两相厌氧处理工艺的研究与应用
两相厌氧处理工艺的研究与应用讲解

两相厌氧处理工艺的研究与应用摘要:利用各种高效反应器对现有的单相厌氧处理系统进行改造,以提高其稳定性,获得比现有单相系统更大的负荷和更高的效率。
文章对废水两相厌氧处理工艺的研究和应用作了综述,概括了两相厌氧处理酒厂废水、垃圾填埋场渗滤液、乳品废水、牛奶厂废水、制浆造纸废水等的应用情况,对反应器型式、环境和操作条件及两相厌氧处理工艺与其他厌氧反应器处理废水效果进行了总结和比较。
关键词:两相厌氧酸化甲烷化废水有机物的厌氧降解,在宏观上和工程上可以简化地分为产酸和产甲烷两个阶段。
两个阶段在细菌种类、消化速率、环境要求、降解过程和产物等方面均有所不同。
在一个反应器内要保持这两大类微生物的成活,并有旺盛的生理功能活动、协调发展,对反应器的维护管理是比较困难的。
Pohland[1]于1971年首次提出了两相厌氧消化的概念,即把厌氧的两个阶段分别在两个独立的反应器内进行,分别创造各自最佳的环境条件,培养两类不同的微生物,并将这两个反应器串联起来,形成两相厌氧工艺系统。
两相厌氧工艺系统能够承受较高的负荷率,反应器容积较小,运行稳定,日益受到人们的重视。
废水采用两相厌氧处理的前景十分可观,可以利用各种高效反应器设备对现有的处理系统进行改造,提高其稳定性,可获得比现有单相厌氧处理系统更高的负荷率和效率。
1 两相厌氧处理工艺的研究与应用1.1 研究与应用情况两相厌氧工艺可用于处理多种废水,如:酒厂废水、垃圾渗滤液、大豆加工废水、酵母发酵废水、乳清废水、牛奶工业废水、淀粉废水、制浆造纸废水、染料废水等。
表1列出了部分两相厌氧工艺研究和应用的运行数据。
表1 部分两相厌氧工艺研究和应用运行数据处理对象产酸相反应器产甲烷相反应器有机负荷率/(kgCOD·m-3·d-1)COD(BOD)去除率/%参考文献酒厂废水上流式厌氧污泥床上流式厌氧污泥床酸相 16.5甲烷相 44.080[2]制浆造纸废水上流式厌氧污泥床上流式厌氧污泥床(36℃)1284(96)[3]牛奶废水连续搅拌池反应器上流式厌氧滤池590(95)[4]染料废水厌氧填充床反应器厌氧填充床反应器0.25~1.00脱色率90[5]大豆加工废水厌氧流化床厌氧流化床1276酵母发酵废水厌氧流化床厌氧流化床20~2270~75马铃薯淀粉厂废水上流式厌氧滤池(33℃)上流式厌氧污泥床(35℃)酸相 45.0甲烷相 14.083乳清废水连续搅拌池反应器上流式厌氧滤池0.5~2.0(gCOD/(gMLSS·d))90[6]乳清加工和牛奶场废水预酸化反应器杂合反应器1098[7]小麦淀粉废水预酸化反应器厌氧挡板反应器2099[8]酒精废水高温酸化高温消化4.65~20.0085[9]垃圾渗滤液中温酸化中温消化2.41~7.9890[10]合成牛奶废水高温厌氧滤池(56℃)中温厌氧滤池(35℃)2.0~16.090~97[11]1.2 反应器型式两相厌氧降解的产酸过程和产甲烷过程分别在两个独立的反应器内进行。
两相厌氧消化工艺的研究进展及其应用

综述与专论两相厌氧消化工艺的研究进展及其应用凡广生,李多松(中国矿业大学环境与测绘学院,江苏徐州221008)摘要:两相厌氧消化工艺因产酸相和产甲烷相的分离而具有一系列的特点和优势。
针对该工艺的理论依据和运行机理进行了阐述,讨论了两相厌氧消化工艺的相分离以及相分离的实现对整个工艺的影响,着重剖析了两相厌氧消化工艺的影响因素,并对该工艺的应用范围及存在的问题进行了论述,说明了工艺的先进性和可行性。
