. 7 (wt.%)Element Spot 1 Spot 2 Spot 3 Spot 4 Spot 5 O 20.17 27.54 50.98 45.47 45.01S 9.87 − 3.51 − 4.06Zn −27.01 0.6 0.84 2.29Pb 69.69 −−10.87 10.09Fe −41.44 1.82 0.9 2.11Si −0.84 37.15 36.51 30.08Ga −−−−−Ge −0.01 2.02 2.18 2Once the leaching was completed, Ga and Fe were deposited as Ga(OH)3and Fe(OH)3 by adjusting the pH of the leaching solution to 4.0. The resulting ZnSO4 solution could be returned to the Zn recovery procedure, while the precipitate was further treated to extract Ga. The precipitate obtained in this study exhibited an amorphous phase structure, as shown in Fig. 8. The contents of Fe and Ga in the precipitate were 30.08 and 1.00 wt.%, respectively, suggesting that Ga in the precipitate was over five times higher than that in the material.Fig. 8 XRD pattern of precipitate obtained from H2SO4 leaching solution3.2 Pb recovery in HCl solutionAfter selective dissolution of Zn, Ga and Fe, the leaching residue was mainly composed of Pb, Ge and Si. Due to the formation of soluble 24Pb(OH)-complex in an alkaline solution, it was necessary to remove Pb before extracting Ge. Based on the complexation between Pb2+and Cl−, HCl was selected as a suitable leaching agent. The distribution curves of the Pb species with different Cl−concentrations were constructed using the Medusa software. As shown in Fig. 9, PbCl2 precipitate predominated under a relatively low Cl−concentration condition, while an increased Cl−concentration was beneficial for the formation ofsoluble 24PbCl-complex. This suggests that Pb recovery should be conducted under larger leaching agent concentration and higher liquid-to-solid ratio conditions. Therefore, the leaching process was performed with a liquid-to-solid ratio of 20 mL/g at 90 °C for 2 h. Figure 10 shows the effect of HCl concentration on the leaching rates of Pb and Ge. The leaching rate of Pb enhanced with an increasing HCl concentration from 0.5 to 2 mol/L. Almost all of the PbSO4 dissolved in a 2 mol/L HCl solution, with the Ge leaching rate below 2%.Shuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 560Fig. 9Distribution of Pb species at different pH for Pb2+−Cl−−H2O system at 25 °CTable 4 lists the main elemental contents of the leaching residue. It can be seen that Ge increased to above 1.37 wt.% in the leaching residue, whereas the content of Pb reduced to below 0.1 wt.%. The main phases of the leaching residue were SiO2 and ZnFe2O4, as shown in Fig. 11. Compared with Fig. 7, Fig. 12 shows that the brightest particles representing the PbSO4 phase were seldom observed. Moreover, there was a close correlation between Ge and Si based on the Ge−Si surface distribution diagram.Fig. 10 Effect of HCl concentration on leaching rates of Pb and GeFig. 11 XRD pattern of HCl leaching residueTable 4 Main elemental contents of leaching residue obtained in 2 mol/L HCl solution (wt.%)Zn Pb Fe Si Ga Ge 1.29 0.078 1.31 30 0.007 1.37Fig. 12 SEM image and Ge−Si surface distribution of leaching residue obtained in 2 mol/L HCl solutionShuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 561After completion of the Pb leaching, it is necessary to recover Pb from the leaching solution.A 24PbCl -complex can be transformed into PbCl 2 precipitate by decreasing the reaction temperature and Cl − concentration [26]. Therefore, the leaching solution was processed by dilution and cooling. Then, the PbCl 2 product was obtained by liquid −solid separation. The Pb content in the solution lowered from 4.78 to 1.79 g/L, suggesting that approximately 37.4% of Pb remained in the leaching solution. More than 60% of Pb was recovered in the form of PbCl 2, as shown in Fig. 13. The PbCl 2 product containing 74.3 wt.% Pb exhibited a high purity without any additional characteristic peaks. As shown in Fig. 14, after cooling crystallization, the resultingsolution wasregenerated by adding CaCl 2to remove 24SO -byprecipitation reaction between 24SO - and Ca 2+, allowing for the regenerated solution to be used in the subsequent lead removing procedure.Fig. 13 XRD pattern of PbCl 2 product from HCl leaching solutionFig. 14 XRD pattern of precipitate obtained from regeneration of leaching agent3.3 Extraction of Ge in NaOH solutionTo remove silica −germanium gel, NaOH is used as the leaching agent to effectively extract Ge. Leaching experiments were conducted at 80 °C with a liquid solid ratio of 20 mL/g for 2 h. Figure 15 shows the effect of NaOH concentration on the leaching rates of Ge and Si. An increased NaOH concentration significantly improved the dissolution efficiency of Ge and Si. More than 99% of Ge and 90% of Si were dissolved in 1 mol/L NaOH solution. Table 5 lists the main elemental contents of the NaOH leaching residue. Fe and Zn increased inthe leaching residue, whereas Gedecreased to 0.06%. The XRD pattern, shown in Fig. 16, indicates the main phases of the leaching residue to be SiO 2, ZnS and ZnFe 2O 4. ComparedFig. 