分子生物学基本技术
常用的分子生物学基本技术简介

核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
无论从基因库中筛选的癌基因或经PCR 法扩增的基因,最终均需进行核酸序列分析,可藉以了解基因的精细结构,获得其限制性内切酶图谱,分析基因的突变及对功能的影响,帮助人工俣成基因、设计引物,以及研究肿瘤的分子发病机制等。
测序是在高分辨率变性聚丙烯酰胺凝胶电泳技术的基础上建立起来的。
目前最常用的方法有Maxam-Gilbert的化学降解少和Sanger的双脱氧法等,近年来已有DNA序列自动测定仪问世。
化学降解法是在DNA的片段的5`端标记核素,然后用专一性化学试剂将DNA特异地降解,在电泳和自显影后,可得到从标记端延伸的片段供测读序列和进行比较。
一般能读出200-250个核苷酸序列。
双脱氧法是采用核苷酸链终止剂,如:2`,3`-双脱氧核苷三磷酸ddNTP(如ddTTP、ddTTP、ddGTP和ddCTP中的一种)掺入到DNA链中以终止链的延长,与掺入4种正常的dNTP的混合物分成四组进行反应,这样可得到一组结尾长衙不一、不同专一性核苷酸链终止剂结尾的DNA片段,经凝胶电泳分离和放射自显影,可读出合成的DNA核苷酸序列,根据碱基互补原则,可推算出模板DNA分子的序列。
化学降解法只需一化学试剂,重复性好,容易掌握;而双脱氧法需单链模板、特异的寡核苷酸引物及高质量的DNA聚合酶,便随着M13噬菌体载体的发明和运用,合成的引物容易获得,测序技术不断改进,故此法已被广泛应用。
基脱氧法的自动激光荧光测序仪,使测工作更快速和简便,而且保证高度重复性。
至于RNA测序现大多采用将mRNA逆转录成cDNA后同测序,然后反推RNA序列基因转染技术将特定的遗传信息传递到真核细胞中,这种能力不但革新了生物学和医学中许多基本问题的研究,也推动了诊断和治疗方面的分子技术发展,并使基因治疗成为可能。
目前基因转移技术已广泛用于基因的结构和功能分析、基因表达与调控、基因治疗与转基因动物等研究。
常用分子生物学技术的原理及其应用

分子生物学技术是生物学领域中的重要工具,广泛应用于基础研究、医学诊断、药物研发等领域。
以下是常用的分子生物学技术及其原理和应用:1. PCR技术:PCR(聚合酶链式反应)是一种体外扩增DNA的方法,基本原理是通过DNA聚合酶酶在体外模拟DNA的复制过程,从而快速扩增目标DNA片段。
PCR技术在基因克隆、基因检测、DNA指纹分析等领域有着广泛的应用。
2. 基因克隆技术:基因克隆是将感兴趣的DNA片段插入到载体DNA 中,构建重组DNA分子的过程。
通过基因克隆技术可以获得大量目的基因的DNA序列,用于研究基因功能、表达调控等方面。
3. 蛋白质表达与纯化技术:蛋白质表达技术是将外源基因导入宿主细胞中,使其表达目的蛋白质的过程。
通过蛋白质表达与纯化技术,可以获得大量纯净的蛋白质样品,用于研究蛋白质结构、功能等。
4. 基因编辑技术:基因编辑技术包括CRISPR-Cas9系统、TALENs和ZFNs等,可以实现对基因组特定区域的精准编辑。
基因编辑技术在疾病治疗、植物育种等领域有着巨大的潜力。
5. RNA干扰技术:RNA干扰是一种通过RNA介导的基因沉默机制,可使目标基因的mRNA水平下降,从而抑制基因表达。
RNA干扰技术在基因功能研究、疾病治疗等方面具有重要应用价值。
6. 蛋白质亲和纯化技术:蛋白质亲和纯化技术利用蛋白质与其结合物质之间的特异性相互作用,实现对目标蛋白质的选择性富集和纯化。
该技术在药物筛选、蛋白质相互作用研究等领域有着广泛应用。
