材料力学行为尺度效应研究进展

材料力学行为尺度效应研究进展
材料力学行为尺度效应研究进展

材料力学行为尺度效应研究进展

近日,西安交通大学金属材料强度国家重点实验室微纳尺度材料行为研究中心研究生余倩,在导师孙军教授、肖林教授,和该研究中心教授马恩、单智伟的悉心指导下,与美国宾夕法尼亚大学教授李巨、丹麦瑞瑟国家实验室黄晓旭博士合作,对微小尺度金属单晶材料中的孪晶变形行为及其对材料力学性能的影响进行了深入研究,发现了单晶体外观尺寸对其孪晶变形行为的强烈影响,以及相应材料力学性能的显著变化。此项成果已发表在1月21日出版的《自然》(Nature)杂志上。评审人对此项研究中所完成的大量首创性工作印象非常深刻,认为作者在材料力学尺度效应的研究方面取得了重大进展。

伴随着微电子元器件与微机电系统(MEMS)等技术的进步,所用材料外形特征尺寸的下限也逐渐减小至亚微米甚至纳米量级,而该尺度正是材料塑性变形基本物理机制作用的空间范畴。也就是说,微纳尺度材料中,材料变形载体的特征尺度,如位错线与孪晶缺陷的特征尺度与作用空间,开始和材料的外部几何尺寸处于相似量级。比如块体钛合金中变形孪晶的尺度一般在0.1~10微米之间。当具有不同尺寸的微元器件中零部件所用材料外形几何尺寸与其相近时,孪晶是否仍然会发生、其临界条件和性能是否会随尺寸而改变等等,都是当前材料科学领域中的前沿课题和令设计工程师们异常感兴趣的问题。

因此,作为材料开发和应用的重要步骤,如何准确测量和表征这些微小器件在制备和服役过程中的力学性能,成为事关其高性能设计制备与安全使用的关键性课题,也是材料科学发展所必须面对的挑战。以前,对这一方向的研究主要集中在位错的滑移行为,而对于材料的另一种重要塑性变形方式——孪晶在微小尺度材料中的成核与演化过程却鲜有报道。此外,以位错变形为主导的多晶金属材料存在一定的临界尺度。当材料的晶粒尺寸小于该特征尺度时,描述材料力学行为的经典“Hall-Petch”幂律关系,即“尺寸愈小、强度愈高”,亦将不再适用。描述孪晶变形的“Hall-Petch”幂律关系的斜率通常要比位错滑移变形的大很多,也就是说,孪晶变形应表现出更强的尺度依赖性。

文章作者通过巧妙的实验设计,基于六方晶体结构金属孪晶、位错滑移变形的特异性,选取钛-5%铝合金单晶中以孪晶变形为主导塑性变形方式的晶体取向,利用纳米压入仪下微柱体压缩与相应的透射电镜原位定量变形表征技术,有针对性地研究了孪晶变形在微小尺度材料中的行为规律和机理。结果发现,当外观几何尺度减小到微米量级时,与相应宏观块体材料相同,材料的塑性变形仍以孪晶切变为主,但材料的屈服强度及其塑性变形中能够承受的最大流变应力均有显著提高,分别达到其宏观值的近5倍和近8倍,表现出很强的尺度依赖性。其实验测定的“Hall-Petch”幂律关系指数接近于1,即远高于多晶的0.5。

令人惊奇的是,当晶体的外部几何尺度进一步减小到亚微米量级时,材料的塑性变形方式发生了根本性的转变。由于材料尺寸的限制,孪晶变形被完全抑制,并由位错滑移变形

取而代之。而发生这一转变的临界特征晶体尺寸为一微米左右(远大于多晶纳米材料强度极值对应的20纳米)。小于该临界尺寸后,“Hall-Petch”幂律关系将不再适用,而材料所能承受的最大流变应力亦呈现出一种接近于所用材料理想强度水平的“应力饱和”平台现象。这就意味着,原本块体材料由于存在晶体缺陷而无法达到的强度“天花板”——理想强度已经被触及。更为重要的是,这种转变的特征尺度是在微米向亚微米过渡的范围,即小尺度材料在微器件和微机电系统等实际应用中所用材料的重要尺度范围。由此,文中提出了与光学物理“受激辐射”效应类似的,以螺位错为媒介的孪晶变形“受激滑移”模型,得到

“Hall-Petch”幂律指数的理论值为1,与实验值吻合良好。并且由于仅有1%左右的位错可以作为极轴,而晶体尺寸愈小,就愈难于利用螺位错的极轴作用将两个相邻的滑移面有效地耦合在一起而形成孪晶,完美地解释了孪晶变形具有强烈的晶体尺寸效应和“尺寸愈小、强度愈高”的内在原因。

此项研究结果对于系统认识微小尺度材料的力学行为有着十分重要的作用。对于微电子元器件与微机电系统所用材料的性能表征评价与设计,特别是利用其强度的强烈晶体尺度效应进行微纳加工等具有重要的指导意义。

据悉,该项研究得到了国家自然科学基金与“973”计划项目以及国家外专局/教育部首批学科创新引智(“111计划”)项目的共同资助。(来源:科学时报张行勇)