关键词:两相厌氧消化;相分离;产酸相;产甲烷相中图分类号:X703文献标识码:A 文章编号:1006-8759(2006)01-0010-04RESEARCH DEVELOPMENT AND ITS APPLICATION OF TWOPHASE ANAEROBIC DIGESTIONFAN Guang-sheng,LI Duo-song(Departm ent of Environm ent Science and Spatial Inform atics of CU MT,Xuzhou 221008,China)Abstract:The technolo gy of two Phase anaerobic di g estion have a series of characteristics and ad vanta g es because of the se p aration of acido g enic p hase and methano g enic p hase.anal y sed the theories according to and the principle of its elaborating of the technology,the separated phase and the in fluence of the realization u p on the whole technolo gy have been discussed in the article,em p hasized to anal y ze the influence of two p hase anaerobic di g estion and carried on the treatise to the a pp lication and existent problems of that technology.Explained the forerunner and the possibility of the tech nology.Ke y words:two p hase anaerobic di g estion;se p arated p hase;acido g enic p hase;m ethano g enic p hase.两相厌氧消化(Two phase Anaerobic Degistin 简称TPA )有时也称两步或两段厌氧消化(Two ste p Anaerobic De g istin)是20世纪70年代初由美国戈什(Ghosh)和波兰特(Pohland)开发的厌氧处理新工艺[1-2]。
两相厌氧处理工艺的研究与应用

THANKS
谢谢您的观看
将两相厌氧处理工艺与物理化学处理 工艺相结合,实现废水的多元化处理 和资源化利用。
06
结论与展望
研究结论
Байду номын сангаас
1
两相厌氧处理工艺能够有效解决传统单相厌氧 工艺中存在的问题,提高有机物去除率和甲烷 菌活性。
2
通过调整两相厌氧工艺的参数和运行条件,可 以优化工艺性能,提高污水处理效果。
3
两相厌氧处理工艺具有较高的工程应用价值, 可为污水处理和资源回收提供有效解决方案。
悬浮物过多会消耗大量的溶解氧,导致厌氧微生物因缺氧 而死亡。同时,悬浮物还可能成为厌氧微生物的载体,促 进厌氧微生物的生长繁殖,提高有机物的分解速率和处理 效率。
04
两相厌氧处理工艺的应用案例
两相厌氧处理工艺在污水处理中的应用
污水处理厂
两相厌氧处理工艺在污水处理厂中应用广泛,可有效处理污 水中有机物和氨氮等污染物,提高出水水质。
研究目的和意义
通过对两相厌氧处理工艺的研究,旨在提高该工艺的效率和 稳定性,为解决污水处理和资源回收等问题提供更有效的技 术手段。
国内外研究现状及发展趋势
国外研究现状
国内研究现状
自20世纪70年代以来,两相厌氧工艺 已在国外得到了广泛的研究和应用。 研究者通过对不同类型工业废水的处 理实验和理论研究,不断优化该工艺 的操作条件和反应器设计。
工业废水处理
针对不同工业废水,采用两相厌氧处理工艺能够实现高效、 稳定的处理效果,降低处理成本。
两相厌氧处理工艺在垃圾渗滤液处理中的应用
垃圾焚烧发电厂
两相厌氧处理工艺在垃圾焚烧发电厂的渗滤液处理中发挥重要作用,可有效 去除有机物和氨氮等污染物,提高废水回用效率。
两相厌氧处理工艺的研究与应用讲解

两相厌氧处理工艺的研究与应用讲解厌氧处理是一种利用厌氧细菌在无氧条件下降解有机废物的处理工艺。