7. 基因芯片技术:基因芯片是一种高通量的生物芯片技术,可同时检测上千个基因的表达水平。
基因芯片技术广泛应用于基因表达谱分析、疾病诊断、药物研发等领域。
8. 蛋白质组学技术:蛋白质组学技术主要包括蛋白质质谱分析、蛋白质组芯片等,用于研究蛋白质在生物体内的表达水平、翻译后修饰等。
蛋白质组学技术在疾病诊断、药物靶点鉴定等方面有着重要应用。
以上是常用的分子生物学技术及其原理和应用。
分子生物学的方法和技术

分子生物学的方法和技术随着科技的不断进步,人们对于分子生物学的研究也越来越深入。
分子生物学是研究生物分子结构、功能及其相互作用的一门学科。
它在疾病诊断、基因工程、药物研究开发等领域都有着广泛的应用。
在分子生物学研究中,有很多的方法和技术可以用来解决问题,下面我们就一起来了解一下。
1. PCR技术PCR,即聚合酶链式反应(Polymerase Chain Reaction),是一种能够在试管中扩增DNA的技术。
它是创造性的方法,也是分子生物学领域中最重要的技术之一。
PCR技术在DNA的克隆、基因突变分析、DNA测序和基因表达分析等方面都有着广泛的应用。
PCR技术不仅能够扩增某一个基因的DNA序列,还可以同时扩增多个基因。
2. DNA芯片技术DNA芯片(DNA microarray)技术是一种高通量的基因表达分析技术。
它采用了DNA探针上的互补逆序列来检测样品中的RNA的含量。
DNA芯片技术可以同时检测大量基因的表达水平,从而了解集体基因表达模式的变化。
这种技术在肿瘤、遗传病、心脑血管疾病等方面的研究中都有着广泛的应用。
3. 蛋白质质谱技术蛋白质质谱技术是一种用来分析蛋白质结构和功能的技术。
这种技术通过分析样品中的蛋白质,可以了解蛋白质的分子量、结构、功能等信息。
它是基于分子重量差异和氨基酸序列的分析方法。
蛋白质质谱技术在药物研发、代谢组学、蛋白质组学等方面的应用日益广泛。
4. 基因敲除技术基因敲除技术是一种用来破坏特定基因并研究这些基因功能的技术。
该技术通过利用针对该基因的RNA,以及CRISPR/Cas9蛋白质等工具,来破坏特定的基因。
基因敲除技术在遗传学、肿瘤学、药物研发等领域都有着广泛的应用。
5. 单细胞测序技术单细胞测序技术是一种可以针对单个细胞的基因组或转录组DNA测序技术。
这种技术可以检测一个基因在一个单独的细胞中的表达,从而了解细胞的类型和功能。
它在免疫学、发育学、神经科学等领域的研究中都有着广泛的应用。
分子生物学技术

分子生物学技术分子生物学技术在科学研究和生物工程领域中起着至关重要的作用。
它涉及对生物分子的理解和利用,可以帮助科学家研究和探索生命的奥秘。
本文将介绍分子生物学技术的基本原理、常用方法和在生物学研究和生物工程领域的应用。
一、基本原理分子生物学技术基于对生物分子的认识和使用,主要涉及DNA、RNA和蛋白质等生物分子的研究和应用。
它基于分子生物学的基础原理,通过从细胞中提取这些生物分子,进而进行分析、操作和利用。
DNA是生物体内贮存遗传信息的重要分子,它是通过四种碱基(腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶)序列的组合方式来编码遗传信息的。
DNA分子的测序和合成是分子生物学技术中的两个重要方面。
DNA测序是通过测定DNA的碱基序列来解读遗传信息。
DNA合成则是指通过化学合成方法来合成特定的DNA序列,可以用于基因工程、基因组学研究和药物研发等领域。
RNA是对DNA信息进行转录和翻译的分子,它在基因表达过程中发挥着重要的作用。