材料力学实验指导书

材料力学实验指导书 §5 梁弯曲正应力电测实验指导书 1、概述 梁是工程中常用的受弯构件。梁受弯时,产生弯曲变形,在结构设计和强度计算中经常要涉及到梁的弯曲正应力的计算,在工程检验中,也经常通过测量梁的主应力大小来判断构件是否安全,也可采用通过测量梁截面不同高度的应力来寻找梁的中性层。 2、实验目的 1、用应变电测法测定矩形截面简支梁纯弯曲时,横截面上的应力分布规律。 2、验证纯弯梁的弯曲正应力公式。 3、观察纯弯梁在双向交变加载下的应力变化特点。 3、实验原理 梁纯弯曲时,根据平面假设和纵向纤维之间无挤压的假设,得到纯弯曲正应力计算公式为: Z I My =σ 式中:M —弯矩 Z I —横截面对中性层的惯性矩 y —所求应力点的纵坐标(中性轴为坐标零点)。 由上式可知梁在纯弯曲时,沿横截面高度各点处的正应力按线性规律变化,根据纵向纤维之间无挤压的假设,纯弯梁中的单元体处于单纯受拉或受压状态,由单向应力状态的胡克定律E *εσ=可知,只要测得不同梁高处的ε,就可计算出该点的应力σ,然后与相应点的理论值进行比较,以验证弯曲正应力公式。 4、实验方案 4.1实验设备、测量工具及试件: YDD-1型多功能材料力学试验机(图1.8)、150mm 游标卡尺、四点弯曲梁试件(图5.1)。 YDD-1型多功能材料力学试验机由试验机主机部分和数据采集分析两部分组成,主机部分由加载机构及相应的传感器组成,数据采集部分完成数据的采集、分析等。 图5.1实验中用到的纯弯梁,矩形截面,在梁的两端有支撑圆孔,梁的中间段有四个对称半圆形分配梁加载槽,加载测试时,两半圆型槽中间部分为纯弯段,在纯弯段中间不同梁高部位、在离开纯弯段中间一定距离的梁顶及梁底、在加工有长槽孔部位的梁顶及梁底均粘贴电阻应变片。 4.2 装夹、加载方案 安装好的试件如图5.2所示。试验时,四点弯曲梁通过销轴安装在支座的长槽孔内,形成滚动铰支座。梁向下弯曲时,荷载通过分配梁等量地分配到梁上部两半圆形加载槽,梁向上弯曲时,荷载通 过分配梁等量地分配到梁下部两半圆形加载槽,分配梁的两个加载支滚,一个为滚动铰支座,一个为 图5.1 四点弯曲梁试件

材料力学行为及性能

绪论§0.1 工程材料 工程材料分类(按其应用分) ?结构材料 依靠其力学性能得以发展和应用的材料。 ?功能材料 利用物质的声、光、电、磁、化学乃至生物性能得以发展和应用的材料。 (本课程所研究和讲述的重点在第一种,尤其是结构材料中的金属材料) §0.2 力学性能 材料抵抗外加载荷(不仅指外力和能量的作用,而且还包括环境因素例如温度、介质、加载速率等的影响)所引起的变形和断裂的能力。 §0.3 研究内容 研究材料在外力作用下的变形、断裂和寿命。 ?弹性 材料在外力作用下保持固有形状和尺寸的能力;以及在外力去除后恢复固有形状和尺寸的能力。 ?塑性 材料在外力作用下发生永久不可逆变形的能力。 ?强度 材料对塑性变形和断裂的抗力。 ?寿命 材料在外力的长期和重复作用下,或在外力和环境因素的复合作用下,抵抗失效的能力(时间长短)。 (以上只是定性地说明这些力学性能,如果要定量地说明它就必须用一些力学参量(应力、应变、应力场强度因子等)来表示这些力学性能。 如果我们说某材料的力学性能好,就是指这些力学参量的值高或低,所以人们通常将力学参量的临界值或规定值称为材料的力学性能指标。声学材料:隔音层光学材料:玻璃,镜片 电学材料:金属导线,电子元器件 磁学材料:磁头、磁卡 化学材料:高分子材料催化剂 生物材料:人工关节、人工骨骼 生活中常指后者

如:强度指标、塑性指标、韧性指标) 具体研究涉及的内容: ?材料(包括金属材料和非金属材料)在不同形式外力作用下,或者外力、温度、环境等因素的共同作用下,发生变 形、损伤和断裂的过程、机理和力学模型; ?评定力学性能的各项指标的意义(物理意义和工程实用意义)、各指标间的相互关系以及具体的测试技术; ?研究力学性能指标机理、影响因素以及改善或提高这些力学性能指标的方法和途径。 (注:材料力学性能的影响因素 内因:化学成分、组织结构、冶金质量、残余应力、表面和内部缺陷。 外因:载荷性质、载荷谱、应力状态、温度、环境介质等。) §0.4学习和研究材料力学性能的目的和意义 机械和工程结构的设计,应当达到所要求的性能,并且在规定的服役期内安全可靠地运行,同时也要具有经济性,即低的设计、制造和维修费用。 ①达到使用要求;②安全性;③经济性 然而,各种机械和结构零部件的使用条件各不相同,因而要选用不同的的材料制成零件,也需要采用不同的工艺手段来完成零件的实际制作。而材料的力学性能及其评定指标,是结构设计时选用材料、制订加工工艺的主要依据,也是评价结构质量的主要依据。 ?在零部件使用中,要求材料具有高的变形和断裂抗力,使零部件在受外力作用时能保持设计所要求的外形和尺寸, 并保证在服役期内安全地运行; ?在零部件的生产过程中,则要求材料具有优良的可加工性。 (例如,在金属的塑性成形中,要求材料具有优良的塑性和低的塑性变形抗力) 对于学生,必须具有材料力学性能方面的知识,以便在研究新材料和改善材料的过程中,能根据材料的使用要求,选用合适的现有材料或研制新材料,制订合适的加工工艺。 §0.5研究方法 ?理论分析 ?试验测定

