分子生物学常用技术上
常用的分子生物学基本技术简介

核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
无论从基因库中筛选的癌基因或经PCR 法扩增的基因,最终均需进行核酸序列分析,可藉以了解基因的精细结构,获得其限制性内切酶图谱,分析基因的突变及对功能的影响,帮助人工俣成基因、设计引物,以及研究肿瘤的分子发病机制等。
测序是在高分辨率变性聚丙烯酰胺凝胶电泳技术的基础上建立起来的。
目前最常用的方法有Maxam-Gilbert的化学降解少和Sanger的双脱氧法等,近年来已有DNA序列自动测定仪问世。
化学降解法是在DNA的片段的5`端标记核素,然后用专一性化学试剂将DNA特异地降解,在电泳和自显影后,可得到从标记端延伸的片段供测读序列和进行比较。
一般能读出200-250个核苷酸序列。
双脱氧法是采用核苷酸链终止剂,如:2`,3`-双脱氧核苷三磷酸ddNTP(如ddTTP、ddTTP、ddGTP和ddCTP中的一种)掺入到DNA链中以终止链的延长,与掺入4种正常的dNTP的混合物分成四组进行反应,这样可得到一组结尾长衙不一、不同专一性核苷酸链终止剂结尾的DNA片段,经凝胶电泳分离和放射自显影,可读出合成的DNA核苷酸序列,根据碱基互补原则,可推算出模板DNA分子的序列。
化学降解法只需一化学试剂,重复性好,容易掌握;而双脱氧法需单链模板、特异的寡核苷酸引物及高质量的DNA聚合酶,便随着M13噬菌体载体的发明和运用,合成的引物容易获得,测序技术不断改进,故此法已被广泛应用。
基脱氧法的自动激光荧光测序仪,使测工作更快速和简便,而且保证高度重复性。
至于RNA测序现大多采用将mRNA逆转录成cDNA后同测序,然后反推RNA序列基因转染技术将特定的遗传信息传递到真核细胞中,这种能力不但革新了生物学和医学中许多基本问题的研究,也推动了诊断和治疗方面的分子技术发展,并使基因治疗成为可能。
目前基因转移技术已广泛用于基因的结构和功能分析、基因表达与调控、基因治疗与转基因动物等研究。
分子生物学实验技术ppt课件

质粒转化大肠杆菌的过程
感受态
非定向克隆 +
或
定向克隆
克隆的片段只能按
+ 特定方向连接基因组DNA的构建基因组DNA的类型
质粒(﹤10kb)噬菌体质经双向电泳之后,用蛋白质水解酶裂解成肽段,可 用于质谱分析。通过电离源将蛋白质分子转化为气相离子, 然后用质谱分析仪的电场、磁场将具有特定质量与电荷比 值(M/Z值)的蛋白离子分离开,经过离子检测器收集分离 的离子,确定离子的M/Z值,分析鉴定未知蛋白质。
两种离子发生方法: 基质辅助激光解吸附/离子化(MALDI)、电喷雾离子化 (ESI)
噬菌体展示技术
噬菌体展示技术是将编码目的蛋白的基 因与编码噬菌体表面蛋白的基因融合后, 以融合蛋白的形式表达在噬菌体表面的一 种技术。
将不同蛋白的cDNA插入噬菌体载体进 行表达,得到表达不同蛋白的一定规模的 噬菌体展示库 。
将“诱饵”蛋白固定化,基于“诱饵”蛋白与 “猎物”蛋白之间的相互作用,可将展示库 中与固定化的“诱饵”蛋白有相互作用的“猎 物”蛋白分离纯化出来,再对“猎物”蛋白进 行质谱鉴定。
四、蛋白组学研究
蛋白质分离 蛋白质分析 蛋白质相互作用的研究方法: 酵母双杂交技术,噬菌体展示技术,表
面等离子共振技术,荧光共振能量转移 技术,蛋白质微阵列芯片技术,免疫共 沉淀技术,pull-down技术
蛋白质分离
最常用的蛋白质分离技术是20世纪70年代发明的双 向电泳(2-DE),是根据蛋白质的等电点不同在pH 梯度介质中进行第一次分离,即等点聚焦(IEF),然 后根据蛋白质分子量的不同进行第二次分离,即 SDS-聚丙烯酰胺凝胶电泳。
重叠延伸PCR原理
重叠延伸PCR技术由于使用了具有互补末端的引物, 使PCR 产物形成了重叠链,从而在随后的扩增反应中通过 重叠链的延伸,将不同来源的扩增片段重叠拼接起来。可 简单迅速的将两个DNA片段连在一起,用于嵌合基因的构 建
分子生物学常用技术