15 Effect of NaOH concentration on leaching rates of Si and GeFig. 16 XRD pattern of NaOH leaching residueTable 5 Main elemental contents of leaching residue obtained in 1 mol/L NaOH solution (wt.%) Zn Fe Pb Si Ga Ge 6.817.10.117.690.010.06Shuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564562 with Fig. 8, new characteristic peaks of ZnS were observed owing to an increased Zn content in the leaching residue. Figure 17 shows the SEM image and main elemental surface distribution of the alkaline leaching residue. The tiny silica − germanium gel particles dissolved entirely, and the remaining particles, including ZnS, ZnFe 2O 4 and SiO 2, were large, preventing adequate dissolution through atmospheric leaching.Fig. 17 SEM image and main elemental surface scanning maps of leaching residueAfter Ge leaching, it is necessary to separate Ge and Si from the leaching solution owing to the dissolution of SiO 2. According to the φ−pH diagram for the Ge −Si −H 2O system in Fig. 18, Ge −silica gel can be destroyed by promoting the formation ofsoluble 3HGeO - and 3SiO(OH)-in an alkaline solution. After the leaching is complete, the precipitation of Si in the form of amorphous silicon dioxide can occur by adjusting the pH to be 6.0−12.0, allowing for an effective separation of Geand Si. Therefore, in this study, the pH of the alkaline leaching solution was adjusted to be 9.0 by adding 2 mol/L HCl. The Si content in the leaching solution lowered to less than 0.3 g/L, as shown in Table 6, allowing for an excellent Ge −Si separation efficiency. Moreover, Zn, Pb and Fe were also adequately removed. The leaching solution could then be used to recover Ge through precipitation or solvent extraction. The white precipitate obtained from the Ge −Si separation procedure was amorphous silicon dioxide and, therefore, no obvious characteristic peaks were observed, as shown in Fig. 19.Fig. 18 φ−pH diagram for Ge −Si −H 2O system at 25 °C (α(Si 4+)=1, α(Ge 4+)=0.01)Table 6 Main elemental contents of leaching solution adjusted to pH 9.0 (mg/L) Zn Pb Fe Si Ga Ge <0.5 <0.5<0.5268.1<0.5254.1Fig. 19 XRD pattern of white precipitate obtained during Ge and Si separationShuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 5634 Conclusions(1) More than 90% of Zn and 99% of Ga were leached in a 2 mol/L H2SO4 solution with a liquid–solid ratio of 10 mL/g at 80 °C after 2 h, leaving approximately 92% of Ge in the leaching residue. The content of Ga in the precipitate was over 5 times higher than in the raw material.(2) About 99% of Pb and less than 2% of Ge were dissolved in a 2 mol/L HCl solution with a liquid-to-solid ratio of 20 mL/g at 90 °C for 2 h. A PbCl2 byproduct with a high purity was obtained by cooling crystallization.(3) During alkaline leaching, the remaining 90% of the Ge was extracted in a 1 mol/L NaOH solution with a liquid-to-solid ratio of 20 mL/g at 80 °C for 2 h. An effective Ge−Si separation was conducted by adjusting the pH of the leaching solution to 9.0.AcknowledgmentsThe authors are grateful for the financial supports from the National Natural Science Foundation of China (51804083, 51704081), the National Key Research and Development Project (2018YFC1903104), the Natural Science Foundation of Guangdong Province, China (2019A1515011628), the Science and Technology Planning Project of Guangzhou (201904010106) of China, and Guangdong Academy of Science Doctor Special Program of China (2020GDASYL-0104027, 2019GDASYL-0105079, 2019GDASYL-0302011, 2019GDASYL-0402003).References[1]FTHENAKIS V, WANG Wen-ming, KIM H C. Life cycleinventory analysis of the production of metals used inphotovoltaics [J]. Renewable and Sustainable EnergyReviews, 2009, 13(3): 493−517.[2]CAROLAN D. Recent advances in germanium nanocrystals:Synthesis, optical properties and applications [J]. Progress inMaterials Science, 2017, 90: 128−158.[3]FRENZEL M, MIKOLAJCZAK C, REUTER M A,GUTZMER J. Quantifying the relative availability ofhigh-tech by-product metals−The cases of gallium,germanium and indium [J]. Resources Policy, 2017, 52:327−335.[4]SIONTAS S, LI D, WANG H, A. V. P. S A, ZASLAVSKYA, PACIFICI D. High-performance germanium quantum dotphotodetectors in the visible and near infrared [J]. MaterialsScience in Semiconductor Processing, 2019, 92: 19−27. [5]LU Fang-hai, XIAO Tang-fu, LIN Jian, NING Zeng-ping,LONG Qiong, XIAO Li-hua, HUANG Fang, WANG Wan-kun, XIAO Qing-xiang, LAN Xiao-long, CHEN Hai-yan. Resources and extraction of gallium: A review [J].Hydrometallurgy, 2017, 174: 105−115.