材料力学研究课题

剪线钳力学分析 12级机械电子一班 叶兴状 3126113024 我做的研究课题是剪线钳使用及其断裂失效原因分析,由于时间紧、期末忙于复习考试难免会有错误,希望老师加以批评指正、不吝赐教。 我们家里都有用过剪线钳这一普通工具,剪线钳用于各种操作,通常用来剪尺寸正常的铜线、铁线等。下图是我找到的一把普通剪线钳,目视检查后,分三步进行分析 并预测其失效的原因。首先进行应 力计算,事先准备一根10TW(直径 0.259cm)的铜线,通过去图书馆查 阅资料知道剪断这种型号的铜线 需要D 的力为F=436N,而且我在 实验过程中发现剪线钳只发生弹 性弯曲,连续完成三个实验后,剪线 钳没有明显的损伤。剪线钳是由Q255钢制成的,施加在剪线钳上的最大外层应力可以用简支梁的计算公式计算: I M y =σ 简单粗略计算得:式中 M ——为力矩=6.4cm*438N y ——为0.34cm I ——为惯性矩=0.0112 cm 4 所以 =σ 8.4*104 Pa

查阅资料得:该型号剪线钳抗拉压强度[σ]=1.24*108Pa 将剪线钳的一边看成外伸梁,如图 d1=14cm d2=3cm F1=436N F2=-F1=-436N 直径d=1.2cm 查表知:E=45GPa 则M A =F1*d1+F2*d2=46.51N/m 抗弯截面系数W=d/2I 其中I=64 d *d *d *d π则W=32 d *d *d π=1.8*10-7cm 3 横截面积A=4d *d π=1.13*10-4 压应力=σA F 1=3.9*106Pa 由M MAX =Fd1 强度条件为 M MAX <=W[σ] 联立解得F<=1.6KN 所以根据上述计算可知,只要施加在剪线钳上的最大压紧力不超过 1.6KN ,该剪线钳就不会损坏,所以平时要注意,这样就可以保护好剪线钳。

纳米尺寸效应

纳米尺寸效应 纳米是长度单位,原称毫微米,就是10^-9米(10亿分之一米)。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在1至100纳米范围内材料的性质和应用。纳米效应就是指纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。这是由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,以及其特有的三大效应:表面效应、小尺寸效应和宏观量子隧道效应。 表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10^-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。如要防止自燃,可采用表面包覆或有意识地控制氧化速率,使其缓慢氧化生成一层极薄而致密的氧化层,确保表面稳定化。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料。 小尺寸效应 随着颗粒尺寸的量变,在一定条件下会引起颗粒性质的质变。由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,同时其比表面积亦显著增加,从而产生如下一系列新奇的性质。 (1)特殊的光学性质当黄金被细分到小于光波波长的尺寸时,即失去了原有的富贵光泽而呈黑色。事实上,所有的金属在超微颗粒状态都呈现为黑色。尺寸越小,颜色愈黑,银白色的铂(白金)变成铂黑,金属铬变成铬黑。由此可见,金属超微颗粒对光的反射率很低,通常可低于l%,大约几微米的厚度就能完全消光。利用这个特性可以作为高效率的光热、光电等转换材料,可以高效率地将太阳能转变为热能、电能。此外又有可能应用于红外敏感元件、红外隐身技术等。 (2)特殊的热学性质固态物质在其形态为大尺寸时,其熔点是固定的,超细微化后却发现其熔点将显著降低,当颗粒小于10纳米量级时尤为显著。例如,金的常规熔点为1064C℃,当颗粒尺寸减小到10纳米尺寸时,则降低27℃,2纳米尺寸时的熔点仅为327℃左右;银的常规熔点为670℃,而超微银颗粒的熔点可低于100℃。因此,超细银粉制成的导电浆料可以进行低温烧结,此时元件的基片不必采用耐高温的陶瓷材料,甚至可用塑料。采用超细银粉浆料,可使膜厚均匀,覆盖面积大,既省料又具高质量。日本川崎制铁公司采用0.1~