HRP-链霉亲和素(100ul,37oC,20min) 基质液(100ul,37oC, 10min)
2mol/LH2SO450ul终止反应
490nm测定光密度值(以未加PCR产物 的空白为阴性对照,CUT OFF值为0.1)
三. 结果
人血清高密度脂蛋白亚类免疫印迹检测法
吴新伟,傅明德等(中国动脉硬化杂志 1999;7(3):253)
纯化PCR产物与T-vector连接 重组质粒转化JM109大肠杆菌 增殖克隆株 提取质粒
PCR产物30ul
100oC变性5分钟,冰浴5分钟
单链PCR产物30ul加入100ul杂交液 单链PCR产物与预杂交微孔板上 特异DNA片段杂交42oC,1小时
洗涤 1min×5次
(酶切特异片段)
变性成单链 包被微孔板 洗涤 1min×4次 预杂交42oC,1小时
切点数目,但是不能排列出这些片段在DNA分子中的相对 位置。采用酶两两组合进行彻底降解,比较双酶和单一酶解 产物,可以确定酶切点的相对位置。
AJPI DNA的分子量为9.0兆道尔顿(≈13.6kb),有一
个XhoⅠ和一个PstⅠ切口,两个EcoRⅠ切口。它们的单酶 和双酶解结果示于下表。
AJPI DNA的三种酶单解和双解产物分析
三. DNA序列测定的策略
1. 鸟枪法
2. 套式缺失法
3. 引物延伸法
四. 自动测序
五. 应用举例
聚合酶链反应-微孔板杂交法检测结核杆菌的临床应用及其评价
杨正林,傅明德等(华西医大学报 2001;32(1):136-139)
一. 原理
利用PCR扩增、分子克隆、核酸杂交以及生物素-
亲合素酶联检测技术,灵敏、特异地检测结核杆菌。
常用分子生物学和细胞生物学实验技术介绍

常用分子生物学和细胞生物学实验技术介绍 (2021-04-23 11:01:29)转载▼标签:分子生物学细胞生物学常用实用技术根本实验室技术生物学实验教育常用的分子生物学根本技术核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的根本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。
其根本原理是具有一定同源性的原条核酸单链在一定的条件下〔适宜的温室度及离子强度等〕可按碱基互补原成双链。
杂交的双方是待测核酸序列及探针〔probe〕,待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。
核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的DNA或RNA片段。
根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。
固相杂交固相杂交〔solid-phase hybridization〕是将变性的DNA固定于固体基质〔硝酸纤维素膜或尼龙滤膜〕上,再与探针进行杂交,故也称为膜上印迹杂交。
斑步杂交〔dot hybridization〕是道先将被测的DNA或RNA变性后固定在滤膜上然后参加过量的标记好的DNA或RNA探针进行杂交。
该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永别离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。
该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。
印迹杂交〔blotting hybridization〕Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反响,用放射性自显影或酶反响显色,检测特定大小分子的含量。
分子生物学实验技术使用指南