[6]MOSKALYK R R. Review of germanium processingworldwide [J]. Minerals Engineering, 2004, 17(3): 393−402.[7]FRENZEL M, HIRSCH T, GUTZMER J. Gallium,germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type: A meta-analysis [J].Ore Geology Reviews, 2016, 76: 52−78.[8]LU Fang-hai, XIAO Tang-fu, LIN Jian, LI An-jing, LONGQiong, HUANG Fang, XIAO Li-hua, LI Xiang, WANG Jia-wei, XIAO Qing-xiang, CHEN Hai-yan. Recovery of gallium from Bayer red mud through acidic leaching-ion exchange process under normal atmospheric pressure [J].Hydrometallurgy, 2018, 175: 124−132.[9]KUL M, TOPKAYA Y. Recovery of germanium and othervaluable metals from zinc plant residues [J].Hydrometallurgy, 2008, 92(3): 87−94.[10]MACÍAS-MACÍAS K Y, CENICEROS-GÓMEZ A E,GUTIÉRREZ-RUIZ M E, GONZÁLEZ-CHÁVEZ J L, MARTÍNEZ-JARDINES L G. Extraction and recovery of the strategic element gallium from an iron mine tailing [J].Journal of Environmental Chemical Engineering, 2019, 7(2): 102964.[11]ZHOU Jia-zhi, ZHU Neng-wu, LIU Huang-rui, WUPing-xiao, ZHANG Xiao-ping, ZHONG Zu-qi. Recovery of gallium from waste light emitting diodes by oxalic acidic leaching [J]. Resources, Conservation and Recycling, 2019, 146: 366−372.[12]CHEN Wei-Sheng, CHANG Bi-Cheng, CHIU Kai-Lun.Recovery of germanium from waste optical fibers by hydrometallurgical method [J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5215−5221.[13]LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LIQi-hou, WEN Da-min. Sulfuric leaching process of zinc powder replacement residue containing gallium and germanium [J]. The Chinese Journal of Nonferrous Metals, 2016, 26(4): 908−918. (in Chinese)[14]LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LIQi-hou. Leaching mechanism of zinc powder replacement residue containing gallium and germanium by high pressure acid leaching [J]. The Chinese Journal of Nonferrous Metals, 2014, 24(4): 1091−1098. (in Chinese)[15]LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, LIU Zhi-yong, LIQi-hou, ZENG Li. Extraction of gallium and germanium from zinc refinery residues by pressure acid leaching [J].Hydrometallurgy, 2016, 164: 313−320.[16]LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, WILSON B P,LUNDSTRÖM M. Recovery and separation of gallium (III) and germanium (IV) from zinc refinery residues: Part I: Leaching and iron (III) removal [J]. Hydrometallurgy, 2017, 169: 564−570.[17]WU Xue-lan, WU Shun-ke, QIN Wen-qing, MA Xi-hong,NIU Yin-jian, LAI Shao-shi, YANG Cong-ren, JIAO Fen, REN Liu-yi. Reductive leaching of gallium from zinc residue [J]. Hydrometallurgy, 2012, 113−114: 195−199.[18]LIANG Duo-qiang, WANG Ji-kun, WANG Yun-hua.Shuai RAO, et al/Trans. Nonferrous Met. Soc. China 31(2021) 555−564 564Difference in dissolution between germanium and zinc during the oxidative pressure leaching of sphalerite [J].Hydrometallurgy, 2009, 95(1): 5−7.[19]ZHANG Li-bo, GUO Wen-qian, PENG Jin-hui, LI Jing, LINGuo, YU Xia. Comparison of ultrasonic-assisted and regular leaching of germanium from by-product of zinc metallurgy [J]. Ultrasonics Sonochemistry, 2016, 31: 143−149.[20]HARBUCK D D. Optimization of gallium and germaniumextraction from hydrometallurgical zinc residue [J]. Light Metals, 1989: 984−989.[21]HARBUCK D D. Increasing germanium extraction fromhydrometallurgical zinc residues [J]. Mining, Metallurgy & Exploration, 1993, 10(1): 1−4.[22]TORMA A E. Method of extracting gallium and germanium[J]. Mineral Processing and Extractive Metallurgy Review, 1991, 3: 235−258.[23]RAO Shuai, WANG Dong-xing, LIU Zhi-qiang, ZHANGKui-fang, CAO Hong-yang, TAO Jin-zhang. Selective extraction of zinc, gallium, and germanium from zinc refinery residue using two stage acid and alkaline leaching [J]. Hydrometallurgy, 2019, 183: 38−44.[24]HURŞIT M, LAÇIN O, SARAÇ H. Dissolution kinetics ofsmithsonite ore as an alternative zinc source with an organic leach reagent [J]. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(1): 6−12.[25]LIU Fu-peng, LIU Zhi-hong, LI Yu-hu, WILSON B P,LUNDSTRÖM M. Extraction of Ga and Ge from zinc refinery residues in H2C2O4solutions containing H2O2 [J].International Journal of Mineral Processing, 2017, 163: 14−23.[26]DING Yun-ji, ZHANG Shen-gen, LIU Bo, LI Bin. Integratedprocess for recycling copper anode slime from electronic waste smelting [J]. Journal of Cleaner Production, 2017, 165: 48−56.从锌置换渣中分段浸出锌、铅、镓和锗饶帅1,2,3,刘志强1,2,3,王东兴1,2,3,曹洪杨1,2,3,朱薇1,2,3,张魁芳1,2,3,陶进长1,2,31. 广东省科学院稀有金属研究所,广州510650;2. 广东省科学院稀有金属分离与综合利用国家重点实验室,广州510650;3. 广东省科学院广东省稀土开发及应用研究重点实验室,广州510650摘要:采用分段浸出方法从锌置换渣中选择性提取锌、铅、镓和锗。