mRNA是一类RNA分子,它可以通过反转录技术被转录为DNA,并用于基因的克隆和表达研究。
tRNA和rRNA则在蛋白质合成过程中起着重要的辅助作用。
RNA干扰技术是分子生物学技术中的一项重要手段,通过靶向特定的mRNA分子,干扰其翻译过程,从而实现基因的沉默和调控。
蛋白质是细胞中的主要功能分子,分子生物学技术可以用于研究蛋白质的结构、功能和相互作用等方面。
蛋白质的分离和纯化是蛋白质研究中的重要环节,可以利用分子生物学技术中的蛋白质电泳、柱层析等方法实现。
蛋白质互作研究可以通过酵母双杂交技术、免疫沉淀技术和质谱技术等方法实现。
二、常用方法分子生物学技术中有许多常用的实验操作方法,包括PCR、基因克隆、基因表达和杂交等。
PCR(聚合酶链式反应)是分子生物学技术中的核心方法之一,它可以在体外扩增DNA片段。
PCR基于DNA复制过程的基本原理,通过酶催化的体外DNA复制反应,使DNA片段在数小时内扩增至数百万倍。
分子生物学基本技术

分子生物学基本技术包括核酸的纯化,体外合成、分子杂交、基因克隆、基因表达研究技术等第一节DNA的体外合成一、DNA的化学合成(无要求)一亚磷酸三酯法DNA的化学合成广泛用于合成寡核苷酸探针和引物,有时也用于人工合成基因和反义寡核苷酸。
目前寡核苷酸均是用DNA合成仪合成的,大多数DNA合成仪是以固相亚磷酸三酯法为基础设计制造的合成的原理:核酸固相合成的基本原理是将所要合成的核酸链的末端核苷酸先固定在一种不溶性高分子固相载体上,然后再从此末端开始将其他核苷酸按顺序逐一接长。
每接长一个核苷酸残基则经历一轮相同的操作,由于接长的核酸链始终被固定在固相载体上,所以过量的未反应物或反应副产物可通过过滤或洗涤的方法除去。
合成至所需长度后的核酸链可从固相载体上切割下来并脱去各种保护基,再经纯化即可得到最终产物。
(末端核苷酸的3’-OH与固相载体成共价键,5’-OH被二甲氧基三苯甲基(DMT)保护,下一个核苷酸的5’-OH亦被DMT保护3’-OH上的磷酸基上氨基亚磷酸化合物活化碱基上的氨基用苯甲酸保护。
每延伸一个核苷酸需四步化学反应(1)脱DMT游离出5’-OH。
⑵缩合(偶联反应):新生成的5’-OH与下一个核苷活化的3’单体缩合成亚磷酸三酯使链增长(3)盖帽(封端反应):有少量(小于0.5%)未缩合的5’-OH要在甲基咪唑或二甲氨基吡啶催化下用乙酸苷乙酰化封闭,以防进一步缩合造成错误延伸。
(4)氧化:新增核苷酸链中的磷为三价亚磷,需用碘氧化成五价磷(磷酸三酯)。
上述步骤循环一次,核苷酸链向5’方向延伸一个核苷酸二、聚合酶链式反应技术聚合酶链式反应(polymerasechainreaction,PCR)是一种体外特定核酸序列扩增技术。
一)PCR的基本原理双链DNA热变性成两条单链,降温使反应体系中的两个引物分别与两条DNA单链两侧的序列特异性复性,在合适的条件下,耐热DNA聚合酶以单链DNA为模板,利用反应体系中的4种dNTP合成其互补链(延伸),在适宜的条件下,这种变性一复性一延伸的循环重复1次DNA的量可以增加1倍,30次循环后,DNA的量增加230倍。
分子生物学常用技术

切除所有结合与不 结合蛋白质的DNA 带,并用六氢吡啶 切割甲基化的G残 基
缺失的DNA带表 结合带 非结合带 明相应G残基的重 要意义,它得到 结合蛋白质的保 护
甲基化干扰实验
4、体内足迹实验
完整的细胞 × G G
DMS
裸露的DNA G G
× G
me
G
分离DNA并用 六氢吡啶切割
Me Me
G
G
PCR扩增 凝胶分析
1× 29× 1×