相对于好氧处理,厌氧处理有许多优势,比如对含高固体物质的废物适应性更强,生化反应速度快,产生的淤泥量少等。
现阶段,厌氧处理主要应用在以下两个方面:1.生物质废物处理:生物质废物是一种常见的有机废物,包括农业废物、农作物秸秆、木材废料等。
对于这些废物,传统的处理方法包括焚烧、填埋等,但这些方法存在能源消耗大、环境污染等问题。
厌氧处理可以将生物质废物转化为沼气,既能够实现能源回收,又可以减少环境污染。
此外,一些研究还发现,通过厌氧处理,可以将生物质废物中的有机碳稳定存储在底泥中,进一步减少碳排放。
2.有机废水处理:有机废水包括生活污水、工业废水等,其中含有大量的有机物质。
传统的废水处理方法往往采用好氧处理,但对于含有高浓度有机物的废水来说,好氧处理存在氧气供应困难、处理周期长等问题。
厌氧处理则通过利用厌氧细菌对有机物的降解,降低了处理投资和运营成本。
此外,厌氧处理还能够产生沼气,可以用作能源供应或发电。
在厌氧处理工艺的研究方面,主要有以下的关键问题:1.反应器类型选择:厌氧反应器的类型有很多,如厌氧污泥床反应器(UASB)、厌氧接触氧化反应器(IC)等。
研究需要考虑废物的特性,选择合适的反应器类型。
2.菌群调控:厌氧细菌的群落结构和种类对厌氧处理效果有很大影响。
研究人员需要研究不同条件下厌氧细菌的生态环境,调控菌群的组成,以提高处理效果。
3.工艺参数优化:在厌氧处理过程中,参数如温度、pH值、氧化还原电位等都会影响有机物降解效率。
研究人员需通过实验和模拟,优化工艺参数以提高处理效果。
最后,厌氧处理工艺在实际应用中还需要解决以下问题:1.臭气和污泥处理:厌氧处理过程中会产生臭气和淤泥。
臭气的处理需要考虑对臭气的收集、处理和利用。
对于淤泥的处理则需要思考如何处理废弃淤泥以减少环境污染。
2.运营成本降低:厌氧处理工艺虽然具有许多优势,但其运营成本相对较高。
两相厌氧工艺的研究进展

两相厌氧工艺的研究进展两相厌氧工艺是将厌氧消化和厌氧氨氧化结合在一起的一种处理废物的方法。
厌氧消化是指在低氧环境下,微生物将有机废物转化为甲烷和二氧化碳的过程。
厌氧氨氧化是指在低氧环境中,特定的微生物利用氨氮将有机废物转化为氨氮和亚硝酸盐。
目前的研究表明,两相厌氧工艺在处理有机废物方面具有很大的潜力。
首先,与传统的厌氧消化工艺相比,两相厌氧工艺可以更高效地将废物转化为甲烷。
其次,两相厌氧工艺可以在低温和低碳氮比条件下进行,节约能源且减少化学需氧量和氨氮的产生。
此外,两相厌氧工艺还可以通过改变废物的处理方式,将有机废物转化为有价值的生物质和有机酸。
在研究方面,许多研究已经证明了两相厌氧工艺在处理各种有机废物方面的有效性。
例如,两相厌氧工艺已成功用于处理农业废弃物、食品废物、畜禽废物等。
研究结果表明,两相厌氧工艺可以在高固体含量和高有机负荷条件下有效地处理这些废物,并产生高质量的生物质和甲烷气体。
此外,还有一些研究将两相厌氧工艺与其他技术相结合,以进一步提高处理效果。
例如,有研究将两相厌氧工艺与好氧处理工艺结合,以填补两者在处理有机废物方面的不足。
结果显示,两相厌氧-好氧工艺可以提高有机废物的去除效率,并有效地去除污染物。
然而,尽管两相厌氧工艺在处理废物方面已经取得了一定的进展,但仍然存在一些问题和挑战需要解决。
首先,两相厌氧工艺的反应器设计和运行参数需要进一步优化,以提高厌氧消化和厌氧氨氧化的效率。
其次,如何提高有机废物的畜禽废弃物的液化处理以及堆肥效果也是一个重要的挑战。
此外,废物中的高氮和高磷含量也需要解决,以避免环境污染和资源浪费。
综上所述,两相厌氧工艺在处理有机废物和生物能源生产方面具有很大的潜力。
目前的研究已经证明了两相厌氧工艺的有效性,并在工业应用中取得了一定进展。
然而,仍然需要进一步研究和创新,以解决存在的问题和挑战,实现更为可持续和高效的废物处理和能源生产。
两相厌氧消化工艺

两相厌氧消化工艺
两相厌氧消化工艺,这可真是个了不起的存在啊!它就像是一个神奇的魔法,能把那些让人头疼的有机废弃物变废为宝!