碱浸-还原挥发工艺回收镓锗置换渣中镓、锗

碱浸-还原挥发工艺回收镓锗置换渣中镓、锗

碱浸-还原挥发工艺回收镓锗置换渣中镓、锗
周科华;刘野平;梁彦杰;宋家琪
【期刊名称】《中国有色冶金》
【年(卷),期】2024(53)2
【摘要】镓、锗是重要的稀散金属,从锌冶炼过程中综合回收镓、锗成为该原生金属产量的重要来源。

目前主要采用酸浸工艺从镓锗置换渣回收镓、锗,回收率较低,资源利用率低。

本文利用镓、锗两性物质的属性,采用碱浸-还原挥发工艺进行了回收镓锗置换渣中镓、锗的试验研究,得到以下主要结论。

碱浸试验单因素最佳工艺条件为NaOH浓度4 mol/L、反应温度90℃、液固比8 mL/g、搅拌速度400 r/min,在此条件下,镓锗置换渣中镓、锗浸出率分别达到91.25%和78.95%;强化球磨浸出对镓、锗的浸出率没有改善作用;还原挥发试验的单因素最佳工艺条件为温度1200℃、粉煤配入量30%、挥发时间4 h,在此条件下,碱性浸出残渣中锗的挥发率达到91.02%。

该工艺产生的挥发残渣和砷酸钙渣返回火法炼铅系统综合回收铜、砷等有价金属,实现了渣的无害化处理。

本文回收镓、锗的方法可为同类企业从锌冶炼工序中回收镓、锗提供参考。

【总页数】7页(P49-55)
【作者】周科华;刘野平;梁彦杰;宋家琪
【作者单位】深圳市中金岭南有色金属股份有限公司;中南大学冶金与环境学院【正文语种】中文
【中图分类】TF813;TF843
【相关文献】
1.从湿法炼锌渣中回收镓和锗的研究(下)--锈蚀法从铁粉提取镓与锗
2.从高压浸出镓锗液中回收镓锗的试验研究
3.锌粉置换镓锗渣高压酸浸的浸出机理
4.锈蚀法从浸锌渣还原铁粉中分离镓锗的基础与应用
5.从锌浸渣中回收镓和锗的研究及实践
因版权原因,仅展示原文概要,查看原文内容请购买。