*This cycle is normally included in a PCR assay in order to allow any “unfinished” product from previous amplification to achieve its full length
PCR 反应的每一个温度循环周期都是由DNA变性、引 物退火和反应延伸三个步骤完成的。图中设定的反 应参数是94℃变性1min, 60 ℃退火1min, 72 ℃ 延伸1.5min。如此周而复始,重复进行,直至扩增 产物的数量满足实验需求为止。
Reaction Condition for a Typical PCR Assay
2、诺赛恩RNA印迹技术(Northern blotting)
1979年,J.C.Alwine等人发展而来,是将RNA分子从电泳凝 胶转移到硝酸纤维素滤膜或其他化学修饰的活性滤纸上,进行 核酸杂交的一种实验方法。由于这种方法与萨瑟恩DNA印迹杂交 技术十分类似,所以叫做诺赛恩RNA印迹技术(Northern blotting)。 而将蛋白质从电泳凝胶中转移到硝酸纤维素滤膜上,然后 同放射性同位素125I标记的特定蛋白质之抗体进行反应,这种技 术叫做韦斯顿蛋白质杂交技术(Western blotting)。
分子生物学基本技术

分子生物学基本技术一、引言分子生物学是研究生物体的分子结构、功能和相互关系的学科。
分子生物学基本技术是指在分子水平上进行研究的实验技术和方法。
本文将介绍几种常用的分子生物学基本技术。
二、聚合酶链反应(PCR)聚合酶链反应是一种用于扩增DNA片段的技术。
它可以从少量DNA样本中扩增出大量的目标DNA片段。
PCR的原理是通过不断重复DNA的变性、引物结合和DNA合成的过程,使目标DNA序列扩增到可检测的水平。
PCR广泛应用于基因克隆、基因检测、遗传学研究等领域。
三、DNA电泳DNA电泳是一种通过电场作用使DNA分子在凝胶中迁移的技术。
DNA的迁移速度与其分子大小成反比,因此可以根据DNA片段的大小进行分离和检测。
在DNA电泳中,DNA样品首先经过限制性内切酶切割,然后在凝胶电泳中进行分离。
最后,通过染色剂染色,可观察到DNA片段的分离结果。
四、基因克隆基因克隆是指将感兴趣的DNA片段插入到载体DNA中,形成重组DNA分子的过程。
常用的克隆载体包括质粒、噬菌体等。
基因克隆技术可以用于基因的定位、表达和功能研究。
克隆的基本步骤包括DNA片段的切割、载体与DNA片段的连接、转化等。
五、蛋白质表达与纯化蛋白质表达与纯化是研究蛋白质结构和功能的重要手段。
常用的表达系统包括原核表达系统(如大肠杆菌)和真核表达系统(如哺乳动物细胞)。
表达蛋白质的基本步骤包括构建表达载体、转化表达宿主细胞、诱导表达、蛋白质纯化等。
六、核酸杂交核酸杂交是一种通过DNA或RNA的互补碱基配对形成双链结构的技术。
核酸杂交可用于检测目标DNA或RNA的存在、定位和表达水平。
常用的核酸杂交技术包括Southern blotting、Northern blotting和in situ杂交等。
七、蛋白质相互作用研究蛋白质相互作用是细胞内发生的重要生物学过程。
研究蛋白质相互作用可以揭示蛋白质的功能和信号转导机制。
常用的蛋白质相互作用研究技术包括酵母双杂交、共免疫沉淀、荧光共振能量转移等。
分子生物学中的基本实验技术

分子生物学中的基本实验技术分子生物学是生物学中的一个重要分支,它研究的是生物体中的分子结构和功能。
分子生物学的研究对于生物科学的深入发展具有非常重要的意义,因此有许多实验技术被应用于分子生物学的研究中。
今天我将为大家介绍分子生物学中的基本实验技术。
