PWM (脉冲宽度调制)原理与实现教学内容
PWM讲解PPT学习教案

5V经过二极 管给BOOT脚
供电
经内部稳 压器产生 5V线性电
压
19V
电电容容右特端性0:V
电电容容两左端端的5V电 电压容不充能电突5变V
24V 9V 7V
792VV4V 5V
19V 24VV 0V
24V 79VV 5V
19V
4V
2V 0V
直G极 到上驱T始 GT管动慢1极终1之时截上慢为比前间止管导2S4极5开通VV,高始S5极V,为 1597VV驱,驱上动动管上上完管管全假假导通 设设可可以以产产生生24VV
PWM供电方式组成:PWM芯片+场管+电感+滤波电容
第2页/共9页
PWM 原 理 讲 解 占空比
有效周期
ቤተ መጻሕፍቲ ባይዱ
有 效 周 期 与 整个周 期的百 分比, 叫占空 比
整个周期
第3页/共9页
PWM 原 理 讲 解
工作原理
PWM芯片控制上下管的高速开关来调节电压,当打开上管时VIN
经过上管给LC储能电路充电并给后级供电;芯片通过FB监控到
PWM讲解
会计学
1
PWM 原 理 讲 解
第1页/共9页
PWM 原 理 讲 解
脉冲宽度调制(PWM)是英文“Pluse Width Modulation” 的缩写,简称脉宽调制。
PWM信号是数字的,因为在给定的任何时刻,满幅值的直 流供电要到完全有(ON),要么完全无(OFF)。电压或电流 源是以一种通(ON)或断(OFF)的重复脉冲序列被加到模拟 负载上去的,通的时候即是直流供电被加到负载上的时候,断 的时候即是供电被断开的时候。
下管截止 下管驱动信号为低电平
第4页/共9页
PWM脉冲宽度调制分析

PWM脉冲宽度调制分析PWM(Pulse Width Modulation)是一种用来调节模拟信号的数字技术。
通过改变脉冲的宽度,可以实现对信号的调节和控制。
PWM技术在很多领域都有广泛的应用,比如电力电子、通信技术、控制系统等。
PWM脉冲宽度调制的基本原理是通过调整脉冲信号的高电平时间和低电平时间来控制输出功率。
在周期T内,将一个周期中的高电平时间占空比定义为Duty Cycle,通常用百分比表示,即D=(Thigh/T)*100%。
通过改变Duty Cycle的大小,可以改变输出信号的幅度,从而实现对模拟信号的调节和控制。
PWM技术的优点是输出信号幅度可调,抗干扰能力强,而且实现简单、成本低廉。
因此,PWM技术在很多领域都有广泛的应用。
比如,在电力电子领域,PWM技术广泛应用于直流电源变换器、交流变频器、逆变器等电力电子设备中,用来实现对电力信号的控制和调节。
在通信技术领域,PWM技术可以用来实现数字调制,比如在脉冲编码调制(PCM)和数字调制解调器(DMD)中都可以使用PWM技术。
在控制系统领域,PWM技术可以用来实现数字控制和解码,比如在数字控制器和逻辑控制系统中都可以使用PWM技术。
在电力电子领域,PWM技术主要应用于直流电源变换器(DC-DC Converter)、交流变频器(AC-DC Converter)、逆变器(Inverter)等电力电子设备中。
这些设备主要用于电力转换和控制,实现对电力信号的调节和控制。
其中,逆变器是PWM技术应用最广泛的一种电力电子设备,主要用来将直流电源转换为交流电源,实现对交流电源的调节和控制。
在逆变器中,PWM技术被广泛应用于输出端的控制。
逆变器的输出端通常是由一组功率晶体管组成的全桥逆变器电路。
通过改变这些功率晶体管的导通与关断,可以实现对输出交流电源的调节和控制。
而PWM技术则可以通过改变脉冲信号的高低电平时间比,控制功率晶体管的导通与关断,从而实现对输出电源的调节和控制。
脉宽调制(PWM)技术

现代电力电子及变流技术第四章脉宽调制(PWM)技术脉宽调制技术:按同一比例改变在ur 和uc交点时刻控制IGBT 的通断u r 和uc的点时刻制IGBT 的通断控制公用三角波载波uc 三相的调制信号依次u c u rW单相逆变器结构特点电路结构特征:2个桥臂输出电压:ab ag bg V V V =−结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
�逆变器共有4种开关状态—S a S b :00,01,10,11。
开关状态与电压的关系4.5 4.5 SVPWMSVPWM 的原理及实现结构特点�两个桥臂电压V ag 和V bg 分别独立可控——控制存在两个自由度;�由于连接了负载,输出电压V ab 具有唯一性——只有一个自由度。