热酸浸出锌浸渣中镓锗的研究

热酸浸出锌浸渣中镓锗的研究

量稳步增长, 价格持续上升, 对镓锗回收技术的研究有 现实意义。

1105 收稿日期: 2011基金项目: 国家重点基础研究发展计划资助项目( 2010CB630905 ) 作者简介: 马喜红( 1985 - ) , 女, 宁夏固原人, 硕士研究生, 主要研究方向为矿物加工和湿法冶金。
72




在实际操作中, 常用 pHθ 其中 T 来判断反应的酸度,
n ac aa C 和 H + 的活度。 C, A 和 a H + 分别为反应平衡时的 A、
pH T 用 pH θ 当活度 a C = a A = 1 时, 即: T 来定义 , - Δr Gθ T ( 8) 2 . 303 nRT 6] 以 ZnO·Fe2 O3 为例, 进行式( 1 ) 的计算, 依文献[ 可 查出有关热力学数据, 有: pH θ T =
要: 研究了锌浸渣热酸浸出过程的工艺条件, 分析了浸出热力学和动力学机理, 并用于指导回收稀有金属镓和锗 。 实验结果
表明, 锌浸渣中镓和锗浸出的最佳工艺条件为: 硫酸初始质量浓度为 188 g / L, 反应温度为 95 ℃ , 反应时间为 3 h, 液固比为 5∶ 1 , 搅 该条件下多组综合实验的酸浸出液中 Ga 和 Ge 的浸出率均高于 86% 和 62% 。 锌浸渣中金属镓锗的浸出过程 拌速度为 300 r / min, “未反应核减缩” 在动力学上属于 模型, 浸出过程主要受反应温度 、 始酸浓度、 反应时间的影响, 反应由界面化学反应控制 。 关键词: 锌浸渣; 热酸浸出; 镓; 锗; 未反应核减缩模型 中图分类号: TF111 文献标识码: A 文章编号: 0253 - 6099 ( 2012 ) 02 - 0071 - 05

从锌冶炼废渣提取锗和锌金属的最佳工艺参数的研究

从锌冶炼废渣提取锗和锌金属的最佳工艺参数的研究

世界有色金属 2023年 6月上4冶金冶炼M etallurgical smelting从锌冶炼废渣提取锗和锌金属的最佳工艺参数的研究李 婷*,周林军(四川化工职业技术学院,四川 泸州 646300)摘 要:以四川西昌某锌冶金企业稀贵金属综合回收系统一段浸出液为原料,通过丹宁沉锗法,对影响沉锗率和锌损失率的条件进行试验。

试验结果表明丹宁酸加入量为浸出液即沉锗前液锗含量的25倍时,酸度控制在PH值2.5,温度控制在60℃~70℃,搅拌时间为25min时,可达到97%的沉锗率(以液计),并能将锌损失率控制在11%左右。

关键词:锌;锗金属;沉锗率;锌损失率中图分类号:X758 文献标识码:A 文章编号:1002-5065(2023)11-0004-3Study on the optimum process parameters for extracting germanium and zinc from zinc smelting wasteLI Ting*, ZHOU Lin-jun(Sichuan Vocational College of Chemical Technology ,Luzhou 646300, China)Abstract: Using the leaching solution of the first stage of the comprehensive recovery system of rare and precious metals in a zinc metallurgical enterprise in Xichang, Sichuan as raw material, the conditions affecting the germanium precipitation rate and zinc loss rate were tested by tannin precipitation method. The test results show that when the amount of tannin added is 25 times the germanium content of the leaching solution, that is, the solution before germanium precipitation, the acidity is controlled at PH value of 2.5, the temperature is controlled at 60℃~70℃, and the stirring time is 25min, 97% germanium precipitation can be achieved. The rate of zinc loss (calculated by liquid), and the loss rate of zinc can be controlled at about 11%.Keywords: zinc; germanium metal; germanium deposition rate; zinc loss rate收稿日期:2023-03作者简介:李婷,女,生于1987年,汉族,四川资阳人,本科,讲师,研究方向:金属材料性能。

锌粉置换渣浸出过程中镓的溶解行为及改善方法

锌粉置换渣浸出过程中镓的溶解行为及改善方法

锌粉置换渣浸出过程中镓的溶解行为及改善方法
张伟;饶帅;李立清;宫晓丹;吴才贵;胡东风;曹洪杨;刘志强
【期刊名称】《Transactions of Nonferrous Metals Society of China》
【年(卷),期】2024(34)3
【摘要】针对丹霞冶炼厂锌粉置换渣浸出过程中镓浸出率偏低问题,采用ICP-AES、XRD与SEM-EDS对不同批次锌粉置换渣化学成分、物相与形貌进行详细分析。