分子生物学实验技术使用指南背景随着生物科技的飞速发展,分子生物学实验技术变得日益重要。
无论是基础研究还是应用研究,分子生物学实验技术都扮演着关键角色。
本文将深入探讨几种常用的分子生物学实验技术,并提供使用指南。
1. DNA提取技术DNA提取是分子生物学实验中的第一步。
合理高效的DNA提取可以确保后续实验的顺利进行。
常用的DNA提取方法包括Phenol/Chloroform法、Qiagen柱法等。
对于不同的样品类型,选择合适的方法非常关键。
例如,对于植物样品,除了常规提取方法外,还可以使用植物基因组DNA提取试剂盒进行快速提取。
2. PCR技术PCR(聚合酶链式反应)是分子生物学实验中的常用技术。
它使得我们能够在实验室中迅速扩增DNA片段。
在PCR过程中,引物的设计非常重要。
合理严谨的引物设计能够提高扩增效率,并避免非特异扩增。
此外,选择适当的扩增条件和酶的浓度也是成功PCR实验的关键。
3. 限制性内切酶消化限制性内切酶消化可以用于DNA片段的切割和鉴定。
合理选择适合的限制酶是至关重要的。
在消化反应中,反应的时间和温度是需要特别注意的因素。
此外,对于限制性内切酶的消化产物的鉴定,可以使用琼脂糖凝胶电泳或PCR扩增来进行。
4. 基因克隆技术基因克隆是分子生物学实验中常用的技术手段。
在基因克隆过程中,选择合适的酶切位点和载体是至关重要的。
克隆之前,需要仔细设计引物以扩增目标基因。
成功克隆后,还需要验证所克隆基因的准确性。
这可以通过测序和进一步的功能检测来完成。
5. 蛋白质免疫印迹技术蛋白质免疫印迹技术是研究蛋白质表达和相互作用的重要技术。
在进行免疫印迹实验前,需要制备合适的细胞裂解液来提取蛋白质。
之后,需要将蛋白质样品进行分离,并转移到膜上。
此外,合适的抗体选择和浓度优化也对实验结果有重要影响。
6. 基因组测序技术基因组测序是分子生物学研究中不可或缺的技术。
高通量测序技术的发展使得基因组测序变得更加快速和准确。
分子生物学 常用分子生物学技术的原理及应用

(三)基因突变
利用PCR技术可以随意设计引物在体外对目的 基因片段进行嵌和、缺失、点突变等改造。
T G C
(四)DNA序列测定
将PCR技术引入DNA序列测定,使测序工 作大为简化,也提高了测序的速度;
待测DNA片段既可克隆到特定的载体后进 行序列测定,也可直接测定。
(五)基因突变分析
PCR与其他技术的结合可以大大提高基 因突变检测的敏感性 。
▪ 分子杂交: 不同来源的单链核苷酸链根据碱基互补原则形成
杂种双链的过程。
▪ 分子杂交的目的: 检测DNA和RNA
▪ 探针: 分子杂交中和待测核苷酸链碱基互补的被标记的
核苷酸链。
待测DNA或RNA
探针
碱基对间氢键
增色效应: DNA变性伴随260nm吸收值增高
减色效应: DNA复性伴随260nm吸收值降低
Taq
5’
Taq
5’
R
R
R Taq
R
Taq
R
l
R
3’
Extension Step
1. Strand Displacement
3’
5’
2. Cleavage
3’
5’ 3. Polymerization
3’
Complete
4. Detection
5’ 3’
PCR衍生技术
▪ 反向PCR ▪ 逆转录PCR ▪ 原位PCR ▪ 重组PCR ▪ 不对称PCR ▪ 多重PCR
酵母双杂交系统的建立基于对真核生物转录激 活因子结构与功能的认识
真核生物转录激活因子
DNA结合结构域 转录激活结构域
BD
AD
组件式:结构可互相分开 功能互相独立 空间较近时表现活性 中间序列对活性无影响
分子生物学常用的各种技术项目举例

