FLAC3D数值模拟基础.ppt
土木工程数值模拟(FLAC3D)课件第8章

P
3
3
a L
Pa +
P
3 a +
X
P 剪力图
弯矩图
2020/7/10
土木工程数值模拟(FLAC)
6
第八章 结构单元
该例子用到下列参数: 横截面积A=0.006m3 杨氏模量E=200GPa 泊松比=0.30 y轴惯性矩Iy=20010-6m4 z轴惯性矩Iz=20010-6m4 极惯性矩J=0.0 点载荷P=10000N
土工格栅(或衬 砌)中层切向平 面
构件的平均法线方向作为z轴
;x和y轴在切向平面内任意
定位
2020/7/10
土木工程数值模拟(FLAC)
z 索(或桩)横截面
y 索(或桩)构件 z
y x
土工格栅(或衬 砌)构件
3
第八章1 x1
w1
u1
y 1 1 y1
z2
x2 x
w2
2
u2
2 y2
2 U2
Z u1
Y 1
2020/7/10
土木工程数值模拟(FLAC)
8
第八章 结构单元
锚索中轴向力分布
水泥浆中应力分布
2020/7/10
土木工程数值模拟(FLAC)
9
第八章 结构单元
桩
桩构件的刚度矩阵与梁构 件的刚度矩阵是相同的。 除了提供梁的构造特性外, 桩还提供了与网格的法线 方向和剪切方向所发生的 交互摩擦作用。在这点上, 桩实际上是组合了梁和锚 索的作用。
梁结构坐标系统及12个自由度
默认下,每个梁构件具 有各向同性、无屈服的 线性弹性材料,然而, 人们可以指定塑性力矩, 或者在构件之间引进塑 性铰链。
2020/7/10
土木工程数值模拟(FLAC3D)课件第1章

同时,关键词size还可配合ratio来进行 运用,使得各单元间的长度按照一定 的比率逐渐增大或减小。
gen zone radcyl size 5 10 6 12 & ratio 1 1 1 1.2
建立比较复杂的计算模型,即通过生成这 些基本的单元来进行“拼凑”。如建立一个马 蹄形断面的隧道
对于体积模量和剪切模量,其和弹性模量之 间存在一转化公式:
或
对于材料的密度(干密度、湿密度等)则采用 initial命令来设置,即:
ini density * (range ---) 材料若考虑密度,则必须设置重力加速度,重 力加速度的设置采用set命令,即:
set gravity 0 0 –10 若重力方向为沿Z轴正向,则为10,若沿Z轴 负向,则为-10,若沿Y轴负向,则应设置为:
速度边界设置主要采用apply命令进行设置,相 应的可设置的速度变量为xvel、yvel、zvel,例如:
apply xvel 2e-7 range x –0.1 0.1
其表示将x=0面上所有的节点速度均设置为2e-7 ,若随着计算,需移除初始边界,则采用apply remove 命令进行删除操作。
11
分析过程
学习内容
➢ 建模、划分网格 ➢ 本构模型及参数 ➢ 边界条件、初始条件及加载 ➢ 初始地应力的生成方法及初始平衡求解 ➢ 求解及结果输出
建模、划分网格
在FLAC3D程序中建立计算网格主要采用gen 命令,该命令可生成点(point)、面(surface)和单元 (zone)。由于点和面在三维计算程序中应用相对 较少,此处主要介绍单元(zone)的生成和组合方 法。主要命令:
此处所讨论的是公共面上网格的大小和划分的 份数不一致或者两相邻面间存在间隙的问题。对于 公共面上网格的大小和划分的份数不一致,主要采 用attach命令来进行连接,而对两相邻面间存在间 隙的问题,则采用gen merge 命令来进行连接的操 作。
土木工程数值模拟(FLAC3D)课件第1章

对于对称的模型也可以采用镜像命令:
gen zone reflect norm -1 0 0 origin 0,0,0
网格单元间的连接