与正常生产锌粉置换渣相比,异常锌粉置换渣中镓主要赋存于黄钾铁矾之中,造成镓
浸出困难。

对锌粉置换渣氧压浸出过程进行分析,镓、砷和铁溶出规律较为一致:增
大硫酸浓度和液固比有利于镓、铁和砷的浸出,但提高温度和氧气分压对镓、铁和
砷溶出不利。

依据上述研究结果,提出强化镓浸出效率的改善措施,弱化一段氧压浸
出(分别降低反应温度和压缩空气总压至90℃和0.2 MPa)与强化三段常压浸出(分别提高硫酸浓度和反应温度至160 g/L和85℃),镓的浸出效率由77.83%提高至96.46%。

【总页数】11页(P1016-1026)
【作者】张伟;饶帅;李立清;宫晓丹;吴才贵;胡东风;曹洪杨;刘志强
【作者单位】江西理工大学材料冶金化学学部;深圳市中金岭南有色金属股份有限
公司丹霞冶炼厂;广东省科学院资源利用与稀土开发研究所
【正文语种】中文
【中图分类】TF8
【相关文献】
1.锌粉置换镓锗渣草酸浸出过程
2.锌粉置换镓锗渣硫酸浸出过程
3.锌粉置换镓锗渣高压酸浸的浸出机理
4.锌粉置换镓锗渣加压氧化浸出的生产实践
因版权原因,仅展示原文概要,查看原文内容请购买。

简析锌粉置换渣中镓锗浸出工艺

简析锌粉置换渣中镓锗浸出工艺

简析锌粉置换渣中镓锗浸出工艺作者:钟湘来源:《中国化工贸易·下旬刊》2017年第03期摘要:镓、锗这两种材料是高尖端设备中的重要材料,被人们广泛应用在各高技术领域中,并成为这些领域中重要的材料。

但是,由于镓、锗本身的特殊性,对这两种元素的提炼是一个非常困难的事情,这便需要通过不断实验研究出新的浸出工艺,来促使这两种元素更加容易被人们提炼出来。

基于此,本文就对锌粉置换渣中镓锗浸出工艺进行探讨。

关键词:镓;锗;浸出工艺根据相关数据显示,在世界范围内镓的存储量仅为100万吨,我国约有15万吨,而且绝大多数都存在于铝矿中,但是锗的存储量则为3.6kt。

然而,这两种元素自身很难够形成独立的矿床,其主要是离子或是化合物的形式存在于锌、铝等矿床中,所以需要采取有效措施和工艺的镓、锗进行提取和分离,以满足人们在这两种元素材料上的需求。

下面笔者就对镓、锗的相关内容进行探讨。

1自然界中镓锗的形态镓、锗这两种元素均是稀散元素,在自然界当中很难够找到独立的矿床,也对无法对这两种元素进行开采。

从镓、锗以及锌这三种元素的原子半径来看,分别为0.127nm、0.146nm和0.137nm,而且所呈现出来的是四面体,在构造上为闪锌矿型。

锗元素其主要是以类质同象而存在于闪锌矿中,也存在于煤矿、铝土矿等矿床中。

而镓元素除了如同锗元素存在闪锌矿中以外,其还存在于Al2O3矿床中。

要想利用闪锌矿将镓、锗这两种元素分离出来,则需要利用湿法炼锌,在该工艺流程中会使镓、锗出现在浸出渣中,然后再利用有效的方法和手段来将镓、锗分离出来[1]。

2锌粉置换渣中镓锗浸出工艺2.1液膜分离法利用此方法对镓、锗进行分离提取十分类似于萃取,而且在提炼过程中也包含了反萃取和萃取这两个阶段。

由于在分离模式当中有水相和油相之分,所以在乳状液膜上也将划分为水包油与油包水两种。

如果在提炼时选择油膜分离法,那么在油膜的两侧将会同时进行反萃取和萃取两种反应过程,如果金属离子从膜的一侧转入到另一侧时,通过反萃取实验转入到的接收相当中,以此来有效实现反萃取和萃取两者之间所存在的内耦合[2]。