纳米材料四大效应

1.小尺寸效应:当纳米粒子尺寸与德布罗意波以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,对于晶体其周期性的边界条件将被破坏,对于非晶态纳米粒子其表面层附近原子密度减小,这些都会导致电、磁、光、声、热力学等性质的变化,这称为小尺寸效应 我的理解是尺寸小了就会出现一些新的现象、新的特性。从理论层面讲主要是由于尺寸变小导致了比表面的急剧增大。由此很好地揭示了纳米材料良好的催化活性。 2.表面效应:是指纳米粒子表面原子数与总原子数之比随粒径的变小而急剧增大后引起的性质上的变化。 其实质就是小尺寸效应。球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 3. 量子尺寸效应:当粒子尺寸降低到某一值时,金属费米能级附近的电子能级由准连续变为分立能级和纳米半导体微粒的能隙变宽的现象均称为量子尺寸效应。 可否直接说连续的能带变成能级。 宏观量子隧道效应:微观粒子具有穿越势垒的能力称为隧道效应。近年来,人们发现一些宏观量,例如微粒的磁化强度、量子相干器件中的磁通量等亦具有隧道效应,它们可以穿越宏观系统的势垒而产生变化,故称为宏观量子隧道效应。 表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。因为表面原子数目增多,比表面积大,原子配位不足,表面原子的配位不饱和性导致大量的悬空键和不饱和键,表面能高,因而导致这些表面原子具有高的活性,极不稳定,很容易与其他原子结合。这种表面原子的活性不但易引起纳米粒子表面原子输运和构型的变化,同时也会引起表面电子自旋构象和电子能谱的变化。纳米材料由此具有了较高的化学活性,使得纳米材料的扩散系数大,大量的界面为原子扩散提供了高密度的短程快扩散路径,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。(2)小尺寸效应 当纳米微粒尺寸与光波波长,传导电子的德布罗意波长及超导态的相干长度、透射深度等物理特征尺寸相当或更小时,它的周期性边界被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,从而使其声、光、电、磁,热力学等性能呈现出新的物理性质的变化称为小尺寸效应。例如,铜颗粒达到纳米尺寸时就变得不能导电;绝缘的二氧化硅颗粒在20纳米时却开始导电。再譬如,高分子材料加纳米材料制成的刀具比金钢石制品还要坚硬。利用这些特性,可以高效率地将

材料力学实验指导书(拉伸、扭转、冲击、应变)

C 61`材料的拉伸压缩实验 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理现象;观 察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ);测定压缩时铸铁的 强度极限σb。 4.学习、掌握电子万能试验机的使用方法及工作原理。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图1所示,压缩实验所用试件(材料:铸铁)如图2所示: 图1 拉伸试件图2 压缩试件 四、实验原理 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图3。 对于低碳钢材料,由图3曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;

B 点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs 时,必须缓慢而均匀地加载,并应用σs =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。 图3 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷 达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率 ψ,即 %100001?-=l l l δ,%1000 10?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换和处理, 并输入计算机,得到F-?l 曲线,即铸铁压缩曲线,见图4。 图4 铸铁压缩曲线

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

非均质材料力学研究进展

非均质材料力学研究进展: 热点、焦点和生长点 Advances in Heterogeneous Materials Mechanics: Cutting-edge and Growing Points Jinghong Fan1,2 Haibo Chen3 1 Kazuo Inamori School of Engineering, Alfred University, Alfred, New York, 14802, USA 2 Research Center of Materials Mechanics, ChongQing University, ChongQing, 400044, P. R. China 3 Department of Modern Mechanics, University of Science and Technology of China, CAS Key Laboratory of Mechanical behavior and Design of Materials, Hefei, Anhui, 230026, P. R, China Recently, heterogeneous materials mechanics (HMM) has attained increased momentum for its development. These advances are motivated by the needs of nanotechnology, biotechnology, materials sciences, renewable energy, aeronautical and aerospace engineering, etc. New phenomena, concepts, and methods, and fruitful research results appear in its different branches. This speeds the collaboration and combination between the HMM and other disciplines such as materials science, condensed physics, chemistry and engineering sciences. This trend is shown in the positive attitudes of the world's top scholars, who attended or will attend the series of International Conferences of Heterogeneous Materials Mechanics (ICHMM-2004, ICHMM-2008 and ICHMM-2011). This paper is a systematic review of the cutting-edge and growing points of the heterogeneous materials mechanics. It includes not only the contents of presentations and discussions of the six special workshops held in the ICHMM-2008, but also includes the recent, focused research topics and their new achievements. Specifically, this paper discusses the advances in the following aspects: Multiple physics and multiscale modeling, atomistic to continuum analyses of materials structure and behavior, stochastic microstructure evolution and degradation, modeling realistic microstructure, biological and nature-inspired materials design, in situ experiments and model validation, mechanics of functional gradient materials, and the development of micron-nano devices and systems. Taking the topic of multiple physics and multiscale modeling as an example, this paper introduces its background, objectives, needs, advantages and disadvantages of existing methods, obstacles for its development, applications , intrinsic connections with other

材料力学实验

材料力学实验 文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

实验一实验绪论 一、材料力学实验室实验仪器 1、大型仪器: 100kN(10T)微机控制电子万能试验机;200kN(20T)微机控制电子万能试验机;WEW-300C微机屏显式液压万能试验机;WAW-600C微机控制电液伺服万能试验机 2、小型仪器: 弯曲测试系统;静态数字应变仪 二、应变电桥的工作原理 三、材料力学实验与材料力学的关系 四、材料力学实验的要求 1、课前预习 2、独立完成 3、性能实验结果表达执行修约规定 4、曲线图一律用方格纸描述,并用平滑曲线连接 5、应力分析保留小数后一到二位