环境。
溴化乙锭(EB)为致癌剂,操作时应戴手套,
尽量减少台面污染。
凝胶电泳原理-EB染色
核酸电泳的指示剂
• 核酸电泳常用的指示剂有两种:
•
⑴ 溴酚蓝
•
⑵ 二甲苯青,
溴酚蓝(bromophenol blue, Bb)呈蓝紫色;
二甲苯晴(xylene cyanol, Xc)呈蓝青色,它 携带的电荷量比溴酚蓝少,在凝胶中的的迁移 率比溴酚蓝慢。
分子生物学常用技术
3.1 凝胶电泳技术 3.2 分子杂交技术 3.3 P凝胶电泳技术
凝胶电泳(Gel electrophoresis)是分子克隆的中 心技术之一。
1. 琼脂糖凝胶用于分离200~1000bp的片段;
操作简单、快速,且分离范围广,分辨率高 2. 聚丙烯酰胺凝胶用于分离5~500bp的片段;
1. 放射性核素的标记 (1)切口平移法:该技术由Kelly等于1970年创立。是目前最常用 的一种脱氧核糖核酸的探针标记法。是利用大肠杆菌DNA聚合酶Ⅰ 的多种酶促活性将标记的dNTP掺入到新形成的DNA链中去,从而 合成高比活的均匀标记的DNA探针。线状、超螺旋及带缺口的双链 DNA匀可作为模板。首先,极微量的DNaseⅠ在Mg2+的存在下,在 DNA链上随机形成单链切口。利用大肠杆菌DNA聚合酶的5`→3′核 酸外切酶活性在切口处将从旧链5`—末端逐步切除。同时,在DNA 聚合酶Ⅰ的5`→3′聚合酶活性的催化下,
基因探针根据标记方法不同可粗分为放射性探针和非放射性探 针两大类,根据探针的核酸性质不同又可分为DNA探针,RNA探针, cDNA探针等几类,DNA探针还有单链和双链之分。 1.基因组DNA探针: DNA探针是最常用的核酸探针,指长度在几百 碱基对以上的双链DNA或单链DNA探针。
分子生物学常用实验技术概述

分子生物学常用实验技术概述分子生物学是研究生物大分子(如DNA、RNA和蛋白质等)组成、结构和功能的科学领域。
在分子生物学的研究中,常用各种实验技术来解析生物大分子的结构和功能,为科学研究和应用提供依据。
下面将概述一些常用的分子生物学实验技术。
1.PCR(聚合酶链式反应):PCR是一种能在体外快速扩增DNA序列的技术,可以从一个DNA模板扩增出百万倍的DNA片段。
PCR包括三个步骤:变性、退火和延伸。
通过PCR,可以在短时间内扩增大量特定的DNA 片段,并常应用于基因分析、疾病诊断以及基因工程等领域。
2.转基因技术:转基因技术是将外源基因导入到目标生物体细胞中,使其表达外源蛋白或产生新的表型。
转基因技术通常包括四个步骤:基因分离、基因克隆、基因传递和基因表达。
转基因技术在农业、医学和生物科学研究中具有广泛的应用。
3.蛋白质电泳:蛋白质电泳是根据蛋白质的电荷和大小差异将其分离的一种方法。
常用的蛋白质电泳方法包括SDS-和二维电泳。
蛋白质电泳可用于纯化蛋白质、分析蛋白质组成以及检测蛋白质的修饰。
4.蛋白质质谱:蛋白质质谱是一种分析蛋白质的结构和功能的方法。
常用的蛋白质质谱技术包括MALDI-TOF质谱和液相色谱-串联质谱(LC-MS/MS)。
蛋白质质谱可用于鉴定未知蛋白质、确定蛋白质的氨基酸序列以及检测蛋白质的修饰等。
5.分子克隆:分子克隆是将外源DNA或RNA序列插入到载体DNA中,并通过细胞转染等方法将其导入到目标细胞中进行表达的过程。
分子克隆常用的方法包括限制性内切酶切割、连接反应、质粒构建和转染等步骤。
分子克隆技术可用于分析、表达和研究目标基因。
6. Northern blotting:Northern blotting是一种检测RNA的方法,常用于检测特定的mRNA分子。
在Northern blotting中,通过RNA的电泳分离、转移、固定以及杂交等步骤,可以检测目标RNA的存在和表达水平。