你知道吗,在这个世界上,每天都有大量的有机垃圾产生。
如果没有好的处理方法,那可真是糟糕透顶!但两相厌氧消化工艺就像一位超级英雄,挺身而出!它把有机垃圾分成两个阶段来处理,这是多么巧妙的设计啊!
在第一阶段,产酸菌们开始大显身手,它们欢快地工作着,把那些复杂的有机物分解成简单的有机酸。
这就好像是一场热闹的派对,产酸菌们是派对上最活跃的舞者!而在第二阶段,产甲烷菌接过了接力棒,它们把有机酸进一步转化为甲烷和二氧化碳。
这不就像是一场接力赛吗,每一棒都至关重要!
想想看,如果没有两相厌氧消化工艺,这些有机垃圾会怎么样呢?它们可能会堆积如山,散发着难闻的气味,污染我们的环境。
但是有了它,一切都变得不一样了!它不仅解决了垃圾问题,还为我们提供了宝贵的能源。
这难道不是一举两得吗?
两相厌氧消化工艺的应用范围也非常广泛啊!无论是污水处理厂,还是农业废弃物处理,它都能发挥重要的作用。
它就像是一把万能钥匙,能打开各种难题的大门!而且它还在不断发展和进步呢,未来肯定会有更多更先进的技术加入进来,让它变得更加强大!
两相厌氧消化工艺真的是太神奇了!它是我们保护环境、实现可持续发展的重要武器。
我们应该大力支持和推广它,让它为我们的生活带来更多的美好和便利!难道不是吗?。
两相厌氧消化工艺有什么优点

两相厌氧消化工艺有什么优点?
厌氧生物处理的消化过程中最为重要的有产酸和产甲烷两个阶段。
而这两个阶段的过程集中在一个厌氧消化池处理时,两类不同生化特性的微生物之间的协调和互相平衡比较困难,涉及众多因素,操作控制也十分不容易。
为此,开发了两相厌氧消化工艺,即把产酸和产甲烷分在两个独立的反应器内进行,互不干扰,两反应器串联运行。
这样的优点是:两个独立的反应器分别培养产酸菌和产甲烷菌,
各自控制不同的参数,分别满足不同生化特性的微生物最适宜的生命活动所需的条件,从而使反应器的处理能力大为提高,可以在相当高的负荷下进行处理,承受负荷变动的冲击能力增强了,克服了两种微生物的协调和平衡的矛盾。
两相厌氧消化工艺的关键是要做到产酸发酵的反应器中,保持产
酸菌的优势;在产甲烷的反应器中保持产甲烷菌的优势。
要做到这一点,可以采用的方法有:物理方法,利用选择性半渗透膜实现分离;或采用化学的方法,有选择地投加微生物抑制剂;或是调整氧化还原的电位,改变环境来抑制产甲烷菌在产酸菌中生长;或是采用动力学控制法,利用两菌生长速率上的差异,控制好两个反应器的水力停留时间,使产甲烷菌不可能在停留时间很短的产酸菌反应中存活。
其中,以动力学控制法最为简单,故广为采用。
《牛粪两相厌氧发酵产酸产气条件优化研究》范文

《牛粪两相厌氧发酵产酸产气条件优化研究》篇一一、引言随着社会经济的快速发展和人们生活水平的提高,牛粪作为一种常见的农业废弃物,其处理和资源化利用问题日益凸显。
两相厌氧发酵技术因其能够分别优化产酸相和产气相的过程,从而提高整体发酵效率和产物质量,被广泛应用于牛粪等有机废弃物的处理中。
本研究旨在通过对牛粪两相厌氧发酵的产酸产气条件进行优化,为有机废弃物的资源化利用提供理论依据和技术支持。
二、材料与方法1. 材料实验所用牛粪取自当地养殖场,经过筛选、破碎等预处理后备用。
接种物选用厌氧污泥。
实验中所用试剂均为分析纯。
2. 方法(1)两相厌氧发酵装置:采用自主设计的两相厌氧发酵装置,将发酵过程分为产酸相和产气相两个阶段。
(2)实验设计:通过单因素实验和正交实验,分别探讨温度、pH值、碳氮比、接种物比例等因素对产酸产气效果的影响。
(3)分析方法:采用气相色谱法、滴定法等方法对发酵过程中的产酸产气量、挥发性脂肪酸浓度等指标进行测定。
三、结果与分析1. 温度对产酸产气的影响实验结果表明,在一定的温度范围内,随着温度的升高,产酸量和产气量均呈先增加后降低的趋势。
在适宜的温度条件下,牛粪两相厌氧发酵的产酸产气效果最佳。
2. pH值对产酸产气的影响pH值是影响厌氧发酵过程的重要因素之一。
实验结果显示,在适宜的pH值范围内,牛粪两相厌氧发酵的产酸量和产气量均达到较高水平。
过酸或过碱的环境都不利于产酸产气的进行。
3. 碳氮比对产酸产气的影响碳氮比是影响厌氧发酵过程中微生物代谢和产物质量的重要因素。
实验结果表明,适宜的碳氮比能够提高牛粪两相厌氧发酵的产酸量和产气量。
碳氮比过高或过低都会导致发酵过程中出现氮缺乏或碳缺乏的问题,从而影响产酸产气的效果。
4. 接种物比例对产酸产气的影响接种物比例是影响厌氧发酵过程启动速度和稳定性的重要因素。
实验结果显示,适宜的接种物比例能够加快发酵过程的启动速度,提高产酸量和产气量。
接种物比例过大或过小都会导致发酵过程的稳定性降低,从而影响产酸产气的效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两相厌氧处理工艺的研究与应用摘要:利用各种高效反应器对现有的单相厌氧处理系统进行改造,以提高其稳定性,获得比现有单相系统更大的负荷和更高的效率。