采用FLAC3D进行计算,所建立的模型需是一个 连续的整体,否则计算结果将出现较大的误差甚至 无法进行计算。对于在建立模型时,各关键点的坐 标是准确无误输入且各公共面的网格数和大小均完 全一致的模型,无需进行任何操作,模型即自动完 成相互间的连接。
对所有单元
应力—应变关系 (本构模型)
2020/7/10
节点力 单元积分 新的应力
10
简单实例
gen zone brick size 6 8 8 model mohr prop bulk 1e8 shear 0.3e8 prop fric 35 coh 1e3 tens 1e3 set grav 0,0,-9.81 ini dens 2000 fix x range x -0.1 0.1 fix x range x 5.9 6.1 fix y range y -0.1 0.1 fix y range y 7.9 8.1 fix z range z -0.1 0.1 hist unbal hist gp zdisp 4,4,8 solve save t1.sav rest t1.sav model null range x 2,4 y 2,6 z 5,10 set large initial xdis 0.0 ydis 0.0 zdis 0.0 step 1000 save t2.sav
这是通过radtun和 radcyl来组合生成所 需要的模型。它们两者的生成关键点的 描述存在较大的区别。
对于这两种基本的 网格,其公共面上的 关键点的对应关系更 需校核好,否则将出 现杂乱错误的网格。
土木工程数值模拟(FLAC3D)课件第2-7章

第二章 网格划分
第二章 网格划分
Generate <关键字> zone 产生三维空间的单元体 surface 产生三维空间的面 point 在三维空间定义参考点以帮助单元体和面的生成 merge 使Gen zone产生的相邻网格合并连接在一起
2020/7/10
土木工程数值模拟(FLAC)
主要语句
条件语句 IF 条件表达式 [THEN] … [ELSE] … ENDIF
FISH中条件运算符没有“并”、“或”、“否”这样的符号
表达“1<aa<2”的条 件
if aa > 1.0 if aa < 2.0
执行语句
endif endif
主要语句
循环语句 LOOP var (exp1, exp2)
内部矩形巷道贴满单元体单元格 数6、12、8,体外环绕放射状网 格单元7
上机内容:直墙半圆拱
2020/7/10
土木工程数值模拟(FLAC)
10
第二章 网格划分
建立任何网格都要从两个方面考虑:一是重要区域精确解 所需要的单元体密度;二是网格边界定位对结果的影响。应 力、应变变化大的区域往往单元体密度大。
内部矩形巷道边长分别是3m 6m 4m, 单元格数size也是3、6、4
2020/7/10
土木工程数值模拟(FLAC)
9
第二章 网格划分
利用参数fill来生成需填充的网格
gen zone radbrick p0=(24,-20,0) & p1=(34,-20,0) & p2=(24,-10,0) & p3=(24,-20,10) & dimension 3 6 4 & size 6 12 8 7 & fill group inner
FLAC3D数值模拟讲座

有限差分法和有限元法的比较
有限差分 计算时步要取得比为稳定所需的 临界值大
每个时步的计算开销小 对于动态问题没有显著的数值阻尼 对于非线性本构方程无需迭代 不用形成矩阵,要求内存小,无带宽 的限制 由于无需形成矩阵,大位移和大应变 无需附加的机时
有限元
在用无条件稳定的格式时时步可任意 大 每个时步的计算开销大 在用无条件稳定的格式时数值阻尼和 时步有关 对于非线性本构方程需要迭代 必须存贮刚度矩阵,必须要解决随之 而来的例如带宽问题,内存要求大 为跟踪大位移和大应变需要附加的机 时
4.7 m
Metro tunnel
FLAC3D 2.00