1. PCR技术PCR技术是分子生物学中最常见的实验技术之一,全名为聚合酶链式反应。
这个技术的主要作用是在一定时间内通过不断复制DNA分子,使其数量快速增加。
PCR技术的原理是利用DNA聚合酶逆转录DNA为RNA,然后复制RNA为DNA,从而使得DNA的数量快速增加。
这个技术对分子生物学的研究非常重要,因为可以快速扩增特定目标DNA序列,用于检测基因改变、氨基酸替换等。
2. 克隆技术克隆技术是一种基于DNA分子复制的实验技术,它通过将特定的DNA序列定位在DNA分子的特定位置,使其可以被快速复制。
这个技术对于分子生物学的研究也非常重要,因为可以通过克隆技术复制从许多不同物种中获得的DNA分子,从而使其进行深入研究。
现在,克隆技术已经成为了分子生物学中最常用的实验技术之一。
3. 基因测序技术基因测序技术是一种对DNA分子进行测序的技术,它对于分子生物学的研究也非常重要。
通过基因测序技术,可以快速测定DNA分子的序列,从而更好地了解其功能和结构。
基因测序技术也是现代医学研究中最常用的技术之一。
4. 基因编辑技术基因编辑技术是一种用于改变生物体内基因结构的实验技术。
现在,有一些高效的基因编辑技术被发明,其中最为热门的是CRISPR/Cas9技术。
通过这个技术,可以快速实现基因替换、氨基酸替换等,这对于生物医学研究来说非常重要。
5. 免疫印迹技术免疫印迹技术是一种检测特定蛋白质的实验技术,对于分子生物学的研究也非常重要。
通过免疫印迹技术,可以检测特定蛋白质的存在和表达水平,从而更好地了解它们在生物体内的作用。
总之,分子生物学中的实验技术非常多,但是以上几种技术是最为基础和常见的实验技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题与讨论:
1.简要叙述溶液Ⅰ、溶液Ⅱ和溶液Ⅲ的作 用,以及实验中 分别加入上述溶液后,反应 体系出现的现象及其成因。
2.简要叙述酚氯仿抽提DNA体系后出现 的现象及其成因。
3. 沉淀DNA时为什么要用无水乙醇及在高 盐、低温条件下进行?
21
个人观点供参考,欢迎讨论!
10
☆原理示意图 返回目录 返回原理
11
——三个基本步骤:
细菌的生长和质粒的扩增 菌体的收集裂解及质粒DNA的分离 质粒DNA的纯化
12
实验试剂
LB培养基:
胰化蛋白胨 10g
酵母提取物 5g 定容
1000ml pH
7.5
NaCl
10g
STE:
0.1M
NaCl
10mM
Tris HCl(pH8.0)
2.取1.5ml培养液至Eppendorf管中,12000g离心30秒, 弃上清,用1ml STE悬浮菌体,再离心回收菌体,并重复 一次,弃上清,取沉淀。
3.将细菌沉淀悬浮于100μl预冷溶液Ⅰ中,振荡混匀,冰 上放置5分钟。
4.加入200μl溶液Ⅱ,盖严管盖轻柔颠倒5次以混匀内容 物,冰上放置5分钟。
9
碱变性法基本原理
在pH 12.0-12.6碱性环境中,线性的大分子量细菌 染色体DNA变性,而共价闭环质粒DNA仍为自然状 态。
将PH调至中性并有高盐浓度存在的条件下,染色体 DNA之间交联形成不溶性网状结构,大部分DNA和 蛋白质在去污剂SDS的作用下形成沉淀,而质粒 DNA仍为可溶状态,通过离心可除去大部分细胞碎 片、染色体DNA、RNA及蛋白质,质粒DNA尚在上 清中,再用酚氯仿抽提进一步纯化质粒DNA。
5.加入150μl溶液Ⅲ,温和振荡数次,冰上放置5分钟。 6.12000g 4 ℃离心5分钟,取上清移到1个新的
Eppendorf管中。
18