文章对废水两相厌氧处理工艺的研究和应用作了综述,概括了两相厌氧处理酒厂废水、垃圾填埋场渗滤液、乳品废水、牛奶厂废水、制浆造纸废水等的应用情况,对反应器型式、环境和操作条件及两相厌氧处理工艺与其他厌氧反应器处理废水效果进行了总结和比较。
关键词:两相厌氧酸化甲烷化废水有机物的厌氧降解,在宏观上和工程上可以简化地分为产酸和产甲烷两个阶段。
两个阶段在细菌种类、消化速率、环境要求、降解过程和产物等方面均有所不同。
在一个反应器内要保持这两大类微生物的成活,并有旺盛的生理功能活动、协调发展,对反应器的维护管理是比较困难的。
Pohland[1]于1971 年首次提出了两相厌氧消化的概念,即把厌氧的两个阶段分别在两个独立的反应器内进行,分别创造各自最佳的环境条件,培养两类不同的微生物,并将这两个反应器串联起来,形成两相厌氧工艺系统两相厌氧工艺系统能够承受较高的负荷率,反应器容积较小,运行稳定,日益受到人们的重视。
废水采用两相厌氧处理的前景十分可观,可以利用各种高效反应器设备对现有的处理系统进行改造,提高其稳定性,可获得比现有单相厌氧处理系统更高的负荷率和效率1两相厌氧处理工艺的研究与应1.1研究与应用情两相厌氧工艺可用于处理多种废水,如:酒厂废水、垃圾渗滤液、大豆加工废水、酵母发酵废水、乳清废水、牛奶工业废水、淀粉废水、制浆造纸废水、染料废水等。
表 1 列出了部分两相厌氧工艺研究和应用的运行数据表 1 部分两相厌氧工艺研究和应用运行数1.2反应器型两相厌氧降解的产酸过程和产甲烷过程分别在两个独立的反应器内进行。
为了分别提高两个阶段的效率,这两个阶段可以应用各种高效厌氧反应器,如:上流式厌氧污泥床(UASB)-UASB 系统[2,3]、连续搅拌池反应器(CSTR)-上流式厌氧滤池(UAF)系统[4 ,6]、CSTR-厌氧填充床反应器(APBR)系统、APBR-APBR 系统[5]、厌氧流化床(AFBR) -AFBR 系统、UAF-UASB 系统等1.3环境和操作条厌氧消化过程受环境和操作条件的影响比较大。
两相厌氧工艺能使产酸过程和产甲烷过程均处于最佳的环境条件和操作条件。
两相厌氧降解的每个阶段不仅仅只是采用不同的反应器型式,而且还可应用不同的温度、pH、水力停留时间、有机物负荷率等,以取得最好的结果厌氧降解过程受温度影响较大,厌氧降解的温度可分为低温(0~20 ℃)、中温(20 ~42 ℃)和高温(42~75 ℃)[12]。
在中温范围,35 ℃以下,每降低10 ℃,细菌的活性和生长率就减少一半。
因此,对于预定的消化程度,温度越低,消化时间越长。
温度对产酸过程的影响不是很大,对产甲烷过程则影响较大。
高浓度废水或污泥的厌氧处理通常采用中温或高温范围。
两相厌氧降解过程的每个阶段也可采用中温或高温范围。
根据厌氧消化的温度范围,两相厌氧消化的温度有高温-高温系统[9]、中温-中温系统[10]、高温-中温系统[11]和中温-高温系统pH 是厌氧反应的重要影响因素。
产甲烷菌的最适宜 pH 范围是 6.8~7.2,而产酸菌则需要偏酸一点的 pH。
传统厌氧系统通常维持一定的 pH,使其不限制产甲烷菌生长,并阻止产酸菌(可引起 VFA 累积)占优势,因此必须使反应器内的反应物能够提供足够的缓冲能力来中和任何可能的 VFA 累积,这样就防止了在传统厌氧消化过程中局部酸化区域的形成。
而在两相厌氧系统中,每相可以用不同的 pH,以便使产酸过程和产甲烷过程分别在最佳的条件下进行,pH 的控制对产甲烷阶段尤为重要1.4两相厌氧系统的优化运两相厌氧废水处理系统的优化运行是将产甲烷反应器的出水再循环至产酸反应器[13] 。
系统可以把一个混合良好的连续反应器作为酸化阶段的反应器,以一个流化砂床反应器作为产甲烷阶段的反应器。
产酸阶段通过自动添加苛性钠来控制 pH 为 6;产甲烷阶段对pH 则可不加以控制。
结果表明,引入循环后,可以节省碱的投加量,从而减少处理成本。
Shin 等 [2]用一个两相 UASB-UASB 系统处理制酒厂废水,在两个反应器的颗粒污泥均形成之后,为了维持第一阶段适宜的 pH,只须通过产甲烷阶段出水的循环,而无须投加碱性化合物。
在韩国首都汉城附近的 Anyany 市,就有处理食物废水的两相厌氧消化池[14],该系统就是将甲烷相反应器的出水再循环至酸相反应器以提供碱度2高浓度废水不同处理工艺的效果比2.1屠宰废屠宰废水来自屠宰过程的不同工序,如:冲洗牲畜、放血、剥皮、清洗牲畜尸体、打扫房间等,包括血水、皮肉颗粒、粪便和其他污染物质。
屠宰废水的典型特征如下[15]:pH=6.8~7.8;COD=5200~11400 mg/L;TSS=570~1690 mg/L;磷=7.0~28.3 mg/L;NH3- N=19~74 mg/L;蛋白质=3250~7860 mg/L。