Step 50267 Model Perspective 12:04:20 Fri Nov 10 2000 Center: X: 4.503e+000 Y: 2.500e+001 Z: -3.085e+000 Dist: 3.631e+002 Rotation: X: 20.000 Y: 0.000 Z: 20.000 Mag.: 5.96 Ang.: 22.500
AGF - Technique
Circulation of chilled fluid through subsurface pipes
Brine or Closed System and Liquid Nitrogen-Open System
Shaft closure Байду номын сангаасn frozen soil
System of Units
FLAC3D CONSTITUTIVE MODELS
Grid Generation with
FLAC3D
Primitive Shapes
Flac3D教学

本构模型选择
02
阐述Flac3D提供的多种本构模型,如弹性模型、弹塑性模型、
粘弹性模型等,并给出选择本构模型的一般原则和建议。
材料参数确定
03
探讨如何通过实验或经验确定材料参数,以及如何在Flac3D中
进行参数输入和调整。
10
03 建模与计算过程详解
2024/1/24
11
建立初始模型及参数设置
创建模型
B
C
对比实验数据与模拟结果
将实验数据与Flac3D模拟结果进行对比分 析,以验证模型的准确性和可靠性。
对比不同时间步的结果
对比同一模型在不同时间步的结果,以观察 模型的动态演化过程。
D
2024/1/24
18
05 工程案例实践与讨论
2024/1/24
19
岩土工程案例介绍
2024/1/24
案例一
深基坑开挖与支护
在Flac3D中,首先需定义模型的空间维度、尺寸及网格划分。
材料属性赋值
为模型各部分赋予相应的材料属性,如弹性模量、泊松比、密度 等。
初始条件设置
设定模型的初始应力、位移等条件。
2024/1/24
12
施加荷载与边界条件调整
01
02
03
荷载施加
根据实际问题,在模型上 施加相应的力、压力或位 移荷载。
通过实例分析,学习如何利用Flac3D解决岩土工程中的实际问题,如 边坡稳定性分析、基坑开挖模拟等。
5
学习方法与建议
1 2
理论学习与实践操作相结合
在学习过程中,既要注重理论知识的学习,也要 加强实践操作的训练,通过不断练习加深对软件 功能的理解和掌握。
多参考官方文档和教程
02112_flac3d实用教程

2024/1/24
28
实例演示:复杂模型后处理过程展示
模型介绍
以一个具有复杂几何形状和多种材料属性的 FLAC3D模型为例,介绍后处理过程。
结果可视化
演示如何利用云图、剖面图和动画等多种手段对 复杂模型的后处理结果进行可视化展示。
ABCD
2024/1/24
数据提取与整理
展示如何从模型中提取关键数据,并进行格式化 和整理。
flac3d实用教程
2024/1/24
1
contents
目录
2024/1/24
• 软件介绍与安装 • 基础知识与操作 • 模型建立与网格划分 • 材料属性定义与赋值 • 数值模拟计算过程分析 • 后处理技巧与结果展示 • 工程案例应用举例
2
01
软件介绍与安装
2024/1/24
3
FLAC3D概述
26
数据提取和整理方法论述
数据提取
通过FLAC3D内置函数或外部 脚本语言(如Python)提取 模型中的关键数据,如节点
位移、应力、应变等。
数据整理
将提取的数据进行格式化处 理,以便于后续分析和可视 化。可以使用电子表格软件 (如Excel)或编程语言进行
数据处理。
2024/1/24
数据筛选
根据需要选择特定区域或特 定条件下的数据进行详细分 析,提高数据处理效率。
01
02
菜单栏