实验二轴向压缩实验 一、实验预习 1、实验目的 I、测定低碳钢压缩屈服点 II、测定灰铸铁抗压强度 2、实验原理及方法 金属的压缩试样一般制成很短的圆柱,以免被压弯。圆柱高度约为直径的倍~3倍。混凝土、石料等则制成立方形的试块。 低碳钢压缩时的曲线如图所示。实验表明:低碳钢压缩时的弹性模量E和屈服极限σε,都与拉伸时大致相同。进入屈服阶段以后,试样 越压越扁,横截面面积不断增大,试样抗压能力也继续增强,因而得不 到压缩时的强度极限。 3、实验步骤 I、放试样 II、计算机程序清零 III、开始加载 IV、取试样,记录数据 二、轴向压缩实验原始数据 指导老师签名:徐

三、轴向压缩数据处理 测试的压缩力学性能汇总 强度确定的计算过程: 实验三轴向拉伸实验 一、实验预习 1、实验目的 (1)、用引伸计测定低碳钢材料的弹性模量E; (2)、测定低碳钢的屈服强度,抗拉强度。断后伸长率δ和断面收缩率; (3)、测定铸铁的抗拉强度,比较两种材料的拉伸力学性能和断口特征。 2、实验原理及方法 I.弹性模量E及强度指标的测定。(见图) 低碳钢拉伸曲线铸铁拉伸曲线 (1)测弹性模量用等增量加载方法:F o =(10%~20%)F s , F n =(70%~80%)F s 加载方案为:F 0=5,F 1 =8,F 2 =11,F 3 =14,F 4 =17 ,F 5 =20 (单位:kN) 数据处理方法: 平均增量法 ) , ( ) ( 0取三位有效数 GPa l A l F E m om ? ? ? = δ(1) 线性拟合法 () GPa A l l F n l F F n F E om o i i i i i i? ? ∑ - ∑? ∑ ∑ - ∑ = 2 2 ) ( (2)

工程材料力学性能

工程材料力学性能 工程材料力学性能 第一章、金属在单向静拉伸载荷下的力学性能 一、名词解释 ?弹性比功又称弹性比能、应变比能,表示金属材料吸收弹性变形功的功能。一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 ?循环韧性:金属材料在交变载荷(震动)下吸收不可逆变形功的能力,称为金属的循环韧性,也叫金属的内耗。 ?包申格效应:金属材料经过预先加载产生多少塑性变形(残余应力为1%~4%),卸载后再同向加载,规定残余伸长应力(弹性极限或屈服强度)增加;反向加载,规定残余伸长应力降低(特别是弹性极限在反向加载时几乎降低到零)的现象,称为包申格效应。 ?塑性:指金属材料断裂前发生塑性变形(不可逆永久变形)的能力。金属材料断裂前所产生的塑性变形由均匀塑性变形和集中塑性变形两部分构成。 ?韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。 ?脆性:脆性相对于塑性而言,一般指材料未发生塑性变形而断裂的趋势。 ?解理面:因解理断裂与大理石断裂类似,故称此种晶体学平面为解理面。 ?解理刻面:实际的解理断裂断口是由许多大致相当于晶粒大小的解理面集合而成的,这种大致以晶粒大小为单位的解理面称为解理刻面。 ?解理台阶:解理裂纹与螺型位错相交而形成的具有一定高度的台阶称为解理台阶。

?河流花样解理台阶沿裂纹前段滑动而相互汇合,同号台阶相互汇合长大。当汇合台阶高度足够大时,便成为了河流花样。 ?穿晶断裂与沿晶断裂:多晶体金属断裂时,裂纹扩展的路径可能是不同的。裂纹穿过晶内的断裂为穿晶断裂;裂纹沿晶界扩展的断裂为沿晶断裂。穿晶断裂和沿晶断裂有时候可以同时发生。 二、下列力学性能指标的的意义 ?E(G):弹性模量,表示的是材料在弹性范围内应力和应变之比; ?σr:规定残余伸长应力,表示试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力;常用σ0.2表示材料的规定残余延伸率为0.2%时的应力,称为屈服强度;σs:屈服点,表示呈屈服现象的金属材料拉伸时,试样在外力不断增加(保持恒定)仍能继续伸长时的应力称为屈服点。 ?σb:抗拉强度,表示韧性金属材料的实际承载能力; ?n:应变硬化指数,反映了金属材料抵抗均匀塑性变形的能力,是表征金属材料应变硬化行为的性能指标; ?δ:断后伸长率,表示试样拉断后标距的伸长与原始标距的百分比; ?δgt:金属材料拉伸时最大力下的总伸长率(最大均匀塑性变形); ?ψ:断面收缩率,表示试样拉断后缩颈处横截面积的最大缩减量与原始横截面积的百分比。 三、问答题 ?金属的弹性模量主要取决于什么因素,为何说它是一个对组织不敏感的力学性能指标, 答:由于弹性变形是原子间距在外来作用下可逆变化的结果,应力与应变关系实际上是原子间作用力与原子间距的关系。所以,弹性模量与原子间作用力有关,与原子间距也有一定关系。原子间作用力决定于金属原子本性和晶格类型,故弹性模量也主要决定于金属原子本性