各种厌氧反应器处理屠宰废水的运行数据见表 2表 2 各种厌氧反应器处理屠宰废水的运行数2.2乳清和牛奶废牛奶场废水来自制造过程、公用事业和服务机构,废水的各种来源为溅出液、废弃液、撇乳、乳清,以及冲洗奶罐、设备、奶瓶和地板的废水。
乳清是制造奶酪时产生的最难处理的高浓度废物,它包括一部分牛奶蛋白质、水溶性维生素和无机盐[22]。
不同类型厌氧反应器处理乳品加工和牛奶场废水的运行数据见表 3表 3 各种厌氧反应器处理乳清和牛奶废水的运行数2.3造纸废在制浆造纸工业,纸浆的冲洗和漂白过程产生各种不同性质的废水,废水也来自造纸机器、苛性氯的制造和黑液的回收,造纸废水含有木质素及其衍生物和各类氯代有机物。
COD、抑制因素和可生化性的变化取决于废水的来源[22]。
处理制浆造纸废水的各种厌氧反应器的运行数据的比较见表 4表 4 各种厌氧反应器处理制浆造纸废水的运行数3讨论与总由于厌氧过程每个阶段的菌种都有一个与其他阶段菌种不同的最佳微生物环境,在一个单相的厌氧消化池或反应器中不可能实现最佳的厌氧运行效果,将两个阶段的菌种用于同一个反应器,会明显地阻碍彼此的效率。
两相厌氧降解过程有其特点,因为每相都保持其最适宜的 pH 和氧化还原电位,使其在较高的效率下运行。
两相厌氧工艺的启动可以在几周内完成,而无须几个月,并且所需设备尺寸至少可以缩小 1/3。
两相厌氧工艺的优点在于:分离和优化了潜在的限速阶段,使水解酸化过程和产甲烷过程均处于最佳状态;提高了反应动力和稳定性(控制各阶段 pH,提高反应器抵抗冲击负荷的稳定性,选择生长较快的细菌);酸化阶段具有潜在的解毒作用两相厌氧工艺还有以下不足:分相后原厌氧消化微生物共生关系被打破;难于管理;缺乏对各种废水的运行经验;底物类型与反应器型式之间的关系不确定。
有研究者认为,从微生物的角度来看,厌氧消化过程是由多种菌群参与的生物过程,这些微生物种群之间通过代谢的相互连贯、制约和促进,最终达到一定的平衡,在厌氧消化最优化的条件下不能分开,否则不符合最优化条件,而两相厌氧过程势必会改变稳定的中间代谢产物水平,有可能对某些特殊营养型的细菌产生抑制作用,甚至造成热力学上不适于中间产物继续降解的条件。
然而从目前的研究结果来看,虽然相分离后中间代谢产物发生了变化,但相的分离基本上都是不完全的,所以产甲烷相中的污泥仍是由多种菌群组成的,可以适应变化了的各种中间产物,因此相分离后中间产物的变化对产甲烷相没有不利影响。
相反,由于产酸相去除了大量的氢及某些抑制物,可以为后一阶段的产甲烷菌提供了更适宜的底物及环境条件,从而使产甲烷相中的污泥活性得以提高,处理效果及运行稳定性也相应提高一般情况下,底物类型和反应器型式决定了某种废水能否适用于两相厌氧处理,这也得到了许多试验的验证。
两相厌氧处理工艺是可以推广应用的,但对各种废水的运行经验却不足,因此仍有许多工作要做参考文献1Pohland F G,Ghosh S.Developments in anaerobic treatmentprocesses.In:Canale R P. Biological Waste Treatment.New York: Interscience,1971,85~102Shin H S,Bae B U,Lee J J,et al. Anaerobic digestion of distillery waste-water in a 2-phase UASB system.Wat.Sci.Tech.,1992,25(7):361~373He Y L,Zhang A L,Yang S H.Anaerobic treatment of kenaf stem wood APMP wastewater. Environ.Tech.,1995,16:467~474Ince O.Performance of a two-phase anaerobic digestion system when treating dairy wasteeater.Wat.Res.,1998,32:2707~2715Talarposhti A M,Donnelly T,Anderson G K.Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor.Water Res.,2001,35:425~436Yilmazer G,Yenigun O.Two-phase anaerobic treatment of cheesewhey.Wat.Sci.Tech.,1999, 40(1):289~297Malaspina F,Cellamare C M,Stante L,et al.Anaerobic treatment of cheese whey with a downflow-upflow hybrid reactor.Bioresource Technology,1996 ,55:131~138Yanagi C,Sato M,Takahara Y.Treatment of wheat-starch waste-water by a membrane combined 2-phase methane fermentation system.Desalination,1994,98:161~179Yeoh B G.Two-phase anaerobic treatment of cane-molasses alcohol stillage.Wat.Sci.Tech., 1997,36(6~7):441~4410Lin C Y.Anaerobic-digestion of landfill leachate.Water SA.,1991,17:301~3011Kaiser S K,Dague R R,Haris W L.Initial studies on the temperature- phased anaerobic biofilter process.Wat.Environ.Res.,1995,67:1095~11012Hulshoff Pol.Waste characteristics and factors affecting reactor performance. Netherlands : Wageningen Agricuture University,1995,33~6513Romli M,Greenfild P F,Lee P L.Effect of recycle on a two-phase high- rate anaerobic wastewater treatment system.Wat.Res.,1994,28:475~4814Lee J P,Lee J S,Park S C.Two-phase methanization of food wastes in pilot scale. Appl.Biochem.Biotech.,1999,77(9):585~5915Ruiz I,VEiga M C,De Santiago P,et al.Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter.Biores.Technol.,1997,60(3):251~2516Johns M R.Development in wastewater treatment in the meat processing industry: a review. Biores.Technol.,1995,54:203~2117Zheng Y J,Wu W N.A study of meat packing plant wastewater treatment with upflow anaerobic sludge blanket process.In: Proc.4th Int. Symp. Anaerobic Digestion,China,1985.327~3318Sayed S,Campen L,Lettinga G.Anaerobic treatment of slaughterhouse waste using a flocculant sludge UASB reactor.Biol.Wastes,1987,21:11~219Lettinga G,Hobma S W,Hulshoff Pol L W,et al.Design operation and economy of anaerobic treatment.Wat.Sci.Tech.,1982,15(8):175~1920Polprasert C,Kemmadamrong P,Tran F T.Anaerobic baffled reactor (ABR) process for treating a slaughterhouse wastewater.Environ.Technol.,1992,13:857~8621Banks C J,Wang Z.Development of a two-phase anaerobic digester for the treatment of mixed abattoir wastes.Wat.Sci.Tech.,1999,40(1):69~722Rajeshwari K V,Balakrishnan M,Kansal A,et al.State-of-the-art of anaerobic