包含文件、编辑、视图、工具、窗口 和帮助等菜单,用于管理文件和执行 各种操作命令。
03
工具栏
提供常用命令的快捷按钮,方便用户 快速执行常用操作。
属性视图区
显示当前选中对象的属性信息,并允 许用户修改对象属性持多种 视图模式和渲染效果。
FLAC数值模拟介绍

FLAC-3D(Three Dimensional Fast Lagrangian Analysis of Continua)是美国Itasca Consulting Goup lnc开发的三维快速拉格朗日分析程序, 该程序能较好地模拟地质材料在达到强度极限或屈服极限时, 发生的破坏或塑性流动的力学行为, 特别适用于分析渐进破坏和失稳以及模拟大变形.FLAC3D分析的使用领域根据手册总结如下:(1) 承受荷载能力与变形分析: 用于边坡稳定和基础设计(2) 渐进破坏与坍塌反演: 用于硬岩采矿和隧道设计(3) 断层构造的影响研究: 用于采矿设计(4) 施加于地质体锚索支护所提供的支护力研究: 岩锚和土钉的设计(5) 排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究: 挡土墙结构的地下水流动, 和土体固结研究(6) 粘性材料的蠕变特性: 用于碳酸钾盐矿设计(7) 陡滑面地质结构的动态加载: 用于地震工程和矿山岩爆研究(8) 爆炸荷载和振动的动态响应: 用于隧道开挖和采矿活动(9) 结构的地震感应: 用于土坝设计(10) 由于温度诱发荷载所导致的变形和结构的不稳定(11) 大变形材料分析: 用于研究粮仓谷物流动和放矿的矿石流动10种材料本构模型Flac3D中为岩土工程问题的求解开发了特有的本构模型, 总共包含了10种材料模型:(1) 开挖模型null(2) 3个弹性模型(各向同性, 横观各向同性和正交各向同性弹性模型)(3) 6个塑性模型(Drucker-Prager模型、Morh-Coulomb模型、应变硬化/软化模型、遍布节理模型、双线性应变硬化/软化遍布节理模型和修正的cam粘土模型).Flac3D网格中的每个区域可以给以不同的材料模型, 并且还允许指定材料参数的统计分布和变化梯度. 还包含了节理单元, 也称为界面单元, 能够模拟两种或多种材料界面不同材料性质的间断特性. 节理允许发生滑动或分离, 因此可以用来模拟岩体中的断层、节理或摩擦边界.FLAC3D中的网格生成器gen, 通过匹配、连接由网格生成器生成局部网格, 能够方便地生成所需要的三维结构网格. 还可以自动产生交岔结构网格(比如说相交的巷道), 三维网格由整体坐标系x, y, z系统所确定, 这就提供了比较灵活的产生和定义三维空间参数.五种计算模式(l) 静力模式:这是FLAC-3D默认模式, 通过动态松弛方法得静态解.(2) 动力模式:用户可以直接输人加速度、速度或应力波作为系统的边界条件或初始条件, 边界可以固定边界和自由边界. 动力计算可以与渗流问题相藕合.(3) 蠕变模式:有五种蠕变本构模型可供选择以模拟材料的应力-应变-时间关系:Maxwell模型、双指数模型、参考蠕变模型、粘塑性模型、脆盐模型. (4) 渗流模式:可以模拟地下水流、孔隙压力耗散以及可变形孔隙介质与其间的粘性流体的耦合. 渗流服从各向同性达西定律, 流体和孔隙介质均被看作可变形体. 考虑非稳定流, 将稳定流看作是非稳定流的特例. 边界条件可以是固定孔隙压力或恒定流, 可以模拟水源或深井. 渗流计算可以与静力、动力或温度计算耦合, 也可以单独计算.(5) 温度模式:可以模拟材料中的瞬态热传导以及温度应力. 温度计算可以与静力、动力或渗流计算藕合, 也可单独计算.模拟多种结构形式(l) 对于通常的岩体、土体或其他材料实体, 用八节点六面体单元模拟. (2) FIAC-3D包含有四种结构单元:梁单元、锚单元、桩单元、壳单元. 可用来模拟岩土工程中的人工结构如支护、衬砌、锚索、岩栓、土工织物、摩擦桩、板桩等.