(7.加入等体积酚/氯仿(1:1),振荡混匀,12000g 4 ℃离心2分钟。取上清移至另1个Eppendorf管中。)
8.加入2倍体积无水乙醇,振荡混匀,于室温静置2分钟。 9. 12000g ,4 ℃离心5分钟。 10.弃上清,加入1ml 70%乙醇漂洗沉淀,盖严管盖颠
分子生物学基本技术(一)质粒的提取(源自法)三峡大学生物化学教研室
1
实验目的
了解碱法提取质粒的原理; 掌握碱法提取质粒的方法。
2
一.实验背景
质粒是染色体外的DNA分子,大小可为 1kb到200kb。
大多数来自细菌的质粒是双链、共价闭合 环状的分子,以超螺旋形式存在。它是细 菌内的共生型遗传因子。
1mM
EDTA
AmP 50mg/ml
溶菌酶 10mg/ml (用10mM Tris·HCl pH8.0新鲜配制)
13
试剂
溶液Ⅰ: 50mM 葡萄糖 25mM Tris·HCl(pH8.0) 10mM EDTA
溶液Ⅱ:(新鲜配制) 0.2N NaOH 1% SDS
溶液Ⅲ: 5M KAC 10ml 冰醋酸 11.5ml 水 28.5ml
酚,氯仿,乙醇 RNase 琼脂糖 TE: 10mM Tris-HCl(pH8.0) 1mM EDTA
14
实验仪器
(一) 仪器 1. 恒温摇床 2. 超净工作台 3. 高压灭菌锅 4. 高速台式离心机 5. 微量取液器
15
16
Insert
EcoR1 1.9kb
Xho1
17
三.实验方法
1.挑取琼脂培养板上的单菌落至5ml LB培养液中(含 AmP 50μg/ml), 37℃强烈摇荡过度。
倒数次,12000g 于4 ℃离心2分钟。 11.弃上清,抽干乙醇,室温干燥(5-15分钟)。 12.加入50μl TE(含20μg/ml RNA 酶,不含DNA酶)
溶解DNA。
19
四.结果分析
1.质粒DNA OD260,OD280的值,由此 计算质粒DNA得率和DNA纯度。
2.记录电泳结果并说明结果内容。
6
质粒的应用
大多数基因工程使用松弛型质粒。 严紧型质粒用来表达一些可使宿主细胞受毒
害致死的基因。
质粒的特点使质粒成为携带外源基因进入细 菌中扩增或表达的重要媒介物,这种基因运 载工具在基因工程中具有极广泛的应用价值。
7
质粒提取的思路
质粒的特性:共价、闭合、环状的小分子量DNA 要去除的物质:
蛋白 基因组DNA 脂类及小分子杂质 RNA
8
分离质粒DNA方法
从大肠杆菌中分离质粒DNA方法众多,目前常用的 碱变性法; 煮沸法; SDS法; 羟基磷灰石层析法等 各方法分离是依据宿主菌株类型、质粒分子大小、
碱基组成及结构等特点加以选择的,其中碱变性法 既经济且收得率较高,提取的质粒DNA可用于酶切, 连接与转化。
其复制和遗传独立于细菌染色体,但复制 和转录依赖于宿主编码的蛋白和酶。
3
质粒特点
质粒能在细菌中垂直遗传并且赋予宿主细胞 一些表型,是比病毒更简单的原始生命。
质粒通过细菌的结合作用,从雄性体转移到 雌性体, 是细菌有性繁殖的性因子.
1952年由Lederburg正式命名为质粒。
4
结构的三大要素: • 多克隆位点 • 选择标记(耐药性,LacZ) • 独立的复制单位 种类: • 质粒 • 噬菌体 • 酵母人工染色体(YAC) • 反转录病毒载体 • 表达载体等
5
质粒类型
质粒按复制方式分为两种类型: 松弛型质粒 和 严紧型质粒
1.松弛型质粒
松弛型质粒的复制不需要质粒编码的功能蛋白, 完全依赖于宿主提供的半衰期较长的酶。即使蛋白 质合成受抑制,质粒的复制依然进行。
2.严紧型质粒
严紧型质粒复制需要一个质粒编码的蛋白,质粒的 拷贝数不能通过用氯霉素等蛋白合成抑制剂来增加。