digestion technology for industrial wastewatertreatment.Renew.Sustainable Energy Rev.,2000,4:135~1523Kalyuzhnyi S V,Martinex E P,Maptinez J R.Anaerobic treatment of high strength cheese whey wastewaters in laboratory and pilot UASB-reactors.Biores.Technol.,1997,60:59~624Gutierrez J L R,Encina P A G,Polanco F F.Anaerobic treatment of cheese production wastewater using a UASB reactor.Biores.Technol.,1991,37:271~2725Schorder E W,De Haast J.Anaerobic digestion of deprotEInated cheese whey in an upflow sludge blanket reactor.J.Dairy Res.,1989,56:129~1326Yan J Q,Lo K V,Liao P H.Anaerobic digestion of cheese whey using upflow anaerobic sludge blanket reactor.Biol.Waste,1989,27:289~3027Wildenauer F X,Winter J.Anaerobic digestion of high strength acidic whey in a pH-controlled upflow fixed-film loopreactor.Appl.Microbiol.Biotechnol.,1985,22:367~3728De Haast J,Britz T J,Novello J C,et al.Anaerobic digestion of deproteinated cheese whey.J.Dairy Res.,1985,52:457~4629Boening P H,Larsen V F.Anaerobic fluidized bed wheytreatment.Biotechnol.Bioeng.,1982,14:2539~25530Denac M,Dunn I J.Packed and fluidized-bed biofilm reactor performance for anaerobic wastewater treatment.Biotechnol.Bioeng.,1988,32(2):159~1731Switzenbaum M S,Danskin S C.Anaerobic expanded bed treatment of whey.Agric.Waste,1982, 4:411~4232Lo K V,Liao P H.Digestion of cheese whey with anaerobic rotating biological contact reactor. Biomass,1986,10:243~2533Barford J P,Cali R G,Callander I J,et al.Anaerobic digestion ofhigh-strength cheese whey utilizing semi-continuous digesters and chemical flocculant addition. Biotechnol. Bioeng.,1986,28(11):1601~16034Malaspina F,Stante L,Cellamare C M,et al.Cheese whey and cheese factory wastewater treatment with a combined biological anaerobic-aerobic plant.In: Proceedings of the 3rd International Symposium on Waste Management Problems in Agro-industries,Mexico,1995. 63~735Strydom J P,Britz T J,Mostert J F.Two-phase anaerobic digestion of three different dairy effluents using a hybrid bioreactor.Water S A,1997,23 :151~15。