如何分析两维的桥臂电压和一维的输出电压之间的联系?几何分析方法矢量空间�桥臂电压构成两维空间,两个自由度分别代表两个垂直方向——桥臂电压空间;�输出电压只有一个自由度,构成一维空间 ——输出电压空间。
4.5 4.5 SVPWMSVPWM 的原理及实现桥臂电压和输出电压的联系�采用投影方式建立联系;�开关状态(00),(11)形成的两个桥臂电压——对应一个输出电压(0V)。
这一投影具有唯一性投影关系ag ab bg 01111V V V V −⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦V 0是零序电压*11ag 22ab 11bg 220*V V V V ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦逆变器控制方法V 0*为一定范围的任意数注:V 0*取常数(如V i )时,Vag 和Vbg 的驱动波形可以设计。
例:V ab *取0.5V i , V 0*取V iV ag 取0.75V i , V bg 取0.25V ia 桥臂上管b 桥臂下管b 桥臂上管a 桥臂下管4.5 4.5 SVPWMSVPWM 的原理及实现V 0*取其他值会怎样? V 0*有没有一个取值原则?4.5 4.5 SVPWMSVPWM 的原理及实现三相逆变器结构特点结构特征:3个桥臂电路特征:()ng ag bg cg 3V V V V =++结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
脉冲宽度调制(PWM)技术

脉冲宽度调制(PWM)技术在电力电子变流器控制系统中,对于控制电路的要求往往是除能够控制负载的加电与断电外,还应该能够控制加载到负载上的电压高低及功率大小。
在大功率电力电子电路中,控制加载至负载上电压及功率的实用方法就是脉冲宽度调制(pulse width modulation, PWM)。
1. 面积等效原理在控制理论中,有一个重要的原理,即冲量等效原理:大小、波形不相同的窄脉冲变量(冲量)作用在具有惯性的环节上时,只要这些变量对时间的积分相等,其作用的效果将基本相同。
这里所说的效果基本相同是指惯性环节的输出响应波形基本相同。
例如,下图1示出的三个窄脉冲电压波形分别为矩形波、三角波和正弦波,但这二个窄脉冲电压对时间的积分相等,或者说它们的面积相等。
当这三个窄脉冲分别作用在只有惯性的同一环节上时,其输出响应基本相同。
因此,冲量等效原理也可以称为面积等效原理。
从数学角度进行分析,对上图1所示的三个窄脉冲电压波形进行傅里叶变换,则其低频段的特性非常相近,仅在高频段有所不同,而高频段对于具有惯性负载的电路影响非常小。
由此进一步证明了面积等效原理的正确性。
2. 脉冲宽度调制技术依据面积等效原理,在电路中可以利用低端电源开关或高端电源开关,以一定频率的导通和截止连续切换,使电源电压U i以一系列等幅脉冲(或称为矩形波)的形式加载到负载上,加载在负载上的电源电压Uo波形如图2所示。
图2所示的矩形波的电压平均值:此式表明在一个脉冲周期内,电压的平均值与脉冲的占空比是成正比的,于是,可以通过改变脉冲的占空比来调整加载到负载上的电压大小。
当占空比小时,加载到负载上的平均电压就低,即加载到负载上的功率小;而占空比大时,加载到负载上的平均电压就高,加载到负载上的功率大。
这种通过等幅脉冲调节负载平均电压及功率的方法称为脉冲宽度调制,也称为斩波控制。
采用脉冲宽度调制方式为负载供电,由于供电电压是脉动的,势必会产生出各种谐波。
pwm调频原理

pwm调频原理PWM调频原理概述脉宽调制(PWM)是一种常用的调频方法,广泛应用于电子电路和通信系统中。
它通过改变信号的脉冲宽度来调节频率,从而实现信号的传输和控制。
本文将介绍PWM调频原理及其应用。
一、PWM调频原理PWM调频原理是利用脉冲信号的脉宽来调节信号频率的一种调制方法。
在PWM调制中,信号的频率是通过改变脉冲的宽度来实现的。
具体来说,PWM调制是通过控制脉冲的占空比来实现的,即脉冲高电平(ON时间)与总周期时间(ON时间+OFF时间)的比值。
二、PWM调频的应用PWM调频广泛应用于各种电子电路和通信系统中,下面将介绍几个常见的应用。
1. 脉宽调制(PWM)在电机驱动中的应用在电机驱动中,PWM调频被用来控制电机的速度和转向。
通过调节PWM信号的脉宽,可以改变电机驱动的频率和占空比,从而实现对电机的精确控制。
2. 脉宽调制(PWM)在音频信号处理中的应用在音频信号处理中,PWM调频被用来实现音频信号的数字化和压缩。