复合材料中的尺寸效应

复合材料中的尺寸效应 复合材料本身就是一种广义的结构,这种结构的破坏问题与结构的尺寸效应有 着必然的联系,复合材料中很多都属于准脆性材料,因此尺寸效应显得尤其重要, 从尺度律和尺寸效应角度研究强度问题是个重要的观点,比如一个长细杠件它的稳定性能一定较差,这也是一种较常见的尺寸效应问题。强度随机性引起的尺寸效应,能量释放的尺寸效应和微裂纹和断裂的分形特性产生的尺寸效应都对复合材料结构的强度的影响有着重要意义。 目前,固体力学中有三种有关尺寸效应的基本理论 : (1)随机强度统计理论 ; (2)长裂纹引起的应力重新分布和断裂能量释放理论 (3)裂纹分形理论,它可分为两大类 : (a) 裂纹表面的侵入式分形特性理论(即表面粗糙度的分形属性) (b) 间隙分形特性理论(代表着微裂纹的分形分布)

这些基本理论概括表现为材料的四种尺寸效应: (l)边界层效应:它是由材料的非均匀性和泊松效应造成的.前者可以混凝土之类的材料为例,由于各种骨料不能穿透表面而使表面层具有不同的成分;而泊松效应指的是,在试样内部可能存在平面应变的状态,它们发生在与试件表面平行的平面上 ,但不是发生在试样的表面,而是发生在试件的中心部位 . (2)表面与裂纹边缘连接处存在三维应力的奇异性: 这也是由于泊松效应引起的.这就造成了断裂扩展区域靠近表面的那一部分的力学行为不同于试样内部 的力学行为 . (3)由扩散现象引起的时间相关的尺寸效应, 所谓扩散可以是多孔介质中热的输运或湿气和化学物质的输运,这一点已在收缩和干燥蠕变现象的尺寸效应中显示出来,原因是半干燥期依赖于尺寸,以及这种尺寸效应对收缩致裂的影响。 (4)材料本构关系的时间相关性 ,特别是材料应变软化的粘性特征,这一特征包含了材料时间相关的特征长度。

材料力学实验指导书

试验一岩石单轴抗压试验 一、试验的目的: 测定岩石的单轴抗压强度R c。当无侧限试样在纵向压力作用下出现压缩破坏时,单位面积上所承受的载荷称为岩石的单轴抗压强度,即试样破坏时的最大载荷与垂直于加载方向的截面积之比。 本次试验主要测定天然状态下试样的单轴抗压强度。 二、基本原理 岩石的单轴抗压强度是指岩石试样在单向受压至破坏时,单位面积上所承受的最大压应力: (MPa) 一般简称抗压强度。根据岩石的含水状态不同,又有干抗压强度和饱和抗压强度之分。 岩石的单轴抗压强度,常采用在压力机上直接压坏标准试样测得,也可与岩石单轴压缩变形试验同时进行,或用其它方法间接求得。 三、主要仪器设备 1、钻石机、切石机、磨石机或其他制样设备。 2、测量平台、角尺、放大镜、游标卡尺。 3、压力机,应满足下列要求: (1)压力机应能连续加载且没有冲击,并具有足够的吨位,使能在总吨位的10%—90%之间进行试验。 (2)压力机的承压板,必须具有足够的刚度,其中之一须具有球形座,板面须平整光滑。 (3)承压板的直径应不小于试样直径,且也不宜大于试样直径的两倍。如压力机承压板尺寸大于试样尺寸两部以上时,需在试样上下两端加辅助承压板。辅助承压板的

刚度和平整度应满足压力机承压板的要求。 (4)压力机的校正与检验,应符合国家计量标准的规定。 三、操作步骤 1、试样制备 (1)样品可用钻孔岩芯或在坑槽中采取的岩块,在取样和试样制备过程中,不允许发生认为裂隙。 (2)试件规格:采用直径5厘米,高为10厘米的方柱体,各尺寸允许变化范围为:直径及边长为±0.2厘米,高为±0.5厘米。 (3)对于非均质的粗粒结构岩石,或取样尺寸小于标准尺寸者,允许采用非标准试样,但高径之比宜为2.0~2.5。 (4)试样制备的精度应満足如下要求: a沿试样高度,直径的误差不超过0.03cm; b试样两端面不平行度误差,最大不超过0.005cm; c端面应垂直于轴线,最大偏差不超过0.25°; d 方柱体试样的相邻两面应互相垂直,最大偏差不超过0.25°。 (4)试样含水状态处理 在进行试验前应按要求的含水状;制备试样时采用的冷却液,必须是洁净水,不许使用油液。 (5)对于遇水崩解、溶解和干缩湿胀的岩石,应采用干法制样 2、试样描述 描述内容包括:岩石名称、颜色、矿物成分、结构、风化程度、胶结物性质等;加荷方向与岩石试样内层理、节理、裂隙的关系及试样加工中出现的问题; 3、试样尺寸测量