用稀硫酸-有机酸体系浸出锌粉置换渣中的锗试验研究

用稀硫酸-有机酸体系浸出锌粉置换渣中的锗试验研究
行为规律。考察了硫酸初始质量浓度、温 度、浸 出 时 间、液 固 体 积 质 量 比 和 有 机 酸 种 类 及 添 加 量 对 锗 浸 出 率
的影响。结果表明:在硫酸初始质量浓度 70g/L、温度 55 ℃ 、浸出时间 1h、液固体积质量比 10mL/1g、酒石
/mi
酸 加入量 10g/L 和搅拌速度 300r
水的草酸浸出锌粉置换 渣,锗 浸 出 率 可 达 98% 以
收稿日期:
2023
01
18
文章编号:
1009
2617(
2023)
03
0241
06
上 [15],但草酸再生困难,生产成本较高。
针对现有方法 存 在 的 设 备 要 求 苛 刻、回 收 成
本高、液 固 分 离 困 难 等 问 题,试 验 研 究 了 用 稀 硫
(H4S
iO4)胶体形成,因锗、硅 性 质 相 似,锗 易 被 硅
酸选择性吸附,导致锗 浸 出 率 降 低 [14]。综 合 考 虑
锗、铜、锌 浸 出 率 和 悬 浮 液 过 滤 情 况,确 定 硫 酸 初
始质量浓度以 70g/L 为宜。
2.
2 温度对金属浸出率的影响
取锌 粉 置 换 渣 10 g,在 硫 酸 初 始 质 量 浓 度
属浸出率的影响,试验结果如图 2 所示。
海精密科学仪器有限公司),循环水式多用真空泵
感耦合等离子体发射光谱仪(
Th
ermBiblioteka Scien
t
i
f
i
c )。
主要试剂:硫酸、有机酸等,均为分析纯,购自
/mi
25 ℃ 、搅 拌 速 度 300r
n、液 固 体 积 质 量 比

锌粉置换镓锗渣草酸浸出过程

锌粉置换镓锗渣草酸浸出过程

。但由于该含镓锗物料中还含有锌、硅、
铜、铁、砷、铅等成分,且物相较为复杂,所以, 实 现镓、锗的高效回收面临着较大挑战。 还原或硫化挥发等火法工艺存在投资大、 能耗高、 污染重等缺点 ,因而,湿法回收技术是当前处理含 镓、锗物料的主要工艺。TORMA 和 LEE 等
[9−10] [8]

用碱浸工艺处理含锌冶炼渣,虽然该工艺可实现部分 金属的选择性浸出,但由于浸出液中硅、铅和铝的含 量较高,使得后续镓、锗回收较难。所以,目前多采 用“硫酸浸出−萃取分离”的工艺处理锌冶炼渣。但 采用常规硫酸浸出工艺时, 锗浸出效果较差, 仅为 60% 左右[11]。为了提高镓、锗的浸出率,KUL 等[12]采用了 氧化浸出工艺处理锌冶炼渣, 锗的浸出率达到 90%左
基金项目:中国博士后科学基金面上项目(2012M521544) 收稿日期:2016-07-21;修订日期:2017-01-20
通信作者:刘志宏,教授,博士;电话:0731-88830478;E-mail: zhliu@
第 27 卷第 10 期
刘付朋,等:锌粉置换镓锗渣草酸浸出过程
作为高新技术支撑材料的镓和锗,因其优良的光 电和化学性能,被广泛应用于军事、光纤通讯、催化 自然界中极少存在单一的 剂、 电子和医学等领域[1−3]。 镓、锗的工业矿床,镓、锗主要从锌、铝、铜等有色 金属冶炼的副产物中回收。 锌粉置换镓锗渣作为一种典型的含镓、 锗的物料, 其镓、 锗含量分别为 0.2%~0.4% 和 0.2%~0.5%(质量 分数),具有较高的综合回收价值,目前在全球引起了 广泛关注
锌粉置换镓锗渣主要化学成分 Main chemical composition of the zinc powder
Table 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简析锌粉置换渣中镓锗浸出工艺
作者:钟湘
来源:《中国化工贸易·上旬刊》2017年第09期
摘要:镓、锗这两种材料是高尖端设备中的重要材料,被人们广泛应用在各高技术领域中,并成为这些领域中重要的材料。

但是,由于镓、锗本身的特殊性,对这两种元素的提炼是一个非常困难的事情,这便需要通过不断实验研究出新的浸出工艺,来促使这两种元素更加容易被人们提炼出来。

基于此,本文就对锌粉置换渣中镓锗浸出工艺进行探讨。

关键词:镓;锗;浸出工艺
根据相关数据显示,在世界范围内镓的存储量仅为100万吨,我国约有15万吨,而且绝大多数都存在于铝矿中,但是锗的存储量则为3.6kt。

然而,这两种元素自身很难够形成独立的矿床,其主要是离子或是化合物的形式存在于锌、铝等矿床中,所以需要采取有效措施和工艺的镓、锗进行提取和分离,以满足人们在这两种元素材料上的需求。