(3) FLAC-3D的网格中可以有界面, 这种界面将计算网格分割为若干部分, 界面两边的网格可以分离, 也可以发生滑动, 因此, 界面可以模拟节理、断层或虚拟的物理边界.有多种边界条件边界方位可以任意变化, 边界条件可以是速度边界、应力边界, 单元部可以给定初始应力, 节点可以给定初始位移、速度等, 还可以给定地下水位以计算有效应力、所有给定量都可以具有空间梯度分布.FLAC-3D嵌语言FISHFLAC-3D具有强大嵌语言FISH, 使得用户可以定义新的变量或函数, 以适应用户的特殊需要, 例如, 利用HSH做以下事情:(l) 用户可以自定义材料的空间分布规律, 如非线性分布等.(2) 用户可以定义变量, 追踪其变化规律并绘图表示或打印输出.(3) 用户可以自己设计FLAC-3D部没有的单元形态.(4) 在数值试验中可以进行伺服控制.(5) 用户可以指定特殊的边界条件.(6) 自动进行参数分析(7) 利用FLAC-3D部定义的Fish变量或函数, 用户可以获得计算过程中节点、单元参数, 如坐标、位移、速度、材料参数、应力、应变、不平衡力等.FLAC-3D前后处理功能FLAC-3D具有强大的自动三维网格生成器, 部定义了多种单元形态, 用户还可以利用FISH自定义单元形态, 通过组合基本单元, 可以生成非常复杂的三维网格, 比如交叉隧洞等.在计算过程中的任何时刻用户都可以用高分辨率的彩色或灰度图或数据文件输出结果, 以对结果进行实时分析, 图形可以表示网格、结构以及有关变量的等值线图、矢量图、曲线图等, 可以给出计算域的任意截面上的变量图或等直线图, 计算域可以旋转以从不同的角度观测计算结果.FLAC3D计算分析一般步骤与大多数程序采用数据输入方式不同, FLAC采用的是命令驱动方式. 命令字控制着程序的运行. 在必要时, 尤其是绘图, 还可以启动FLAc用户交互式图形界面. 为了建立FLAC计算模型, 必须进行以下三个方面的工作:(1) 有限差分网格(2) 本构特性与材料性质(3) 边界条件与初始条件完成上述工作后, 可以获得模型的初始平衡状态, 也就是模拟开挖前的原岩应力状态. 然后, 进行工程开挖或改变边界条件来进行工程的响应分析, 类似于FLAC的显式有限差分程序的问题求解. 与传统的隐式求解程序不同, FLAC采用一种显式的时间步来求解代数方程. 进行一系列计算步后达到问题的解.在FLAC中, 达到问题所需的计算步能够通过程序或用户加以控制, 但是, 用户必须确定计算步是否已经达到问题的最终的解.后处理(一) 用tecplot绘制曲线(1) 第一主应力(2) xdisp、ydisp、zdisp、disp(二) 用excel做曲线隧道(1) 做地表沉降槽(zdisp)(2) 地表横向位移(xdisp)(3) 隧道中线竖向沉降曲线(zdisp)(4) 提取位移矢量图,(5) 显示初期支护结构力(6) 显示state(找塑性区)基坑(1) 做地表沉降槽(zdisp)(2) 提取位移矢量图,(3) 显示初期支护结构力(4) 显示state(找塑性区)边坡(1) 做安全系数和应变图模型最优化用FLAC3D解决问题时, 为了得到最有效的分析使模型最优化是很重要的.(1) 检查模型运行时间:一个FLAC3D例子的运行时间是区域数的4/3倍. 这个规则适用于平衡条件下的弹性问题. 对于塑性问题, 运行时间会有点改变, 但是不会很大, 但是如果发生塑性流动, 这个时间将会大的多. 对一个具体模型检查自己机子的计算速度很重要. 一个简单的方法就是运行基准测试. 然后基于区域数的改变, 用这个速度评估具体模型的计算速度.(2) 影响运行时间的因素:FLAC3D有时会需要较长时间才可以收敛主要发生在下列情况下:(a)材料本身刚度变异或材料与结构及接触面之间的刚度差异很大.(b)划分的区域尺寸相差很大. 这些尺寸差异越大编码就越无效. 