工程材料力学行为

作业习题>>第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学姓能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包辛格效应,如何解释,它有什么实际意义? 答案:包辛格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。 包辛格效应可以用位错理论解释。第一,在原先加载变形时,位错源在滑移面上产生的位错遇到障碍,塞积后便产生了背应力,这背应力反作用于位错源,当背应力(取决于塞积时产生的应力集中)足够大时,可使位错源停止开动。背应力是一种长程(晶粒或位错胞尺寸范围)内应力,是金属基体平均内应力的度量。因为预变形时位错运动的方向和背应力的方向相反,而当反向加载时位错运动的方向与原来的方向相反了,和背应力方向一致,背应力帮助位错运动,塑性变形容易了,于是,经过预变形再反向加载,其屈服强度就降低了。这一般被认为是产生包辛格效应的主要原因。其次,在反向加载时,在滑移面上产生的位错与预变形的位错异号,要引起异号位错消毁,这也会引起材料的软化,屈服强度的降低。 实际意义:在工程应用上,首先是材料加工成型工艺需要考虑包辛格效应。其次,包辛格效应大的材料,内应力较大。另外包辛格效应和材料的疲劳强度也有密切关系,在高周疲劳中,包辛格效应小的疲劳寿命高,而包辛格效应大的,由于疲劳软化也较严重,对高周疲劳寿命不利。 作业习题>>第二章金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数——材料最大且盈利与最大正赢利的比值,记为α。 (2)缺口效应——缺口材料在静载荷作用下,缺口截面上的应力状态发生的变化。 (3)缺口敏感度——金属材料的缺口敏感性指标,用缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值表示。 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承受的试验力计算而得的硬度。 (7)努氏硬度——采用两个对面角不等的四棱锥金刚石压头,由试验力除以压痕投影面积得到的硬度。 (8)肖氏硬度——采动载荷试验法,根据重锤回跳高度表证的金属硬度。 (9)里氏硬度——采动载荷试验法,根据重锤回跳速度表证的金属硬度。

功能梯度材料分层法研究

功能梯度材料分层法研究 摘要 功能梯度材料具有随空间位置呈梯度变化的材料属性,这一性能引起了材料科学家和工程师研究的兴趣。基于分层法,将功能梯度材料平面结构划分成若干层,每层的材料参数按函数形式变化。在此分层模型基础上得到同一层的材料参数为常数,然后各层按照常规的有限元方法进行网格划分,建立有限元模型进行功能梯度材料平面结构的力学分析。通过设计组分材料弹性模量的三种工况,讨论了弹性模量梯度系数对有限元计算结果的影响,有一定的误差。 于是引入线性分层法,该模型基于任意一条连续曲线可用一系列的分片连续直线段来逼近的事实,将梯度材料层分成若干子层,在各子层界面处材料参数连续并且等于实际值。将此模型应用于实际问题推导,我们发现与指数模型结果吻合的很好。 关键词:功能梯度材料;分层法;梯度系数;线性分层法 1 FGM研究背景 FGM概念是在1984年前后,由在日本仙台地区的二位材料科学家,日本航天技术研究所的新野正之博士、东北大学的平井敏雄教授和渡边龙三教授首先提出的。当初提出FGM概念的目的是为了解决在设计制造新一代航天飞机的热保护系统中出现的许多问题。据估计,航天飞机工作时,机体外部有些部位最高温度将达1800℃,因此对航天飞机表面的材料要求是要能耐高达1800℃的温度和1600℃的温度落差。已知的工业材料没有能忍受如此苛刻的热机负载的,能用于这种环境条件的材料必须具备以下三个特征:材料的高温表面层能耐热和抗氧化,低温侧具有力学韧性及整个材料中能有效地缓和热应力。面对这种材料要求,FGM这一新概念被提了出来。 这种新材料的高温侧是能耐热的陶瓷,低温侧是具有高热导率的韧性金属,并具有从陶瓷到金属的梯度成分变化。这种FGM的特征其热膨胀系数可以通过控制两个表面之间的成分、微结构、微孔的比率来加以调节。FGM概念一提出就受到日本和世界材料界的高度重视。日本科技厅授予此概念的发明者特别奖。FGM也被列入各种国际国内会议的报告范围。 1.1 FGM定义及原理

微细加工中的尺度效应 整理

微细加工中的尺度效应 在科技飞速发展的今天,人类对机械产品的性能有了许多更高的要求,在通讯、电予、航天、微系统技术、微机电系统等领域,产品微型化已成为人类所追求的同时也是工业界不可阻挡的一个发展方向。这些微小精密产品的制造离不开微细加工技术。而在微细加工中,尺度效应对加工的整个过程有着极大的影响。同时,也正是尺度效应,使得加工后的微小精密零部件有着非常好的性能。所以,尺度效应是微细加工过程中至关重要的可行性评估依据和理论基础。在下面的论述中,将对微细加工中尺度效应的定义、对加工过程的影响以及它的重要意义与实际应用进行简要的阐述。 1.微细加工中的尺度效应的定义 尺度效应是一个很广泛的概念,在不同的学科领域中有着相应的定义。在机械工程领域,尺度效应主要体现在微细加工过程中。如果对尺度效应做一个概括性质的定义,是指:在微细加工的过程中,由于被加工材料整体或局部尺寸的微小化,引起的成形机理、材料变形规律以及材料性能表现出不同于传统成形过程的现象。 2.微细加工中尺度效应的作用机理与影响 在微细加工过程中,由于切削层厚度已经十分薄,尺寸与微观尺度相近,尺度效应对加工精度的影响是十分明显的。传统的制造精度理论和分析方法将不再适用。在加工过程中,尺度效应的作用并非仅仅是将传统加工在尺寸上简单缩小,其主要可以表现为两个方面。 (1)在物理学方面,当切削加工的尺寸减小到一定的程度进入纳米量级时,晶体周期性的边界条件将被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小,导致多个物理性质呈现新的小尺寸效应。在微米量级或该量级以下时,金属材料的硬度值急剧上升,转剪应力---剪应变曲线、弯曲应力---应变曲线明显升高。由此可见,制造中工件的受力与变形特征与传统构件情况是大不相同的。这主要是由于尺寸的缩小使得切削过程中起主导作用的力发生了变化。 对于微细加工中的工件,随着线性尺寸的减小,其表面积与体积的减小程度是不同的。实际上,随着尺寸减小,微构件表面积与体积之增大。因此,分别与