下面笔者就对镓、锗的相关内容进行探讨。

1自然界中镓锗的形态
镓、锗这两种元素均是稀散元素,在自然界当中很难够找到独立的矿床,也对无法对这两种元素进行开采。

从镓、锗以及锌这三种元素的原子半径来看,分别为0.127nm、0.146nm和0.137nm,而且所呈现出来的是四面体,在构造上为闪锌矿型。

锗元素其主要是以类质同象而存在于闪锌矿中,也存在于煤矿、铝土矿等矿床中。

而镓元素除了如同锗元素存在闪锌矿中以外,其还存在于Al2O3矿床中。

要想利用闪锌矿将镓、锗这两种元素分离出来,则需要利用湿法炼锌,在该工艺流程中会使镓、锗出现在浸出渣中,然后再利用有效的方法和手段来将镓、锗分离出来[1]。

2锌粉置换渣中镓锗浸出工艺
2.1液膜分离法
利用此方法对镓、锗进行分离提取十分类似于萃取,而且在提炼过程中也包含了反萃取和萃取这两个阶段。

由于在分离模式当中有水相和油相之分,所以在乳状液膜上也将划分为水包油与油包水两种。

如果在提炼时选择油膜分离法,那么在油膜的两侧将会同时进行反萃取和萃取两种反应过程,如果金属离子从膜的一侧转入到另一侧时,通过反萃取实验转入到的接收相当中,以此来有效实现反萃取和萃取两者之间所存在的内耦合[2]。

在整个分离过程当中,一共分为三个部分,即破乳、迁移以及制乳。

首先,制乳。

该分离程序主要是将表面具有活性的油和反萃剂来进行乳化,从而形成乳状液,然后将乳状液不断分散到相应的溶质溶液当中,并形成较为分散的液滴,从而完成制乳工作。

其次,迁移。

当对液体中元素进行分离时,由于杂
质离子与迁移离子两者在渗透性上存在着一定的差异,很多被迁移的离子将会由外水相逐渐迁移到内水相,而各类杂质则会被遗留在外水相中,以此完成物质间的分离。

最后,破乳。

通过破乳对内水相中的各类粒子进行回收,以完成物质的分离。

油相在提炼过程中可以反复使用,但由于油膜分离法自身的优势,使得其在镓、锗分离上获得了广泛应用。

2.2锈蚀法
此方法主要是对溶液当中的电位值与酸碱度进行调节,促使金属元素在不同条件下各自发生化学反应,形成金属离子溶解到液体当中,以此来达到分离的目的[3]。

此种分离方法不仅工艺流程简单,成本相对较低,而且所获得的分类效果较好。

相关学者通过对很多金属离子和电位、PH之间的关系,然后了解了镓、锗在分离时所需要的热力条件,发现对溶液当中的电位值与pH值进行控制时,可以让铁离子反应形成沉淀物,而镓、锗这两种元素在溶液中则是以H2GeO3和Ga3+这两种形式存在于溶液中,其在回收率上能够达到90%。

2.3常压酸浸法
该方法和其他方法相比较,在常压条件下镓、锗浸出率相对较低。

学者Wardell等人通过使用相关反应溶液分离镓、锗,在这一过程中主要是受到浓硫酸自身温度、浓度等方面因素的影响。

当反应温度为80摄氏度、浸出时间为4小时时,通过改变浓硫酸的使用观察出镓的浸出率,浓硫酸最初的使用量为216kg/t,镓的浸出率则为14%,锗的浸出率为27.8%,而浓硫酸使用量上涨到726.4kg/t,镓的浸出率则为88%,锗的浸出率为58.4%。

同时,为了降低溶液当中硅形态所产生的不良影响,有学者还提出了新的浸出工艺,并在后续发展过程中形成可一段浸出渣和二段高温强酸两种浸出工艺,该工艺的使用能够有效提高镓、锗的浸出率,分别达到90.87%和70.33%。

下图便是二段酸浸的工艺流程图。

3总结
总之,镓、锗对于航天、通信和卫星等领域来说是非常重要的,应当采取相应工艺来完成对这两种元素的萃取和提炼,以满足人们对于这两种元素的需求。

文章对这两种元素的提炼方法进行了探讨,使人们能对镓、锗浸出工艺有一定的了解,并为相关工作人员在镓、锗上的提炼提供一定参考。

参考文献:
[1]刘付朋.锌粉置换渣中镓锗浸出的研究[D].中南大学,2014.
[2]何磊,龙泳.锌粉置换渣中镓锗浸出工艺探讨[J].华东科技(学术版),2016(7):339-340.
[3]刘付朋,刘志宏,李玉虎,等.锌粉置换镓锗渣硫酸浸出过程[J].中国有色金属学报,2016(4):908-918.。

相关文档
最新文档