通过控制PWM信号的脉宽,可以将音频信号转换为数字信号,并根据需要进行采样和压缩,以便在数字系统中进行处理和传输。
3. 脉宽调制(PWM)在光伏逆变器中的应用在光伏逆变器中,PWM调频被用来将直流电能转换为交流电能。
通过控制PWM信号的脉宽,可以实现对直流电源的逆变,并根据需要调节输出交流电的频率和电压,以满足不同的电力需求。
4. 脉宽调制(PWM)在通信系统中的应用在通信系统中,PWM调频被用来实现数字信号的传输和调制。
通过控制PWM信号的脉宽,可以将数字信号转换为脉冲信号,并进行调制和解调,以实现信号的传输和接收。
三、总结PWM调频原理是一种通过改变信号脉冲的宽度来调节频率的调制方法。
它广泛应用于电子电路和通信系统中,包括电机驱动、音频信号处理、光伏逆变器和通信系统等领域。
通过控制PWM信号的脉宽,可以实现对信号的精确调节和控制。
本文简要介绍了PWM 调频原理及其应用,希望对读者有所帮助。
PWM基本原理及其实现方法

PWM基本原理及其实现方法PWM(脉宽调制)是一种常用的控制电子设备的方法,通过调整电信号的脉冲宽度来控制电信号的平均功率。
PWM的基本原理是通过改变信号的占空比来实现对设备的控制。
PWM实现的基本步骤是:先产生一个固定频率的正弦波信号(一般采用震荡器或定时器),然后通过比较器对正弦波信号与参考电平进行比较,根据比较结果来产生脉冲信号。
具体来说,PWM的实现方法有以下几种:1. 单脉冲宽度调制(Single Pulse Width Modulation):这种方法是最简单直接的方式,通过控制脉冲信号的宽度来实现对设备的控制。
宽度越大,输出功率越大,宽度越小,输出功率越小。
2. 多脉冲宽度调制(Multiple Pulse Width Modulation):该方法是在单脉冲宽度调制的基础上,引入多个脉冲,通过调整各个脉冲的宽度和间隔,实现更精细的控制。
例如,可以通过改变每个脉冲的宽度来实现设备的加速和减速。
3. 脉冲位置调制(Pulse Position Modulation):与脉冲宽度调制不同,该方法是通过改变脉冲信号的位置来控制设备的平均功率。
脉冲信号的位置决定了信号的相位,从而控制了输出功率。
4. 脉冲频率调制(Pulse Frequency Modulation):该方法是通过改变脉冲信号的频率来控制设备的平均功率。
频率越高,平均功率越高,频率越低,平均功率越低。
以上四种方法都是基于对脉冲信号的宽度、位置或频率进行调制,从而实现对设备的控制。
这些方法广泛应用于各种电子设备的控制,例如模拟调制器、电机速度控制器、灯光调光器等。
总结起来,PWM通过改变脉冲信号的宽度、位置或频率来实现对设备的平均功率控制。
根据需求不同,可以选择不同的PWM实现方法。
由于PWM具有高效、精度高的特点,所以被广泛应用于各种电子设备的控制中。
pwm实验报告

pwm实验报告PWM实验报告一、引言脉宽调制(Pulse Width Modulation,PWM)是一种常用的电子技术,用于控制电子设备中的电压和电流。
通过改变信号的脉冲宽度,PWM可以调节电子设备的输出功率,从而实现对电机、灯光等设备的精确控制。
本实验旨在通过搭建PWM电路并进行实际测试,探究PWM技术的原理和应用。
二、实验原理PWM技术通过改变信号的占空比来控制输出信号的电压或电流。
占空比是指脉冲信号中高电平的时间与一个周期的时间之比。
当占空比为0%时,输出信号为低电平;当占空比为100%时,输出信号为高电平;当占空比在0%和100%之间时,输出信号为一个周期内高电平和低电平的交替。
通过调整占空比,可以实现对输出信号的精确控制。
三、实验材料和方法1. 材料:- Arduino开发板- 电阻、电容等基本电子元件- 电机或LED等输出设备- 连接线等实验器材2. 方法:1) 搭建PWM电路:根据实验要求,按照电路图连接电子元件和Arduino开发板。
2) 编写程序:使用Arduino开发环境,编写程序控制PWM输出信号的占空比。
3) 实验测试:将输出设备连接到PWM输出引脚,通过改变占空比,观察输出设备的变化。
四、实验结果和分析在实验中,我们搭建了一个基本的PWM电路,并使用Arduino开发环境编写程序来控制PWM输出信号的占空比。
通过改变占空比,我们观察到输出设备的亮度或转速发生了变化。
在实验过程中,我们发现当占空比较小时,输出设备的亮度或转速较低;而当占空比较大时,输出设备的亮度或转速较高。
这是因为占空比的变化直接影响了输出信号的电压或电流大小,从而改变了输出设备的工作状态。