材料力学实验指导书

工程力学实验指导书 主讲:林植慧 机械与汽车工程学院 SCHOOL OF MECHANICAL AND AUTOMOTIVE ENGINEERING

实验一, 二 低碳钢(Q235钢)、铸铁的轴向拉伸试验 一、实验目的与要求 1.观察低碳钢(Q235钢)和铸铁在拉伸试验中的各种现象。 2.测绘低碳钢和铸铁试件的载荷―变形曲线(F ―Δl 曲线)及应力―应变曲线(σ―ε曲线)。 3.测定低碳钢拉伸时的比例极限P σ,屈服极限s σ、强度极限b σ、伸长率δ、断面收缩率ψ和铸铁拉伸时的强度极限b σ。 4.测定低碳钢的弹性模量E 。 5.观察低碳钢在拉伸强化阶段的卸载规律及冷作硬化现象。 6.比较低碳钢(塑性材料)和铸铁(脆性材料)的拉伸力学性能。 二、实验设备、仪器和试件 1.微机控制电子万能试验机。 2.电子式引伸计。 3.游标卡尺。 4.低碳钢、铸铁拉伸试件。 三、实验原理与方法 材料的力学性能主要是指材料在外力作用下,在强度和变形方面表现出来的性质,它是通过实验进行研究的。低碳钢和铸铁是工程中广泛使用的两种材料,而且它们的力学性质也较典型。 试验采用的圆截面短比例试样按国家标准(GB/T 228-2002《金属材料 室温拉伸试验方法》) 制成,标距0l 与直径0d 之比为5100 0或=d l ,如图1-1所示。这样可以避免因试样尺寸和形状的影响而产生的差异,便于各种材料的力学性能相互比较。图中:0d 为试样直径,0l 为试样的标距。国家标准中还规定了其他形状截面的试样。 图 1-1 金属拉伸试验在微机控制电子万能试验机上进行,在实验过程中,与电子万能试验机联机的计算机显示屏上实时绘出试样的拉伸曲线(也称为F ―l ?曲线),如图1-2所示。低碳钢试样的拉伸曲线(图1-2a)分为弹性阶段,屈服阶段,强化阶段及局部变形阶段。如果在强化阶段

工程材料力学性能课后习题答案

《工程材料力学性能》(第二版)课后答案 第一章材料单向静拉伸载荷下的力学性能 一、解释下列名词 滞弹性:在外加载荷作用下,应变落后于应力现象。 静力韧度:材料在静拉伸时单位体积材科从变形到断裂所消耗的功。 弹性极限:试样加载后再卸裁,以不出现残留的永久变形为标准,材料 能够完全弹性恢复的最高应力。 比例极限:应力—应变曲线上符合线性关系的最高应力。 包申格效应:指原先经过少量塑性变形,卸载后同向加载,弹性极限 (σP)或屈服强度(σS)增加;反向加载时弹性极限(σP)或屈服 强度(σS)降低的现象。 解理断裂:沿一定的晶体学平面产生的快速穿晶断裂。晶体学平面--解理面,一般是低指数,表面能低的晶面。 解理面:在解理断裂中具有低指数,表面能低的晶体学平面。 韧脆转变:材料力学性能从韧性状态转变到脆性状态的现象(冲击吸收功明显下降,断裂机理由微孔聚集型转变穿晶断裂,断口特征由纤维状转变为结晶状)。 静力韧度:材料在静拉伸时单位体积材料从变形到断裂所消耗的功叫做静力韧度。是一个强度与塑性的综合指标,是表示静载下材料强度与塑性的最佳配合。 二、金属的弹性模量主要取决于什么?为什么说它是一个对结构不敏感的力学性能? 答案:金属的弹性模量主要取决于金属键的本性和原子间的结合力,而材料的成分和组织对它的影响不大,所以说它是一个对组织不敏感的性能指标,这是弹性模量在性能上的主要特点。改变材料的成分和组织会对材料的强度(如屈服强度、抗拉强度)有显著影响,但对材料的刚度影响不大。 三、什么是包申格效应,如何解释,它有什么实际意义? 答案:包申格效应就是指原先经过变形,然后在反向加载时弹性极限或屈服强度降低的现象。特别是弹性极限在反向加载时几乎下降到零,这说明在反向加载时塑性变形立即开始了。

相关文档
最新文档