在做详细分析前应该研究刚度差异的影响. 例如, 一个荷载作用下的刚性板, 可以用一系列顶点固定的网格代替, 并施以等速度. (记住FIX命令确定速度, 而不是位移. )地下水的出现将使体积模量发生明显的增加(流体-固体相互作用).(3) 考虑网格划分的密度:FLAC3D使用常应变单元. 如果应力/应变曲线倾斜度比较高, 那么你将需要许多区域来代表多变的分区. 通过运行划分密度不同的同一个问题来检查影响. FLAC3D应用常应变区域, 因为当用多的少节点单元与用比较少的多节点单元模拟塑性流动时相比更准确.应尽可能保持网格, 尤其是重要区域网格的统一. 避免长细比大于5:1的细长单元, 并避免单元尺寸跳跃式变化(即应使用平滑的网格). 应用GENERATE命令中的比率关键词, 使细划分区域平滑过渡到粗划分区域.(4) 自动发现平衡状态:默认情况下, 当执行SOLVE 命令时, 系统将自动发现力的平衡. 当模型中所有网格顶点中所有力的平均量级与其中最大的不平衡力的量级的比率小于1*10时, 认为达到了平衡状态. 注意一个网格顶点的力由力(例如, 由于重力)和外力(例如, 由于所加的应力边界条件)共同引起. 因为比率是没有尺寸的, 所以对于有不同的单元体系的模型, 在大多数情况下, 不平衡力和所加力比率的限制给静力平衡提供了一个精确的限制.同时还提供了其他的比率限制;可以用SET ratio 命令施加. 如果默认的比率限制不能为静力平衡提供一个足够精确的限制, 那么应考虑可供选择的比率限制. 默认的比率限制同样可用于热分析和流体分析的稳定状态求解. 对于热分析,是对不平衡热流量和所加的热流量量级进行评估, 而不是力. 对于流体分析,对不平衡流度和所加流度量级进行评估.(5) 考虑选择阻尼:对于静力分析, 默认的阻尼是局部阻尼, 对于消除大多数网格顶点的速度分量周期性为零时的动能很有效. 这是因为质量的调节过程依赖于速度的改变. 局部阻尼对于求解静力平衡是一个非常有效的计算法则且不会引入错误的阻尼力(见Cundall 1987).如果在求解最后状态, 重要区域的网格海域的速度分量不为零, 那么说明默认的阻尼对于达到平衡状态是不够的. 有另外一种形式的阻尼, 叫组合阻尼, 相比局部阻尼可以使稳定状态达到更好的收敛, 这时网格将发生明显的刚性移动. 例如, 求解轴向荷载作用下桩的承载力或模拟蠕变时都可能发生. 使用SETmechanical damp combined命令来调用组合阻尼. 组合阻尼对于减小动能方面不如局部阻尼有效, 所以应注意使系统的动力激发最小化. 可以用SETmechanical damp local命令转换到默认阻尼.(6) 检查模型反应:FLAC3D 显示了一个相试的物理系统是怎样变化的. 做一个简单的试验证明你在做你认为你在做的事情. 例如, 如果荷载和实体在几何尺寸上都是对称的, 当然反应也是对称的. 改变了模型以后, 执行几个时步(假如, 5或10步), 证明初始反应是正确的, 并且发生的位置是正确的. 对应力或位移的期望值做一个估计, 与FLAC3D 的输出结果作比较.如果你对模型施加了一个猛烈的冲击, 你将会得到猛烈的反应. 如果你对模型作了一些看起来不合理的事情, 你一定要等待奇怪的结果. 如果在分析的一个给定阶段, 得到了意外值, 那么回顾到这个阶段所用的时步.在进行模拟前很关键的是检查输出结果. 例如, 除了一个角点速度很大外, 一切都很合理, 那么在你理解原因前不要继续下去. 这种情况下, 你可能没有给定适当的网格边界.(7) 初始化变量:在模拟基坑开挖过程时, 在达到目的前通常要初始化网格顶点位移. 因为计算次序法则不要求位移, 所以可以初始化位移, 这只是由网格顶点的速度决定, 并有益于用户初始化速度却是一件难事. 如果设定网格顶点的速度为一常数, 那么这些点在设置否则前保持不变. 