PWM技术在实际应用中具有广泛的用途。
例如,它可以用于电机控制,通过调整占空比来控制电机的转速和方向;它还可以用于灯光控制,通过调整占空比来调节灯光的亮度;此外,PWM技术还可以应用于电源管理、音频处理等领域。
五、实验总结通过本次实验,我们深入了解了PWM技术的原理和应用。
脉宽调制工作原理

脉宽调制工作原理
脉宽调制(Pulse Width Modulation,PWM)是一种电子电路中常用的调制技术,它通过改变脉冲信号的宽度来实现对输出信号的控制。
脉宽调制广泛应用于电源控制、电机控制、音频信号处理等领域。
脉宽调制的工作原理如下:首先,输入信号通过一个比较器和一个三角波发生器进行比较,产生一个宽度可调的方波信号。
比较器将输入信号与三角波进行比较,根据比较结果切换方波信号的状态。
接下来,通过改变三角波的周期或幅值,可以改变方波信号的频率或占空比。
频率是指方波信号周期的倒数,而占空比则表示方波信号的高电平时间与周期时间的比值。
最后,将调制后的方波信号通过滤波电路,去除高频成分和噪声,得到平滑的模拟输出信号。
脉宽调制的优点是具有高效率和精确度高的特点。
通过改变占空比,可以调节输出信号的平均功率。
同时,脉宽调制技术还具有抗干扰能力强、控制精度高、适应性强等优点。
总之,脉宽调制是一种通过改变脉冲信号的宽度来实现对输出信号的控制的技术。
它是一种高效、精确、抗干扰能力强的调制方法,在众多应用领域中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
精品文档
PWM (脉冲宽度调制)原理与实现
1、 PWM原理
2、调制器设计思想
3、具体实现设计
一、 PWM(脉冲宽度调制Pulse Width Modulation)原理:
脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样
值成比例。图1所示为脉冲宽度调制系统的原理框图和波形图。该系统有一个比较器和一
个周期为Ts的锯齿波发生器组成。语音信号如果大于锯齿波信号,比较器输出正常数A,
否则输出0。因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。
通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语
音信号幅度值。因而,采样值之间的时间间隔是非均匀的。在系统的输入端插入一个采样保
持电路可以得到均匀的采样信号,但是对于实际中tk-kTs<
(1)
其中,x{t}是离散化的语音信号;Ts是采样周期; 是未调制宽度;m是调制指数。
然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t = k Ts处, 在相邻脉冲间
变化缓慢,则脉冲宽度调制波xp(t)可以表示为:
(2)
精品文档
精品文档
其中, 。无需作频谱分析,由式(2)可以看出脉冲宽度信号由语
音信号x(t)加上一个直流成分以及相位调制波构成。当 时,相位调制部分引起的
信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。
二、 数字脉冲宽度调制器的实现:
实现数字脉冲宽度调制器的基本思想参看图2。
图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。5位数字调制信号用一
个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,
比较器输出高电平,否则输出低电平。循环计数器循环一个周期后,向寄存器发出一个使能
信号EN,寄存器送入下一组数据。在每一个计数器计数周期,由于输入的调制信号的大小
不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。
图3
为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大
精品文档
精品文档
到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,
直到最大值,然后变为对奇数序列计数,变化为由大到小。如图3例子。
奇偶序列的产生方法是将计数器的最后一位作为比较数据的最低位,在一个计数周期
内,前半个周期计数器输出最低位为0,其他高位逐次增大,则产生的数据即为偶数序列;
后半个周期输出最低位为1,其余高位依次减小,产生的数据为依次减小的偶序列。具体电
路可以由以下电路图表示:
三、 8051中的PWM模块设计:
应该称为一个适合语音处理的PWM模块,输出引脚应该外接一积分电路。输出波形的方式
适合作语音处理。设计精度为8位。
PWM模块应包括:
1、 比较部分(Comp):
2、 计数部分(Counter):
3、 状态及控制信号寄存/控制器(PWM_Ctrl);
1) 状态积寄存器:(Flags),地址:E8H ;
①EN: PWM模块启动位,置位为‘1’将使PWM模块开始工作;
②(留空备用)
③④解调速率标志位:00 – 无分频;01 – 2分频;10 – 10分频;11 – 16分频。 (RESET
后为00)
⑤(留空备用)
⑥(留空备用)
⑦(留空备用)
⑧(留空备用)
注意:该寄存器可以位操作情况下可写,不可读;只能在字节操作方式下读取。
2) 数据寄存器(DataStore),地址:F8H;
注意:该寄存器值不可读,只可写。
4、 端口:
1) 数据总线(DataBus);(双向)
2) 地址总线(AddrBus);(IN)
3) PWM波输出端口(PWMOut);(OUT)
4) 控制线:
① CLK:时钟;(IN)
② Reset:异步复位信号;(IN 低电平有效)
③ WR:写PWM RAM信号;(IN 低电平有效);
④ RD:读PWM RAM信号;(IN 低电平有效)
⑤ DONE:接受完毕反馈信号;(OUT 高电平有效)
精品文档
精品文档
⑥ INT:中断申请信号;(OUT 低电平有效)
⑦ IntResp:中断响应信号;(In低电平有效)
⑧ ByteBit:字节/位操作控制信号(IN 1-BYTE 0-BIT);
⑨⑩
中断占用相当于MCU8051的外部中断2,则可保证在5个指令周期之内,“读取数据”
中断必定得到响应。
PWM模块使用方法:因为占用了8051外部中断1,所以在不使用该模块时,应该把
外部中断2屏蔽。而PWM模块产生的中断请求可以看作是“能接受数据”的信号。中断方法
如后“中断读取数据过程”。使用PWM模块,应该先对内部地址8FH的数据寄存器写入数据,
然后设置地址8EH的状态寄存器最低位(0)为‘1’,即PWM模块开始工作并输出PWM调
制波(如TIMER模块)。在输出PWM调制波过程中,应及时对PWM写入下一个调制数
据,保证PWM连续工作,输出波形连续。 (待改进)
中断读取数据过程:
1. PWM模块可以读取数据,申请中断信号INT置位为‘0’,等待8051响应;
2. 8051接受到中断申请后,作出中断响应,置位IntResp信号线为‘0’;
3. PWM模块收到IntResp信号后,把中断申请信号INT复位为‘1’,等待8051通知读
取数据WR信号;
4. 8051取出要求数据放于数据总线(DataBus)上,并置WR信号为‘0’;
5. PWM模块发现WR信号为‘0’,由数据总线(DataBus)上读取数据到内部数据寄
存器,将DONE位置位为‘1’;
6. 8051发现DONE信号的上跳变为‘1’,释放数据总线;
7. PWM模块完成当前输出周期,复位DONE为‘0’,从此当前数据寄存器可以再次接
受数据输入。
注意事项:
1)输出的PWM信号中的高电平部分必须处于一个输出周期的中间,不能偏离,否则输出
语音经过低通后必定是一失真严重的结果。
2)对于8位精度的PWM,每个输出周期占用256(28)个机器周期,但是包含256个机
器周期至少有22个指令周期,亦即264(22*12)个机器周期,由于语音信号的连续性,
256与264之间相差的8个机器周期是不能由之丢空的,否则也会使输出信号失真。如果
将须输出数字量按256/264的比例放大输出,亦不可行,因为如此非整数比例放大,放大
倍数很小,则经过再量化后小数部分亦会被忽略掉,产生失真。举例:输出数字量为16,
按比例放大后为16.5,更会产生难以取舍的问题。
故采取以下办法:该模块以时钟周期为标准,而与TMBus无关,即基本上与8051部分异
步工作。读取数据方式为每次读取足够数据段储存于模块内的RAM内(暂定每次读取8字
节),储存字节数必须能保证PWM输出该段数据过程中,有足够时间从RAM处继续读取
数据。由于占用了8051的外部中断2,中断申请在3个指令周期(36个时钟周期)内必定
能得到响应,而PWM模块处理一个数据需要固定耗时256个时钟周期,故能保证PWM模
块顺序读取数据中断能及时得到响应,不会影响调制信号的连续性。
3)RD RAM过程是异步过程。
4)输出后数据寄存器不自动清零。因为可以通过把Flags(0)写‘0’而停止PWM模块继续工
作。