所以, 不要为了清除这些网格的速度而简单的初始化它们为零. . . 这将影响模拟结果. 然而, 有时设定速度为零是有用的(例如, 消除所有的动能).(8) 最小化静力分析的瞬时效应:对于连续性静力分析, 经过许多阶段逐步接近结果是很重要的. . . 即, 当问题条件突然改变时, 通过最小化瞬时波的影响, 使结果更加“静力”. 使FLAC3D 解决办法更加静态的方法有两种.(a) 当突然发生一个变化时(例如, 通过使区域值为零模拟开挖), 设定强度性能为很高的值以得到静力平衡. 然后为了确保不平衡力很低, 设定性能为真实值, 再计算, 这样, 由瞬时现象引起的失败就不会发生了.(b) 当移动材料时, 用FISH 函数或表格记录来逐步减少荷载.(9) 改变模型材料:FLAC3D 对一个模拟中所用的材料数没有限制. 这个准则已经尺寸化, 允许用户在自己所用版本的FLAC3D中最大尺寸网格的每个区域(假如设定的)使用不同的材料.(10) 运行在现场原位应力和重力作用下的问题:有很多问题在建模时需要考虑现场原位应力和重力的作用. 这种问题的一个例子是深层矿业开挖:回填. 此时大多数岩石受很高的原位应力区的影响(即, 自重应力由于网孔尺寸的限制可以忽略不计), 但是回填桩的放置使自重应力发展导致岩石在荷载作用下可能坍塌. 在这些模拟中要注意的重点(因为任何一种模拟都有重力的作用)是网格的至少三个点在空间上应固定. . . 否则, 整个网格在重力作用下将转动. 如果你曾经注意到整个网格在重力加速度矢量方向发生转动, 那么你可能忘记在空间上固定网格了.FLAC3D主要适明模拟计算地质材料和岩土上程的力学行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与隐式有限元程序相比的常用模型 岩土力学通用模型(边坡稳定性分
析,地下开挖) 破坏后研究(失稳过程,立柱屈服,
顶板崩落) 松散沉积地层中的开挖
层状材料破坏后研究
粘土 岩石
FLAC3D的前后处理
术语
区域(Zone)……有限差分划分的带在几何上是最小的区
域,在在这个区域里的每一个现象的变化,如应力应变都可以
1 承受荷载能力与变形分析:用于边坡稳定和基础设计 2 渐进破坏与坍塌反演:用于硬岩采矿和隧道设计 3 断层构造的影响研究:用于采矿设计 4 施加于地质体锚索支护所提供的支护力研究:岩锚和土钉的设计 5 排水和不排水加载条件下全饱和流体流动和孔隙压力扩散研究:挡土 墙结构的地下水流动和土体固结研究 6 粘性材料的蠕变特性:用于碳酸钾盐矿设计 7 陡滑面地质结构的动态加载:用于地震工程和矿山岩爆研究 8 爆炸荷载和振动的动态响应:用于隧道开挖和采矿活动 9 结构的地震感应:用于土坝设计 10 由于温度诱发荷载所导致的变形和结构的不稳定:高辐射废料地下埋 藏的性能评价 12 大变形材料分析:用于研究粮仓谷物流动及井巷和矿洞中材料的总体 流动
格网点
估计出,。各种形状的多面体(立方体、楔形、锥体、四面体 格网区域
等)可用来构造模型并可用plot显示出来。每一个多面体可能
有一套或两套表层设置,这由5个四面体组成。默认的情况下, 水 平
两个表层设置用在对计算精度要求高的情况下,区域的另外一
边界 压力
种叫法是要素。
栅格点(GridPoint)……栅格点是有限差分单元的角点。
一个多面体可能有5个、6个、7个或8个网格点,主要取决于多
面体的形状。给定每个节点的x,y和z值这样就具体确定了有限
差分单元,。其他叫法有:节点,交点。
有限差分栅格(Finite Difference Grid)……有限差分
网格是研究区域中一个或多个通过物理边界连接的有限差分单 元的集合。另一个叫法是网格,有限差分网格也可以标识出模
极限分析,底摩擦角的软粘土 松散或胶结的粒状材料:土,岩石,混
凝土 存在非线性硬化或软化的粒状材料 具有强度各向异性的层状材料(即板岩) 具有非线性材料硬化或软化的层状材料 轻胶结的粒状材料,在压力作用下导致
永久体积减小 变形和抗剪强度是体变的函数
各向同性的岩石材料
孔洞,开挖,后续施工材料(如回填) 低于强度极限的人工材料(如钢 铁);安全系数计算 不超过强度极限的柱状玄武岩
开始
生成网格并调整网格的形状; 持续的运动和连续的物质属性; 特定的边界条件和初始条件。
到达平衡状态
效果是否符合要求
作如下改变: 开挖模型的物质属性
改变边界条件
实施求解
效果是否符合要求
参数是否调整
结束
基本原理
有限差分法 Lagrangian网格 空间混合离散技术 Lagrangian格式动量平衡方程 FLAC3D的求解过程 FLAC3D的本构模型
FLAC3D中的本构模型
模型
材料特性
实际应用
空模型
线弹性模型
正Байду номын сангаас各向同性 弹性
横观各向同性 弹性
德鲁克-普拉格 模型
摩尔-库仑 模型
应变硬化/软化摩尔-库仑 模型
遍布解理模型 双线性应变硬化/软化遍
布解理模型
双屈服面塑性模型
修正剑桥模型 胡克-布朗模型
空
均匀各向同性的线形本构关系
正交各向同性材料
横观各向同性弹性(即板岩)
模型)即规定了FLAC3D模型中某一区域的变形或强度效应,
可用大量基本模型去近视地质材料,可以单独定义FLAC3D
边界条件(Boundary Condition)……即模型边界的格网区域
约束条件或控制条件的给定(如:限制位移、渗透条件、绝
热条件)。
水平
边界
初始条件(Initial Conditions)……即在对模型加载 压力
或开挖等作用前的各种参数状态。
基本模型(Constitutive Model)……基本模型(材料
FLAC3D数值模拟在采矿工程的应用
主要内容
FLAC3D软件简介
FLAC3D数值模拟在岩土工程的应 用
FLAC3D简介
美国Itasca(依泰斯卡)咨询公司开发2D程序(1986) 1990年代初引入中国 有限差分法(FDM) DOS版→2.0 →2.1 →3.0
FLAC3D简介
FLAC3D的求解过程
速度
对所有的网格节点
平衡方程 (动量方程)
Gauss定律 应变率
对所有单元
应力—应变关系 (本构模型)
节点力 单元积分 新的应力
FLAC3D中的本构模型
开挖模型null 3个弹性模型
各向同性弹性 横观各向同性弹性 正交各向同性弹性
8个塑性模型(Drucker-Prager模型、MorhCoulomb模型、应变硬化/软化模型、遍布节理 模型、双线性应变硬化/软化遍布节理模型、修正 剑桥模型和胡克布朗模型)
基本原理
建立FLAC计算模型,必须进行以下三个方 面的工作:
1. 有限差分网格 2. 本构特性与材料性质 3. 边界条件与初始条件 完成上述工作后,可以获得模型的初始平 衡状态,也就是模拟开挖前的原岩应力状态 。然后,进行工程开挖或改变边界条件来进 行工程的响应分析。
网格确定问题的几何尺寸;持续的运动和 连续的物质属性决定了模型的扰动(如由 于开挖引起的变形)形式;边界条件和初 始条件确定了模型的初始状态(没有引起 扰动或变形的状态)。
应用:
岩土力学/岩石力学分析,例矿体滑坡、煤矿开采沉陷预 测、水利枢纽岩体稳定性分析、采矿巷道稳定性研究等
岩土工程、采矿工程、水利工程、地质工程
特色:
大应变模拟 完全动态运动方程使得FLAC3D在模拟物理上的不稳定过
程不存在数值上的障碍 显示求解具有较快的非线性求解速度
FLAC3D简介
滚动底 端边界
型中每个状态的存储位置,FLAC3D所生成的矢量都保存在节
点上(如:受力、速度、位移)。标量和张量保存在单元的中
心(如应力、材料属性)。
内部开挖边界
结构线 模型边界
水平边 界 压力
FLAC3D的前后处理
术语
模型边界(Model Boundary)……即有限差分网格的 格网点
外围,内部边界也同样是模型边界(如网格中的空洞)。